Fast Optimal Transport through Sliced Generalized Wasserstein Geodesics

Guillaume Mahey, Laetitia Chapel, Gilles Gasso, Clément Bonet, Nicolas Courty

Background on Optimal Transport

- The square Wasserstein distance (WD) between μ_{1} and $\mu_{2} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ is defined as

$$
W_{2}^{2}\left(\mu_{1}, \mu_{2}\right) \stackrel{\text { def }}{=} \inf _{\pi \in \Pi\left(\mu_{1}, \mu_{2}\right)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} d \pi(\boldsymbol{x}, \boldsymbol{y})
$$

with $\Pi\left(\mu_{1}, \mu_{2}\right)=\left\{\pi \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)\right.$ such that $\pi\left(\mathbb{R}^{d} \times A\right)=\mu_{2}(A)$ and $\left.\pi\left(A \times \mathbb{R}^{d}\right)=\mu_{1}(A), \forall A \subset \mathbb{R}^{d}\right\}$.

- The Space $\left(\mathcal{P}_{2}\left(\mathbb{R}^{d}\right), W_{2}\right)$ is a geodesic metric space of positive curvature, respecting the following inequality:
$W_{2}^{2}\left(\mu_{1}, \mu_{2}\right) \geq 2 W_{2}^{2}\left(\mu_{1}, \nu\right)+2 W_{2}^{2}\left(\nu, \mu_{2}\right)-4 W_{2}^{2}\left(\mu^{1 \rightarrow 2}, \nu\right)$
for all measures $\nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ where $\mu^{1 \rightarrow 2}$ is the Wasserstein mean between μ_{1} and μ_{2}

- Solving OT

WD between empirical measures $\mu_{1}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}$ and $\mu_{2}=\frac{1}{n} \sum_{i=1}^{n} \delta_{y_{i}}$ can be computed in $\mathcal{O}\left(n^{3} \log n\right)$.
When μ_{1} and μ_{2} are 1 D distributions with uniform mass, computing WD can be done by matching the sorted samples, with a complexity of $\mathcal{O}(n+n \log n)$.

$$
W_{2}^{2}\left(\mu_{1}, \mu_{2}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{\sigma(i)}-y_{\tau(i)}\right)^{2}
$$

with σ and τ two permutation operators such that $x_{\sigma(1)} \leq x_{\sigma(2)} \leq \ldots \leq x_{\sigma(n)}$ and $y_{\tau(1)} \leq y_{\tau(2)} \leq \ldots \leq y_{\tau(n)}$.

SWGG with permutation

Let μ_{1}, μ_{2} be n-empirical distributions and $\theta \in \mathbb{S}^{d-1}$. Denote by σ_{θ} and τ_{θ} the permutations obtained by sorting the 1D projections $P_{\#}^{\theta} \mu_{1}$ and $P_{\#}^{\theta} \mu_{2}$. SWGG is defined as:

$$
\operatorname{SWGG}_{2}^{2}\left(\mu_{1}, \mu_{2}, \theta\right) \stackrel{\text { def }}{=} \frac{1}{n} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{\sigma_{\theta}(i)}-\boldsymbol{y}_{\tau_{\theta}(i)}\right\|_{2}^{2} .
$$

SWGG only involves projection and sorting and comes with a transport map:

SWGG with generalized geodesics

Let $\nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, a generalized geodesic draws a correspondence between μ_{1} and μ_{2}, through the correspondences between μ_{1} and ν, and μ_{2} and ν :

$$
T_{\nu}^{1 \rightarrow 2} \stackrel{\text { def }}{=} T^{\nu \rightarrow \mu_{2}} \circ T^{\mu_{1} \rightarrow \nu} \quad \text { with } \quad\left(T_{\nu}^{1 \rightarrow 2}\right)_{\#} \mu_{1}=\mu_{2} .
$$

The square ν-Wasserstein distance is then given by:

$$
\begin{aligned}
W_{\nu}^{2}\left(\mu_{1}, \mu_{2}\right) & \stackrel{\text { def }}{=} \int_{\mathbb{R}^{d}}\left\|\boldsymbol{x}-T_{\nu}^{1 \rightarrow 2}(\boldsymbol{x})\right\|_{2}^{2} d \mu_{1}(\boldsymbol{x}) \\
& =2 W_{2}^{2}\left(\mu_{1}, \nu\right)+2 W_{2}^{2}\left(\nu, \mu_{2}\right)-4 W_{2}^{2}\left(\mu_{g}^{1 \rightarrow 2}, \nu\right)
\end{aligned}
$$

where $\mu_{g}^{1 \rightarrow 2}$ is the middle of the geodesic given by $T_{\nu}^{1 \rightarrow 2}$.
When ν is taken to be the middle of the geodesic of $Q_{\#}^{\theta} \mu_{1}$ and $Q_{\#}^{\theta} \mu_{2}$, with $Q^{\theta}: x \mapsto \theta\langle x, \theta\rangle$, we have:

Properties

SWGG is an upper bound of WD.

SWGG is a distance which metricizes the weak convergence of measure. Moreover, it has the same behavior with translation of measure than WD.
SWGG has a complexity of $\mathcal{O}(d n+n \log n)$ (akin to sliced Wasserstein).
SWGG delivers a sparse transport plan.
SWGG definition allows us to show a closed form for WD whenever μ_{2} is supported on a line.

Optimization

Since it serves as an upper limit for WD, our objective is to minimize SWGG with respect to θ in order to closely approximate WD:

$$
\min -\operatorname{SWGG}_{2}^{2}\left(\mu_{1}, \mu_{2}\right) \stackrel{\text { def }}{=} \min _{\theta \in \mathbb{S}^{d-1}} \operatorname{SWGG}_{2}^{2}\left(\mu_{1}, \mu_{2}, \theta\right)
$$

We propose two schemes: i) random search, appropriate in low dimension d ii) gradient descent on \mathbb{S}^{d-1}, thanks to the generalized geodesic definition of SWGG, optimization after a smoothing of $\mu_{g}^{1 \rightarrow 2}$.

Experiments

Code available at https://github.com/MaheyG/SWGG

- Gradients Flows

Starting from a random initial distribution, we move the particles of a source distribution μ_{1} towards a target one μ_{2} by reducing min-SWGG $\left(\mu_{1}, \mu_{2}\right)$ at each step. We compare both variants of min-SWGG against SW, max-SW and PWD.

- Point Cloud Registration

Iterative Closest Point defines a one-to-one correspondence, computes a rigid transformation, moves the source point clouds using the transformation, and iterates the process until convergence. We perform ICP with different matching:

NN, OT and min-SWGG transport map.

$$
\begin{array}{|l|l}
\hline & \text { Source } \\
\bullet & \text { Target } \\
\hline
\end{array}
$$

$n=$	500	3000	150000
NN	$3.54(\mathbf{0 . 0 2)}$	$96.9(\mathbf{0 . 3 0)}$	$23.3(\mathbf{5 9 . 3 7}$

OT $\quad 0.32(0.18) 48.4$ (58.46) min-SWGG 0.05 (0.04) 37.6 (0.90) 6.7 (105.75) Sinkhorn Divergence between final transformation. Timings in seconds are into parenthesis.

