Fast Optimal Transport through Sliced Generalized Wasserstein Geodesics
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Background on Optimal Transport

o The square Wasserstein distance (WD) between 1,
and 115 € Po(R?) is defined as

def :
Wi, po) = inf [, o [le —y|)5 dr(x, y)

mell(p, o)

with IT(py, po) = {m € Po(R? x R?) such that
W(Rd X A) — /LQ(A) and 7T(A X Rd) — ,ul(A), VA C Rd }

o The Space (P,(R%),W,) is a geodesic metric space of
positive curvature, respecting the following inequality:

W5 (1, po) > 2W5 (p, v) 4 2W5 (v, o) — AW5 (1'%, v)

for all measures v € Py(R?) where 1'% is the Wasserstein

mean between (i1 and L.

e Solving OT

WD between empirical measures (1 = %zg;l 0, and
o = %2?21 0,. can be computed in O(n’logn).

When 17 and o are 1D distributions with uniform mass,

computing WD can be done by matching the sorted samples,

with a complexity of O(n + nlogn).

W (111, pig) = Z (To(i) = Yr(i)”

with o and 7 two permutation operators such that
To(l) S To2) < oo < Zo(n) @and Yr) < Yro) < oo < Yr(n)-

SWGG with permutation

Let 141, 119 be n-empirical distributions and # € S?~!. Denote

by 0y and 7y the permutations obtained by sorting the 1D
projections Pi,ul and Piﬂg. SWGG is defined as:

of 1 2
SWGG( i1, 2, 6) < - 21 105 —

SWGG only involves projection and sorting and comes with a
transport map:
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SWGG with generalized geodesics

Let v € P,(IRY), a generalized geodesic draws a correspondence
between 111 and w9, through the correspondences between iy
and v, and s and v:

TS%Q dg‘ T”ﬂb? O T'ul%u with (TVI%Q)#/“ — 2.

The square v-Wasserstein distance is then given by:

ef
Wi, o) = [ lle — T, ()3 dun ()

— OV (ju1, v) + 2WE(w, o) — AWE (il w).

where /,LI%Q is the middle of the geodesic given by 717,

When v is taken to be the middle of the geodesic of Q#,ul
and Qi/ﬁz, with Q¥ : z — 0(x,0), we have:

SWGG%(M% H2; 9) — WVQ(MM /LQ)
T "
¥
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Properties

SWGG is an upper bound of WD.

SWGG is a distance which metricizes the weak conver-

gence of measure. Moreover, it has the same behavior with
translation of measure than WD.

SWGG has a complexity of O(dn + nlogn) (akin to sliced
Wasserstein).

SWGG delivers a sparse transport plan.

SWGG definition allows us to show a closed form for WD
whenever (9 is supported on a line.
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Optimization

Since it serves as an upper limit for WD, our objective is to
minimize SWGG with respect to 6 in order to closely approxi-

mate WD:

min-SWGG3 (1, p12) Jaun, SWGG) (a1, 12, 0).

We propose two schemes: i) random search, appropriate in

low dimension d ii) gradient descent on S%~!, thanks to the

generalized geodesic definition of SWGG, optimization after a
1—2

smoothing of p, .
Experiments

Code available at https://github.com/MaheyG/SWGG

e Gradients Flows

Starting from a random initial distribution, we move the
particles of a source distribution (; towards a target one uo

by reducing min-SWGG( 41, 10) at each step. We compare

both variants of min-SWGG against SW, max-SW and
PWD.
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e Point Cloud Registration

lterative Closest Point defines a one-to-one correspondence,
computes a rigid transformation, moves the source point
clouds using the transformation, and iterates the process
until convergence. We perform |CP with different matching:

NN, OT and min-SWGG transport map.

® Source

mmmm Min-SWGG (random search)

150 000

° Taroet n = 500 3000

OT 0.32 (0.18) 48.4 (58.46)

NN 3.54 (0.02) 96.9 (0.30) 23.3 (59.37)

min-SWGG 0.05 (0.04) 37.6 (0.90) 6.7 (105.75)

| Sinkhorn Divergence between final transformation. Timings in
St seconds are into parenthesis.


https://github.com/MaheyG/SWGG

