Fast Optimal Transport through Sliced Generalized Wasserstein Geodesics Guillaume Mahey, Laetitia Chapel, Gilles Gasso, Clément Bonet, Nicolas Courty

SAN INSTITUT NATIONAL DES SCIENCES APPLIQUÉES BOUIEN NORMANDIE

Background on Optimal Transport

• The square Wasserstein distance (WD) between μ_1 and $\mu_2 \in \mathcal{P}_2(\mathbb{R}^d)$ is defined as

 $W_2^2(\mu_1,\mu_2) \stackrel{\mathsf{def}}{=} \inf_{\pi \in \Pi(\mu_1,\mu_2)} \int_{\mathbb{R}^d \times \mathbb{R}^d} \| \boldsymbol{x} - \boldsymbol{y} \|_2^2 \ d\pi$

with $\Pi(\mu_1,\mu_2) = \{\pi \in \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^d) \text{ such that } \}$ $\pi(\mathbb{R}^d \times A) = \mu_2(A) \text{ and } \pi(A \times \mathbb{R}^d) = \mu_1(A), \forall A \subset \mathbb{R}^d \}.$

• The Space $(\mathcal{P}_2(\mathbb{R}^d), W_2)$ is a geodesic metric space of positive curvature, respecting the following inequality:

 $W_2^2(\mu_1,\mu_2) \ge 2W_2^2(\mu_1,\nu) + 2W_2^2(\nu,\mu_2) - 4W_2^2(\mu^{1\to 2},\nu)$

for all measures $\nu \in \mathcal{P}_2(\mathbb{R}^d)$ where $\mu^{1 \to 2}$ is the Wasserstein mean between μ_1 and μ_2 .

• Solving OT

WD between empirical measures $\mu_1 = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ and $\mu_2 = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$ can be computed in $\mathcal{O}(n^3 \log n)$. When μ_1 and μ_2 are 1D distributions with uniform mass, computing WD can be done by matching the sorted samples, with a complexity of $\mathcal{O}(n + n \log n)$.

$$W_2^2(\mu_1, \mu_2) = \frac{1}{n} \sum_{i=1}^n (x_{\sigma(i)} - y_{\tau(i)})^2$$

with σ and τ two permutation operators such that $x_{\sigma(1)} \leq x_{\sigma(2)} \leq ... \leq x_{\sigma(n)} \text{ and } y_{\tau(1)} \leq y_{\tau(2)} \leq ... \leq y_{\tau(n)}.$

SWGG with permutation

Let μ_1, μ_2 be *n*-empirical distributions and $\theta \in \mathbb{S}^{d-1}$. Denote by σ_{θ} and τ_{θ} the permutations obtained by sorting the 1D projections $P^{\theta}_{\#}\mu_1$ and $P^{\theta}_{\#}\mu_2$. SWGG is defined as:

$$\mathsf{SWGG}_2^2(\mu_1,\mu_2, heta) \stackrel{\mathsf{def}}{=} rac{1}{n} \sum_{i=1}^n \|oldsymbol{x}_{\sigma_{ heta}(i)} - oldsymbol{y}_{ au_{ heta}(i)}\|$$

SWGG only involves projection and sorting and comes with a transport map:

 $T(\boldsymbol{x}_i) = \boldsymbol{y}_{\tau_{\theta}^{-1}(\sigma_{\theta}(i))}, \quad \forall 1 \leq i \leq n.$

Bretagne Sud

$$\pi(oldsymbol{x},oldsymbol{y})$$

 $(i) \|_{2}^{2}$.

SWGG with generalized geodesics

Let $\nu \in \mathcal{P}_2(\mathbb{R}^d)$, a generalized geodesic draws a correspondence between μ_1 and μ_2 , through the correspondences between μ_1 and ν , and μ_2 and ν :

 $T_{\nu}^{1 \to 2} \stackrel{\text{def}}{=} T^{\nu \to \mu_2} \circ T^{\mu_1 \to \nu} \quad \text{with} \quad (T_{\nu}^{1 \to 2})_{\#} \mu_1 = \mu_2.$

The square ν -Wasserstein distance is then given by:

$$W_{\nu}^{2}(\mu_{1},\mu_{2}) \stackrel{\text{def}}{=} \int_{\mathbb{R}^{d}} \|\boldsymbol{x} - T_{\nu}^{1 \to 2}(\boldsymbol{x})\|_{2}^{2} d\mu_{1}(\boldsymbol{x}) \\ = 2W_{2}^{2}(\mu_{1},\nu) + 2W_{2}^{2}(\nu,\mu_{2}) - 4W_{2}^{2}(\mu_{g}^{1 \to 2},\nu).$$

where $\mu_a^{1 \to 2}$ is the middle of the geodesic given by $T_{\nu}^{1 \to 2}$. When u is taken to be the middle of the geodesic of $Q^{ heta}_{\#}\mu_1$ and $Q^{\theta}_{\#}\mu_2$, with $Q^{\theta}: x \mapsto \theta \langle x, \theta \rangle$, we have:

 $SWGG_2^2(\mu_1, \mu_2, \theta) = W_{\nu}^2(\mu_1, \mu_2).$

Properties

SWGG is an upper bound of WD. SWGG is a **distance** which **metricizes the weak conver**gence of measure. Moreover, it has the same behavior with translation of measure than WD. SWGG has a complexity of $\mathcal{O}(dn + n \log n)$ (akin to sliced) Wasserstein).

SWGG delivers a **sparse transport plan**. SWGG definition allows us to show a **closed form for WD** whenever μ_2 is supported on a line.

L'INSTITUT agro Rennes

Optimization

Since it serves as an upper limit for WD, our objective is to minimize SWGG with respect to θ in order to closely approximate WD:

$\min-\mathsf{SWGG}_2^2(\mu_1,\mu_2) \stackrel{\mathsf{def}}{=} \min_{\theta \in \mathbb{S}^{d-1}} \mathsf{SWGG}_2^2(\mu_1,\mu_2,\theta).$

We propose two schemes: i) random search, appropriate in low dimension d ii) gradient descent on \mathbb{S}^{d-1} , thanks to the generalized geodesic definition of SWGG, optimization after a smoothing of $\mu_a^{1
ightarrow 2}$.

• Gradients Flows

Starting from a random initial distribution, we move the particles of a source distribution μ_1 towards a target one μ_2 by reducing min-SWGG(μ_1, μ_2) at each step. We compare both variants of min-SWGG against SW, max-SW and PWD.

Number of iterations

• Point Cloud Registration

Iterative Closest Point defines a one-to-one correspondence, computes a rigid transformation, moves the source point clouds using the transformation, and iterates the process until convergence. We perform ICP with different matching: NN, OT and min-SWGG transport map.

Experiments

Code available at https://github.com/MaheyG/SWGG

—	500	3000	150 000
N	3.54 (0.02)	96.9 (0.30)	23.3 (59.37)
Т	0.32 (0.18)	48.4 (58.46)	•
in-SWGG	0.05 (0.04)	37.6 (0.90)	6.7 (105.75)
Liberry Divergence between final transferrentian. Timings in			

Sinkhorn Divergence between final transformation. seconds are into parenthesis.