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Background on Optimal Transport
• The square Wasserstein distance (WD) between µ1

and µ2 ∈ P2(Rd) is defined as

W 2
2 (µ1, µ2) def= inf

π∈Π(µ1,µ2)

∫
Rd×Rd ∥x − y∥2

2 dπ(x, y)

with Π(µ1, µ2) = {π ∈ P2(Rd × Rd) such that
π(Rd × A) = µ2(A) and π(A × Rd) = µ1(A), ∀A ⊂ Rd }.

• The Space (P2(Rd), W2) is a geodesic metric space of
positive curvature, respecting the following inequality:

W 2
2 (µ1, µ2) ≥ 2W 2

2 (µ1, ν) + 2W 2
2 (ν, µ2) − 4W 2

2 (µ1→2, ν)

for all measures ν ∈ P2(Rd) where µ1→2 is the Wasserstein
mean between µ1 and µ2.

• Solving OT
WD between empirical measures µ1 = 1

n

∑n
i=1 δxi

and
µ2 = 1

n

∑n
i=1 δyi

can be computed in O(n3 log n).
When µ1 and µ2 are 1D distributions with uniform mass,
computing WD can be done by matching the sorted samples,
with a complexity of O(n + n log n).

W 2
2 (µ1, µ2) = 1

n

n∑
i=1

(xσ(i) − yτ (i))2

with σ and τ two permutation operators such that
xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(n) and yτ (1) ≤ yτ (2) ≤ ... ≤ yτ (n).

SWGG with permutation
Let µ1, µ2 be n-empirical distributions and θ ∈ Sd−1. Denote
by σθ and τθ the permutations obtained by sorting the 1D
projections P θ

#µ1 and P θ
#µ2. SWGG is defined as:

SWGG2
2(µ1, µ2, θ) def= 1

n

n∑
i=1

∥xσθ(i) − yτθ(i)∥
2
2.

SWGG only involves projection and sorting and comes with a
transport map:

T (xi) = yτ−1
θ (σθ(i)), ∀1 ≤ i ≤ n.

SWGG with generalized geodesics
Let ν ∈ P2(Rd), a generalized geodesic draws a correspondence
between µ1 and µ2, through the correspondences between µ1
and ν, and µ2 and ν:

T 1→2
ν

def= T ν→µ2 ◦ T µ1→ν with (T 1→2
ν )#µ1 = µ2.

The square ν-Wasserstein distance is then given by:

W 2
ν (µ1, µ2) def=

∫
Rd ∥x − T 1→2

ν (x)∥2
2 dµ1(x)

= 2W 2
2 (µ1, ν) + 2W 2

2 (ν, µ2) − 4W 2
2 (µ1→2

g , ν).

where µ1→2
g is the middle of the geodesic given by T 1→2

ν .
When ν is taken to be the middle of the geodesic of Qθ

#µ1
and Qθ

#µ2, with Qθ : x 7→ θ⟨x, θ⟩, we have:

SWGG2
2(µ1, µ2, θ) = W 2

ν (µ1, µ2).

µ1

×2

µ2

×2

µ1→2
g,θ

×(−4)

Qθ
#µ1

Qθ
#µ2

ν = µ1→2
θ

×2 ×2

Properties
SWGG is an upper bound of WD.
SWGG is a distance which metricizes the weak conver-
gence of measure. Moreover, it has the same behavior with
translation of measure than WD.
SWGG has a complexity of O(dn + n log n) (akin to sliced
Wasserstein).
SWGG delivers a sparse transport plan.
SWGG definition allows us to show a closed form for WD
whenever µ2 is supported on a line.

Optimization
Since it serves as an upper limit for WD, our objective is to
minimize SWGG with respect to θ in order to closely approxi-
mate WD:

min-SWGG2
2(µ1, µ2) def= min

θ∈Sd−1
SWGG2

2(µ1, µ2, θ).

We propose two schemes: i) random search, appropriate in
low dimension d ii) gradient descent on Sd−1, thanks to the
generalized geodesic definition of SWGG, optimization after a
smoothing of µ1→2

g .
Experiments

Code available at https://github.com/MaheyG/SWGG
• Gradients Flows

Starting from a random initial distribution, we move the
particles of a source distribution µ1 towards a target one µ2
by reducing min-SWGG(µ1, µ2) at each step. We compare
both variants of min-SWGG against SW, max-SW and
PWD.
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• Point Cloud Registration
Iterative Closest Point defines a one-to-one correspondence,
computes a rigid transformation, moves the source point
clouds using the transformation, and iterates the process
until convergence. We perform ICP with different matching:
NN, OT and min-SWGG transport map.

Source
Target n = 500 3000 150 000

NN 3.54 (0.02) 96.9 (0.30) 23.3 (59.37)
OT 0.32 (0.18) 48.4 (58.46) ·
min-SWGG 0.05 (0.04) 37.6 (0.90) 6.7 (105.75)
Sinkhorn Divergence between final transformation. Timings in
seconds are into parenthesis.

https://github.com/MaheyG/SWGG

