
Parameterized study of a Time Petri Net

David DELFIEU, Medesu SOGBOHOSSOU, Louis-Marie TRAONOUEZ

Institute of Research in Communication and Cybernetics of Nantes

Nantes, 44300, France

and

Sebastien REVOL
STMicroeclectronics Centre commun CNET

Crolles, 38826, France

Abstract

Temporal analysis of Time Petri Nets encounters combi-
natory explosion. Most of actual works tackle with opti-
mization and try to contain explosion. In in a di�erent
approach, this paper proposes a method allowing to study
a part of a Time Petri Net de�ned by a scenario. A sce-
nario is an unordered set of transitions extracted from a
Petri net. This scenario is analyzed by a logic process
based on Linear Logic. The essential contribution of this
paper is to conduct the analyze under a strong semantic
hypothesis.

This approach allows to compute symbolic expressions
that de�ne the �ring domain of the scenario. Moreover,
this approach is based on a rewriting process, which allows
to introduce parameters in the Petri nets that are also
found in the �ring domains.

Keywords: Time Petri Nets, Linear Logic, Parame-
terized time analysis, Strong semantics, Scenario.

1. INTRODUCTION

Analyzing timing constraints in real time systems is gener-
ally based on an exhaustive and costly calculus of the state
space. In formal models, Petri nets provide a good com-
promise between expressivity, communicability (graphical
support) and formal aspect, giving decidable algorithm in
the case of bounded Petri nets. Time Petri Nets (TPN) [9]
are widely used to specify and verify real time systems, but
trying to calculate state space, face to the problem of state
explosion, with non academic problems. Actual works try
to contain this problem by improvements on data stor-
age and data manipulation (for example with Di�erence
Bounded Matrix, zone graph, ...) [8, 4]. Another approach
is based on the unfolding of the Petri net [2]. This latter al-
lows to detect loops and limit the study to an independent
and consistent part of the net. Moreover, true parallelism
inherent to the approach prevents the expression of all the
interleavings.

This work keeps some of these ideas. If it does not
intend to unfold a Petri net, it proposes a way to restrict
the process of analyze to a set of runs called a scenario.
As well, it considers a true parallelism. A major pro�t is
that the method presented in this paper uses a parametric
approach enabling to consider a partial speci�cation.

Recent works [10] on this approach have introduced a
formal framework based on Linear Logic. It allows to
transform a linear algebra calculus in a proof system and
to treat time as a symbolic parameter. Based on resources,
this logical system allows to easily modelize state changes.

But these works were limited to weak semantics of TPN,
which rejects urgency and thus is useless in the design of
real time systems. The contribution of this paper is to
de�ne an algorithm in a strong semantic context.

The �rst part presents the process of formalization of a
real time application driving to a linear logic proof, in a
weak semantic hypothesis. The second part describes the
contribution of this paper which is to reintroduce strong
semantics in the proof process.

2. TIME PETRI NETS AND LINEAR

LOGIC: STATE OF THE ART

Time Petri Nets (TPN) [9] modelize in a formal way a
wide range of real time applications. The analyze of these
models is generally based on the calculus of state space
(class graph [1] or zone graph [3]) and face to the problem
of state explosion. The approach expressed in this paper
proposes to traduce TPN in a logic system based on Linear
Logic formulae. The temporal analysis is then achieved by
a proof process (through sequent calculus).

2.1 Time Petri Nets

There are several ways to associate time to a Petri net. It
can be associated to places, transitions or arcs. In Time
Petri Nets, a time interval, called enabling duration, is as-
sociated to transitions (in the case of T-TPN). This inter-
val represents the minimum and maximum delay needed
after enabling the transition, to e�ectively realize the �r-
ing. This interval can possibly be open with an in�nite
upper bound. Formally, a TPN can be de�ned as follow:

De�nition 1 (Time Petri Net) A Time Petri Net is a
tuple N = (P, T, •(.), (.)•, M0, α, β) where:

• P is a set of places,

• T is a set of transitions, with P ∩ T = ∅,

• •(.) ∈ (NP)T is the backward incidence mapping,

• (.)• ∈ (NP)T is the forward incidence mapping,

• M0 ∈ NP is the initial marking,

• α ∈ (R+)T and β ∈ (R+ ∪ {∞})T are functions that
give to each transition, respectively its soonest �ring
time and latest �ring time (with α ≤ β).

Parameterized approach One the interest of the ap-
proach will be to treat parameters instead of numerical
values. In that way, instead of considering the numerical
values of the enabling duration of the transitions, for a
transition ti ∈ T , the approach will consider two parame-
ters dimin and dimax to represent α(ti) and β(ti). Then,
it will be possible to evaluate the results by assigning a
numerical value to each parameter. One of the bene�t
is that several di�erent evaluations can be done without
re-analyzing the TPN.

TPN semantics A marking M of a TPN is a mapping
in NP that associates with each place p the number M(p)
of tokens contained in this place. A transition t is enabled
by a marking M if and only if M ≥ •t. The �ring of this
transition will produce the new marking M ′ = M−•t+t•.
TPN semantics are classically described in terms of tran-
sitions systems, with two types of transitions: a discrete
transition which �res a transition of the net, and a contin-
uous transition which elapses time. With the introduction
of time in Petri nets, there exists di�erent semantics to de-
termine when a transition can �re. They can be classi�ed
in two categories: weak and strong �ring semantics (called
in this paper WFS and SFS).

A clock ν(t) is associated with each enabled transi-
tion. In a weak semantic, a transition t can be �red if
α(t) ≤ ν(t) ≤ β(t), whatever the clock values of the
other transitions. In particular, if the clock of a transi-
tion reaches its latest �ring time, the �ring is not forced,
and can be lost to reserve the tokens, for example to �re
another transition in con�ict.

On the contrary, in a strong semantic, if the clock of
a transition reaches its latest �ring time, the �ring of the
transition becomes urgent, which means no more time can
elapse before �ring the transition. Thus, to determine if
an enabled transition can be �red at a date D, it is not
enough to look at the clock of this transition, but it is
also necessary to look at all the other clocks of enabled
transitions, to verify if any of them will exceed the latest
�ring time of its transition.

The expressivity of this two semantics are not the same.
To modelize a real time application, its necessary to mod-
elize urgency of events. Thus, weak semantics appear to
be inadapted to describe real time applications, and strong
semantics will be preferred. A relevant example of the dif-
ference of expressivity between the two semantics is the
modelization of a watchdog. A watchdog is a common
pattern in real time systems used to modelize alarms. A
TPN version of a watchdog is describe on the �gure ??.

• The watchdog is armed when a token comes in place
P1; it triggers the clock of newly enabled transition
t2; the alarm time is here �xed to 10 unit of time.

• If a token comes in P2 before this deadline, the tran-
sition t1 is instantaneously �red and the watchdog is
realeased; the system follows its nominal execution,
with a token in place P3.

• Otherwise, after 10 units of time, the alarm is trig-
gered by the �ring of transition t2; then, the system
is in an alarm state with the token in place P4.

This expected behavior of the TPN model is only possi-
ble with a strong semantic. In a weak semantic, if a token
comes in P2 before the latest �ring time of t2, the �ring
of t1 can be lost, and the system can still evolve in alarm
mode with the �ring of t2; in the same way, if the alarm
time is reached, the urgent �ring of t2 can be lost to wait
for the coming of a token in P2, and the system can still
go on nominal mode. Only strong semantics can modelize
the urgency of transitions t1 and t2.

Scenario of �rings in a TPN Classical methods in
TPN veri�cation are states based methods. A state in a
TPN is the conjunction of a marking and the clock values
of the enabled transitions. These methods (class graph [1]
or zone graph [3]) computes the states space of the net
and gather the states into classes or zones. Thus, the base
element in these methods (which is either the class or the
zone) represents a set of states of the net. This paper
exposes a di�erent approach, rather based on events.

De�nition 2 (Event) An event e in a TPN N =
(P, T, •(.), (.)•, M0, α, β), is the �ring of a transition
t ∈ T at a symbolic �ring date De.

The object in study in this approach will not be the
state space of the net but the scenarii of the net.

De�nition 3 (Scenario) A scenario E in a TPN N is
a unordered set of events e. Two events can �re the same
transition. Thus, a scenario can also be seen has a multiset
of transitions.

A scenario is valid if a �ring sequence can be constructed
with all the transitions appearing in the scenario. Then, as
a scenario is unordered like �ring sequences are, a scenario
represents all the �ring sequences which use the transitions
of the scenario and which only di�er by the �ring order be-
tween these transitions. Scenarii correspond to the notion
of process in the theory of unfoldings of petri net [2].

2.2 From Time Petri Nets to a subset of Lin-

ear Logic

Linear Logic has been introduced in 1987 by J-Y Girard [5]
as a non monotonic logic, in which the value of the propo-
sitions may change during the time. This property allows
to represent dynamic systems and resources manipulation.
In particular, several works [6, 10, 7] have exhibited links
between Linear Logic and Petri nets.

In these works, Petri nets are translated into a fragment
of Linear Logic containing only two connectors (on the
nine that compose the logic). The �rst one is the Times
connector, represented by the symbol ⊗. It corresponds to
the classical connector ∧, however it is not an idempotent
connector, which means A⊗A 6= A. The second connector
is the linear implication (. It expresses the consumption
of a resource and its transformation into another resource.

Translation of the net structure The initial mark-
ing of the Petri net is translated into a Linear Logic for-
mula using only ⊗ connectors. To each marked place of
the network corresponds a resource. The initial marking
of the net is then a conjunction of resources, separated by
⊗ connectors.

For example, a marking:

M0 = {P 3
1 , P2, P3}

is translated into:

P1 ⊗ P1 ⊗ P1 ⊗ P2 ⊗ P3 ≡ P⊗3
1 ⊗ P2 ⊗ P3

As for transitions, they are translated into Linear Logic
formulae that use the (connector. Thus, each transition
t is translated into the formula:

•T (T •

where •T and T • are the Linear Logic formulae of the
previous marking and next marking.

In this paper, the following notations will be adopted:
t0, t1, . . . , tn are transitions and their corresponding
linear logic formulae are: T0, T1, . . . , Tn; the places
P0, P1, . . . , Pm will be represented by the same name in
linear logic.

Firing a transition The �ring of a transition is car-
ried out by a sequent. A sequent can be de�ned by:

P0, P1, . . . , Pn ` C

where Pi and C are linear logic formulae. At the left of
the turnstile the formula is a conjunction of the premises
Pi; at the right C is the conclusion. Thus, let's consider
the transition t de�ned by •t = {Pi, P j} and t• = {Pk}.
The sequent:

Pi ⊗ Pj , Pi ⊗ Pj (Pk ` Pk

expresses the �ring of t.
By extension, let consider a sequence of transitions s =

t0, t1, . . . , tn, whose linear logic formulae are T0, T1, . . . , Tn,
an initial marking M = {Pi, Pi+1, . . . , Pj}, and a �nal

marking M ′ = {Pk, Pk+1, . . . , Pl}, such as M
s−→ M ′.

The sequent:

Pi ⊗ Pi+1 ⊗ . . .⊗ Pj , T0, T1, . . . , Tn ` Pk ⊗ Pk+1 ⊗ . . .⊗ Pl

represents the �ring of the sequence s.
It must be noticed that transitions speci�ed in a sequent

are not ordered. In fact the coma is commutative. Thus,
a sequent can represent several transitions sequences that
only di�er by their �ring order. Consequently, a linear
sequent is the direct representation of a scenario.

2.3 Sequent calculus

Linear sequents would be useless without sequent calculus.
This process allows to prove a sequent by applying rules
that simplify the sequent in one or two other sequents. For
example, to prove the sequent:

Γ , ∆ , F (G ` H

where F , G and H are linear logic formulae, whereas Γ
and ∆ are series of linear logic formulae (that constitute
the context), the rule (L is applied:

Γ ` F ∆ , G ` H

Γ , ∆ , F (G ` H
(L

In this rule, the sequent Γ , ∆ , F (G ` H is replaced by
the simpli�ed sequents on top; the proof process is then
inferred on those sequents. This rule is called left imply
rule and corresponds to the �ring of a transition. Three
other rules will be used in the method:

• the left times rule ⊗L:

Γ , F , G ` H

Γ , F ⊗G ` H
⊗L

• the right times rule ⊗R:

Γ ` F ∆ ` G
Γ , ∆ ` F ⊗G

⊗L

• the identity rule id, an axiom rule which allows to
terminate proofs:

F ` F
id

An important theorem proved in [6] is:

Theorem 1 Let s = t1, . . . , tn be a transitions sequence in
the underlying Petri net, T1, ..., Tn the linear logic formulae
of these transitions, m and m′ two markings, and M , M ′

the linear logic formulae associated to these markings:

m
s−→ m′ ⇐⇒ M , Tt1 , ..., Ttn ` M ′

This means that proving a sequent that corresponds to
a scenario between two markings m and m′ in a Petri net,
is equivalent to proving the accessibility between these two
markings.

2.4 Firing dates and temporal labels

Let de�ne how a �ring date is associated to an applica-
tion of the left imply rule. A production date is associated
to each resource (either a token or a marking); this pro-
duction date is the �ring date of the �red transition that
produced the resource. When applying the left imply rule,
the �ring date of the new �red transition is computed and
becomes the temporal label of the produced resources.

Unlike the state space calculus, this approach is based
on a rewriting process allowing to use symbolic tempo-
ral variables or parameters. So, transition �ring dates are
represented by symbolic variables Dk

i , for the kth �ring of
the transition ti. The enabling interval bounds are rep-
resented by parameters dimin or dimax . Then, temporal
labels are symbolic expressions, that use these variables
and the operator '+' and 'max'.

2.5 Proof algorithm

The following algorithm in weak semantic [10] simulates
the run of a scenario in the underlying Petri net and com-
putes symbolic expressions that are the �ring dates of the
transitions. This algorithm allows to prove a sequent cor-
responding to a Petri net, and thus to valid a scenario
in WFS, but moreover, considering a Time Petri Net, it
allows to compute the �ring dates of the transitions.

The �ring date of a transition is the maximum between
the production dates of the consumed resources, increased
by the enabling duration of the transition.

However, this algorithm does not deal with con�icting
situations, and thus it checks if the scenario under study
is an event graph 1.

It is important to notice that this algorithm captures
the true parallelism through the max operator instead of
exploring all the interleavings of parallel transitions. How-
ever, this algorithm works in weak semantic and conse-
quently cannot deal with situations like timeout or watch-
dog.

1i.e. two transitions have no common input or output places

Check if the studied scenario is an event graph
Apply left ⊗ rule: temporal labels are initialized at
null
while left (rule can be applied do

- Apply left (rule to the �rst candidate
transition according to lexical order: the �ring
date is the maximum between the production dates
of the consumed tokens, increased by the enabling
duration of the transition. The resources produced
receive this date as their production date.
- Terminate the proof of the left sequent by
applying the rules right ⊗ or identity
- Apply, if necessary, the left ⊗ rule to the right
sequent: the production date of the disconnected
tokens is the one of the marking.

end

Algorithm 1: Proof algorithm with temporal labels

This algorithm produces the set of inequations that �r-
ing dates must satisfy. This set will be called �ring domain
of the scenario. The �ring domain of a scenario is the set
of the �ring domains of all the events in the scenario. The
�ring domain of an event is a set of inequations giving to
its �ring date, upper and lower bounds. These inequa-
tions can be manipulated to exhibit signi�cant temporal
properties upon some events because they are driving to
particular states under analyze.

3. A STRONG SEMANTIC ALGORITHM

With the objective to develop veri�cation methods for real
time systems, it has been shown that only a SFS can be
used in the modelization of the system into a TPN. Thus,
veri�cation methods must be adapted to SFS. The adap-
tion of the previous algorithm to strong semantic is ex-
posed in this section, and constitutes the contribution of
this paper. This method is available in T-TPN (a time in-
terval is associated to each transition), with a multi-server
hypothesis (a clock is associated to each subset of tokens
enabling a transition).

This adaptation modi�es several elements. First, it be-
comes necessary to establish the possible con�icts between
transitions. Indeed, con�ict situations are the only ones
in which SFS and WFS di�er. In these cases �ring dates
must be modi�ed to take into account the urgency of some
transitions.

During this section, theorical developments will be il-
lustrated with the �gure ??. On this example, with the
previous algorithm which is under WFS hypothesis, the
�ring interval of t2 is [2, 7], but will be [2, 5] in a SFS
hypothesis.

3.1 Taking transitions con�icts into account

To provide a strong semantic algorithm, it is necessary to
identify con�icts between transitions, when two or more
transitions share one or more input places.

Moreover, the developed method take into account a
more wide notion of con�ict. It allows to consider transi-
tions which are in the case of indirect con�ict. ti and tj

are in indirect con�ict if and only if, ti and tj are not in
direct con�ict, and ∃tk so that ti and tk are in direct (or
indirect) con�ict and tk and tj are in direct (or indirect)
con�ict.

Indeed, transitions in indirect con�ict can in�uence each
other in the calculus of latest �ring date. As shown in the
�gure ??, where t1 and t3 are in indirect con�ict, whether

t3 is �red before t1 or not, t1 can be �red either between
[1, 6] or between [1, 4].

As a consequence, to identity con�icts, the notion of
con�icts group is de�ned by transitivity: every pair of tran-
sitions in con�ict are in the same con�icts group. In the
example above, there is only one con�icts group that con-
tains the three transitions. Then, to compute the �ring
dates in a con�icts group, the �ring date of a transition is
lower than the minimum of the dates Dimax of all enabled
transition in the con�icts group of the transition.

3.2 Modi�cation of the �ring order

Interleavings must be reintroduced to �re transitions in
the same con�icts group. For example, in the TPN of the
�gure ??, the two �ring order: t1; t3 and t3; t1 must be dis-
tinguished, because according to the �rst �red transition,
the �ring dates will be di�erent. Between transitions in
con�ict belonging to di�erent groups or transitions not in
con�ict, interleaving is not necessary.

In addition, during the proof, to be sure to take into
account all the possible in�uences, it is necessary to delay
to the maximum the �rings of transitions in structural
con�ict. This allows to activate the maximum number
of con�icts. That is why, the transitions that are not in
con�ict are always �red in priority.

3.3 New �ring dates calculus

The last change to the algorithm concerns the calculus of
the �ring dates. To take into account urgency of transi-
tions, the maximal �ring date is modi�ed. To achieve this,
the following notation is adopted: Di is the �ring date of a
transition. Then, for two transitions t1 and t2 in con�ict,
with respectively scheduled dates between [D1min , D1max]
and [D2min , D2max] (the ones computed by the previous
algorithm), e�ective �ring dates couldn't exceed the min-
imum of latest dates: min(D1max , D2max). Consequently,
in the symbolic expressions computed the operator 'min'
is introduced.

Moreover, due to the reintroduction of interleavings be-
tween transitions in con�icts, the minimal �ring date is
also modi�ed. If t1 and t2 are in the same con�icts group,
and if the sequence t1; t2 is �red, the total order impose to
t2 that: D2 ≥ D1min , and so minimal �ring date of t2 be-
comes: max(D1min , D2min), since t2 cannot be �red before
t1 for such a sequence. More generally, for a given order
of �rings between transitions belonging to the same con-
�ict group, minimum �ring date of the ith rank transition
is the maximum of the minimum dates for the consumed
transitions of rank lower or equal to i.

3.4 The algorithm in strong semantic

According to the listed modi�cations needed to adapt the
previous weak semantic algorithm to strong semantic, the
following algorithm 2 has been developed.

In this algorithm, the term "classical dates calculus"
refers to dates calculus in weak semantics whereas "new
dates calculus" refers to aforementioned principle of dates
calculus.

In comparison to the WFS algorithm, the proof realized
by this new algorithm can be di�erent, because the order
of �ring is modi�ed. Anyway, the provability of the se-
quent remains unchanged. What is changed, are the �ring
dates of the transitions. However, a scenario with a given
order between con�icting transitions, may not correspond
to a possible �ring sequence. To valid a scenario, the proof
of the corresponding sequent is not su�cient, but the fol-
lowing condition must also be checked: for each con�icting
transition ti, its �ring dates must verify Dimin < Dimax .

Create con�icts groups
Apply the rule ⊗L

while rule (L can be applied do
- Apply the rule (L in priority to candidate
transitions that are not in con�ict
if Transition is not in con�ict then

Apply the classical dates calculus
else

Apply the new dates calculus
end
- Finalize the proof of the left sequent
constructed, by applying the rules ⊗R or id
- Apply, if necessary, the rule ⊗L to the right
sequent

end

Algorithm 2: Proof algorithm in strong semantics

3.5 Explanation of the algorithm through the

example

Building con�icts groups

• There is only one con�icts group: G = (t1, t2)

In this con�icts group, one transition in con�ict is chosen
to compose the scenario: t2. Thus, the scenario under
analyze is composed by the �rings of transitions t2 and t3.
The sequent corresponding to this scenario is:

P0 ⊗ P2 ⊗ P3, T2, T3 ` P1 ⊗ P4

Applying the rules Then, the algorithm try to prove
the sequent by applying rules of linear sequent calculus.

Deconnexion of resources The �rst step is to ap-
ply the rule ⊗L to disconnect the resources of the initial
marking:

Az }| {
P0, P2, P3, T2, T3 ` P1 ⊗ P4

P0 ⊗ P2 ⊗ P3, T2, T3 ` P1 ⊗ P4
⊗L

The production dates of all resources are initialized to 0.

Firing a transition The (L rule is applied to �rable
transitions which are not in con�ict:

• the rule is applied to t3

P0 ` P0
id

Bz }| {
P1, P2, P3, T2 ` P1 ⊗ P4

P0, P2, P3, T2, T3 ` P1 ⊗ P4| {z }
A

(L

Date calculus The �red transition t3 is not in a con-
�icts group. Thus, its �ring date (which is the production
date of P1) belongs to the interval de�ned by the following
values :

• Minimum values:

D3min = dprod(P0) + d3min = d3min

• Maximum values:

D3max = dprod(P0) + d3max = d3max

d3min and d3max are the bounds of the enabling interval
of t3.

Firing a transition

• The (L rule is applied to t2, the only transition left
in the sequent.

P2, P3 ` P2 ⊗ P3 P1, P4 ` P1 ⊗ P4

P1, P2, P3, T2 ` P1 ⊗ P4| {z }
B

(L

Date calculus The �red transition t2 is in the con-
�icts group G, because t2 is in con�ict with t1. To compute
the bounds of its �ring date, the transition t1 must also be
taken into account.

• In the con�icts group G, no transition has already
been �red. Thus, the lower bound of D2 is not in�u-
enced:

D2min = d2min

• However, the upper bound is the minimum between
classical values (without con�it) of t1 and t2.

� Classical date at latest of t2 : d2max.
� Classical date at latest of t1: D3 + d1max.

Then, latest �ring date of t2 becomes:

D2max = min(D3 + d1max, d2max)

End of the proof The proof tree is achieved by trivial
applications of the rules ⊗R and id.

Conclusion of this example At the end of the al-
gorithm, the following informations are provided:

• The correctness of the proof gives the accessibility
of the �nal marking from the initial marking in the
underlying Petri net.

• For each event (transition �ring), its �ring domain is
computed, which means the expressions of its soonest
and latest �ring date are computed (symbolic expres-
sions).

The scenario in study is valid if:

1. The proof is correct.

2. The �ring domain of all the events in the scenario
is so that, the lower bound Dmin, and the upper
bound Dmax verify Dmin ≤ Dmax. In practice, only
the event whose transition was in con�ict must be
checked, because in all other cases this veri�cation is
trivial.

For the scenario t2, t3 of this example, the two bounds
of the event �ring t2, which was in con�ict, are
D2min = d2min and D2max = min(D3 + d1max, d2max).
As d2min ≤ d2max, only the constraint
d2min ≤ D3 + d1max must be checked. And so the
parameters must verify:

d2min ≤ d3max + d1max

The numerical applications on this example give the fol-
lowing results:

• Firing domain of t2: D2 ∈ [2, 5].

• Firing domain of t3: D3 ∈ [1, 3].

• Validity of the scenario:

d2min = 2 ≤ d3max + d1max = 3 + 2

These results correspond to a strong semantic hypothesis.
The �ring domain of t2 : [2, 5] is scaled down in WFS
compared to [2, 7] in SFS.

CONCLUSION

This latter method allows to compute the �ring domain of
a scenario in a Time Petri Net. This �ring domain pro-
vides for each event of the scenario inequations that rep-
resent either the lowest bound of the �ring interval of the
event or its latest bound. These inequations use symbolic
expressions that are constructed with the symbolic vari-
ables Di of the �ring dates of the event, with parameters
Djmin and Djmax that represent the enabling intervals of
the transitions, and with the operator +, min and max.
These �ring domains are expressed under a strong seman-
tics hypothesis. To achieve this a former algorithm in weak
semantic has been adapted to the strong semantics.

In comparison with classical model-checking methods,
one of the bene�t of this approach is that it allows to con-
sider parameterized Time Petri Net. This can be useful in
the design of real time applications to provide conception
guides, rather than just verifying the model of the system.

A lack of the method is that it does not take into account
con�icts of tokens, in case of multi-enabling of transitions,
where tokens production dates are not completely ordered.
It is shown that expression of scenario duration can depend
on the order of consumption of the tokens in the proof. A
perspective to deal with this limitation can be to stamp
tokens.

Finally, these algorithms have been successfully imple-
mented in a tool LLbox 2.

References

[1] Bernard Berthomieu and Michel Diaz. �Modeling
and veri�cation of time dependent systems using time
petri nets�. IEEE Trans. Softw. Eng., 17(3):259�
273, 1991.

[2] Thomas Chatain and Claude Jard. �Complete �-
nite pre�xes of symbolic unfoldings of safe time Petri
nets�. In ICATPN, volume 4024 of LNCS, pages
125�145, june 2006.

[3] Guillaume Gardey, Olivier (H.) Roux, and
Olivier (F.) Roux. �A zone-based method for
computing the state space of a time Petri net�. In
In Formal Modeling and Analysis of Timed
Systems, (FORMATS'03), volume 2791 of Lec-
ture Notes in Computer Science, pages 246�259,
Marseille, France, September 2003. Springer-Verlag.
Copyright Springer-Verlag.

[4] Guillaume Gardey, Olivier (H.) Roux, and
Olivier (F.) Roux. �State space computation
and analysis of time Petri nets�. Theory and
Practice of Logic Programming (TPLP).
Special Issue on Speci�cation Analysis and
Veri�cation of Reactive Systems, 6(3):301�320,
2006.

[5] Jean Yves Girard. �Linear logic�. Theorical Com-
puter Science, 50, 1987.

[6] Francois Girault. Formalisation en logique
linéaire du fonctionnement des réseaux de
Petri. PhD thesis, Université Paul Sabatier,
Toulouse, France, 1997.

[7] Luis Allan Künzle. Raisonnement Temporel Basé
sur les Réseaux de Petri pour des Systèmes
Manipulant des Ressources. PhD thesis, Univer-
sité Paul Sabatier, Toulouse, France, 1997.

2Available at http://llbox.rts-software.org/

[8] Didier Lime and Olivier (H.) Roux. �Model check-
ing of time Petri nets using the state class timed au-
tomaton�. Journal of Discrete Events Dynamic
Systems - Theory and Applications (DEDS),
16(2):179�205, 2006.

[9] P. M. Merlin. A Study of the Recoverability of
Computing Systems. PhD thesis, Department of
Information and Computer Science, University of Cal-
ifornia, 1974.

[10] Brigitte Pradin-Chézalviel, Robert Valette, and
Luis Allan Kunzle. �Scenario durations charac-
terization of t-timed petri nets using linear logic�.
In PNPM'99, 8th International Workshop on
Petri Nets and Performance Models, pages 208�
217, Zaragoza, Spain, 1999.

