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OT Monge formulation

Optimal transport
Balanced Optimal transport: Monge formulation

Balanced optimal transport

OT (µ1, µ2) ≜ inf

∫
c(x, t(x)) dµ1(x)

where t is a transport map and t#µ1 = µ2

1

2

implies that µ1 and µ2 have the same masses (no mass creation nor destruction)
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OT Kantorovich formulation

Optimal transport
Balanced Optimal transport: Kantorovich formulation

Balanced optimal transport

OT (µ1, µ2) ≜ inf
γ∈Γ(µ1,µ2)

∫
X×Y

c(x, y) dγ(x, y)

where Γ(µ1, µ2)
def
= {γ ∈ M+(X × Y) s.t. (πx)#γ = µ1 and (πy)#γ = µ2 } with πx : X × Y → X .

Linear loss

Marginal constraints
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Linear loss

Marginal constraints

1

2

γi,j > 0

and (πy)#γ = µ2

with (πx)#γ = µ1

The transport plan γ(x, y) specifies for each pair (x, y) how many particles go from x to y
still implies that µ1 and µ2 have the same masses
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OT Some applications and limitations

Optimal transport
Balanced Optimal transport in action

But, in many applications, we cannot/do not want to have the same masses and we may want to discard
some outliers or ood

In biology, there are different cell proliferation or death in different sub-populations [8] or we may want to
identify common genes [3].

In color transfer, to account for different proportions of colors [1]
In geophysics, when averaging different models [6]

In machine learning, when some of the points are out of the distribution, for instance with WGAN [7]

How to define outlier-robust OT?
define robust variants of OT (e.g. medians of means OT)
pick a dedicated ground cost to avoid too much influence of samples that are too far away from the distributions
allow for some mass variation
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UOT Definition

Unbalanced Optimal Transport
Definition

key idea: relax the mass conservation constraint
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UOT Definition

Unbalanced Optimal Transport
Definition

Regularizing the balanced optimal transport, by replacing the hard constraints with some divergences

UOT (µ1, µ2) ≜ inf
γ≥0

∫
Rd×Rd

c(x, y) dγ(x, y)

+ λ
(

Dφ((π
1)#γ|µ1) +Dφ((π

2)#γ|µ2)
)reg

Linear loss

Marginal constraints

with λ ≥ 0: relaxing the constraints.
When λ → ∞ we recover the balanced OT problem.

has similar properties as OT (is a distance, weak convergence etc.)
questions:

Which Dφ?
how to solve the problem?
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UOT Discrete formulation

Unbalanced Optimal Transport
Discrete UOT

When the distributions are discrete µ1 =
∑n

i=1 hiδxi and µ2 =
∑m

j=1 gjδyj , we usually solve

UOT (µ1, µ2) ≜ minγ≥0
∑

i,j Ci,jγi,j

+λ
(

Dφ(γ1m|h) +Dφ(γ
⊤1n|g)

)
Linear loss (on positions c(xi, yj))

Marginal constraints (on the masses only)
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UOT Discrete formulation

Unbalanced Optimal Transport
Discrete UOT

When the distributions are discrete µ1 =
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+λ
(

Dφ(γ1m|h) +Dφ(γ
⊤1n|g)

)
Linear loss (on positions c(xi, yj))

Marginal constraints (on the masses only)

OT, cost = 0.20 Unbalanced OT, cost = 0.14
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UOT Partial OT

Unbalanced Optimal Transport
Partial Optimal Transport

Unbalanced OT with L1 penalty

UOT (µ1, µ2) ≜ min
γ≥0

∑
i,j

Ci,jγi,j + λ
(

∥γ1m − h∥1 + ∥γ⊤1n − g∥1
)

is equivalent to writing
UOT (µ1, µ2) ≜ inf

γ∈Γ≤(µ1,µ2)

∑
i,j

Ci,jγi,j

where Γ≤(µ1,µ2) = {γ ≥ 0, γ1m ≤ h and γ⊤1n ≤ g and 1⊤n γ1m = s }

amount of mass to be transported
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UOT Partial OT

Unbalanced Optimal Transport
Partial Optimal Transport

Unbalanced OT with L1 penalty

UOT (µ1, µ2) ≜ inf
γ∈Γ≤(µ1,µ2)

∑
i,j

Ci,jγi,j

where Γ≤(µ1,µ2) = {γ ≥ 0, γ1m ≤ h and γ⊤1n ≤ g and 1⊤n γ1m = s }

Can be solved easily by adding dummy points hn+1= ∥g∥1 − s and gm+1= ∥h∥1 − s with null cost and
solve the extended OT problem [4, 2]

Any OT solver can be used!
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UOT UOT with KL

Unbalanced Optimal Transport
Unbalanced Optimal Transport with KL

Unbalanced OT with KL penalty

UOT (µ1, µ2) ≜ min
γ≥0

∑
i,j

Ci,jγi,j + λ
(
KL(γ1m, h) + KL(γ⊤1n, g)

)

Use a Majorize-Minimization algorithm to solve the problem [5]

Deterministic updates
Resembles the Sinkhorn algorithm, allows for GPU computation

γ(k+1) = diag
(

g
γ(k)1m

) 1
2
(
γ(k) ⊙ exp

(
−
C
2λ

))
diag

(
h

γ(k)⊤1n

) 1
2
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Unbalanced Optimal Transport
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KL UOT with u = 0.1 KL UOT with u = 1 KL UOT with u = 10
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UOT UOT with quadratic penalty

Unbalanced Optimal Transport
Unbalanced Optimal Transport with L2

Unbalanced OT with L2 penalty

UOT (µ1, µ2) ≜ min
γ≥0

∑
i,j

Ci,jγi,j + λ
(

∥γ1m − h∥22 + ∥γ⊤1n − g∥22
)

When rewritten in a vectorial form:

UOT (µ1, µ2) ≜ min
γ≥0

∥Hγv − y∥22 +
1
λ
c⊤∥γv∥1

where c = vec(C), γv = vec(γ), y⊤ = [h⊤, g⊤] and H is a design matrix.
is a classical linear regression with positivity constraints, a sparse design matrix and a weighted L1
(Lasso) regularization

we can borrow the tools from a large literature on solving those problems!
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UOT UOT with quadratic penalty

Unbalanced Optimal Transport
Unbalanced Optimal Transport with L2

Regularization path of UOT: a LARS-like algorithm
With quadratic divergence, solutions are piecewise linear with 1

λ

We can find the set of all solutions for all λ values
1. start with λ = 0
2. loop
3. increase λ until there is a change on the support of γv
4. update γv (incremental resolution of linear equations)
5. repeat until λ = ∞

0 1 2

Ci,j

Cost matrix

b1 = 0.2 b2 = 0.5 b3 = 0.3

a1 = 0.2

a2 = 0.5

a3 = 0.3

T1,1

T2,1 T2,2

T3,1 T3,2 T3,3

OT plan

λ1 λ2 λ3 λ4 λ5 λ6 λ7
∞

(log scale)

0.0

0.1

0.2

0.3

0.4

0.5

T
ij

T1,1

T2,1
T 2,2

T3,1

T3,2

T3,3

Evolution of the OT plan values with λ

0.5

1.0
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Conclusion

Unbalanced Optimal Transport
Conclusion and pen challenges

Conclusion
UOT is mandatory for many applications
(many) efficient solvers exist
implementation in POT python toolbox 1

Some open challenges
outlier removal?
which statistical guarantees?
enlarging the discrete classical formulation?

1figures have been generated with POT https://pythonot.github.io/, thanks @alex Tual for some layout
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