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Background Wasserstein distance

Background on Optimal Transport
Optimal transport and Wasserstein distance

Optimal transport and Wasserstein distance

OT (µ1, µ2) ≜ inf
γ∈Γ(µ1,µ2)

∫
X×Y

c(x, y) dγ(x, y)

where Γ(µ1, µ2)
def
= {γ ∈ M+(X × Y) s.t. (πx)#γ = µ1 and (πy)#γ = µ2 } with πx : X × Y → X .

Linear loss

Marginal constraints
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where Γ(µ1, µ2)
def
= {γ ∈ M+(X × Y) s.t. (πx)#γ = µ1 and (πy)#γ = µ2 } with πx : X × Y → X .

Linear loss

Marginal constraints

µ1

µ2

γi,j > 0

and (πy)#γ = µ2

with (πx)#γ = µ1

The transport plan γ(x, y) specifies for each pair (x, y) how many particles go from x to y
Wasserstein distance when c(x, y) = |x − y|p

Wp(µ1, µ2) ≜

(
inf

γ∈Γ(µ1,µ2)

∫
X×Y

c(x, y) dγ(x, y)
)1/p
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Background Wasserstein geodesics

Background on Optimal Transport
Transport map and Wasserstein Geodesics

In some cases, the optimal plan γ∗ is a Monge map of the form (Id, T)#µ1, e.g. for p = 2

Wp
p (µ1, µ2) ≜ inf

T

∫
∥x − T(x)∥22 dµ1(x)

where T is a transport map and T#µ1 = µ2

µ1

µ2
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Background on Optimal Transport
Transport map and Wasserstein Geodesics

In some cases, the optimal plan γ∗ is a Monge map of the form (Id, T)#µ1, e.g. for p = 2

Wp
p (µ1, µ2) ≜ inf

T

∫
∥x − T(x)∥22 dµ1(x)

where T is a transport map and T#µ1 = µ2

x T (x)

µ1

T (x) = µ2

Defines for each particle located at x what is its destination T(x)
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Background Wasserstein geodesics

Background on Optimal Transport
Transport map and Wasserstein Geodesics

In some cases, the optimal plan γ∗ is a Monge map of the form (Id, T)#µ1, e.g. for p = 2

Wp
p (µ1, µ2) ≜ inf

T

∫
∥x − T(x)∥22 dµ1(x)

where T is a transport map and T#µ1 = µ2

Wasserstein geodesics µ1→2(t) ≜ (tT1→2 + (1− t)Id)#µ1 with T1→2 the optimal map

For short, we denote µ1→2 for t = 0.5
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Background Wasserstein space

Background on Optimal Transport
Curvature of the Wasserstein space

The Wasserstein space is of positive curvature

W2
2 (µ

1→2, ν) ≥ 1
2
W2

2 (µ1, ν) +
1
2
W2

2 (ν, µ2)−
1
4
W2

2 (µ1, µ2)

or equivalently

W2
2 (µ1, µ2) ≥ 2W2

2 (µ1, ν) + 2W2
2 (ν, µ2)− 4 W2

2 (µ
1→2, ν)

for ν a pivot measure.
ν

µ2µ1

µ1→2

Tν→µ1 Tν→µ2

Tµ1→µ2

Positive curvature ofW space

y

x2x1
(x1 + x2)/2

Parallelogram law in Rd

The Wasserstein space is flat when µ1, µ2, ν are 1d

W2
2 (µ1, µ2) = 2W2

2 (µ1, ν) + 2W2
2 (ν, µ2)− 4W2

2 (µ
1→2, ν)
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Background Wasserstein Generalized Geodesic

Background on Optimal Transport
Wasserstein Generalized Geodesics

Has been introduced by Ambrosio et al. [1]

Wasserstein Geodesic: µ1→2(t) ≜ (t T1→2 +(1− t)Id)#µ1

Wasserstein Generalized Geodesic: µ1→2
g (t) ≜ (t Tν→µ2 +(1− t) Tν→µ1 )#ν

for ν a pivot measure.

Negative curvature W2
2 (µ

1→2
g , ν) ≤ 1

2W
2
2 (µ1, ν) +

1
2W

2
2 (ν, µ2)− 1

4W
2
2 (µ1, µ2)

ν−Wasserstein distance: W2
ν(µ1, µ2) = 2W2

2 (µ1, ν) + 2W2
2 (ν, µ2)− 4W2

2 (µ
1→2
g , ν)

withW2
ν(µ1, µ2) ≥ W2

2 (µ1, µ2)
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Background Computational OT

Computational Optimal Transport
Discrete formulation of OT

For µ1 =
∑n

i=1 hiδxi and µ2 =
∑m

j=1 gjδyj and a quadratic cost, we solve

W2
2 (µ1, µ2) ≜ minγ∈Γ(µ1,µ2)

∑
i,j c(xi, yj)γi,j

→ linear solvers with O(n3 log(n)) complexity

When µ1 and µ2 are 1D distributions and n = m with uniform masses, the solution is given by

W2
2 (µ1, µ2) ≜ 1

n

∑n
i=1(xσ(i) − yτ(i))2

→ the optimal transport plan respects the ordering of the elements xσ(i−1) ≤ xσ(i) and yτ(i−1) ≤ yτ(i),
complexity O(n log(n)) and O(n+ n log(n)) for computing the distance

xσ(1)

yτ(1)

xσ(2)

yτ(2)

xσ(3)

yτ(3)

xσ(4)

yτ(4)

xσ(5)

yτ(5)

xσ(6)

yτ(6)
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Background Computational OT

Computational Optimal Transport
Geodesic in 1D

In 1D, the middle of the geodesic can be easily computed

(xσ(i) + yτ(i))/2

And when we take the pivot measure ν to be the middle of the geodesic µ1→2, we have

W2
2 (µ1, µ2) = W2

ν(µ1, µ2) = 2W2
2 (µ1, ν) + 2W2

2 (ν, µ2)

xσ(1)
+yτ(1)

2

xσ(2)
+yτ(2)

2

xσ(3)
+yτ(3)

2

xσ(4)
+yτ(4)

2

xσ(5)
+yτ(5)

2

xσ(6)
+yτ(6)

2
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Background Computational OT

Computational Optimal Transport
Sliced Wasserstein on Rd

1. Slice the distribution along lines θ ∈ Sd−1

2. Project µ1 and µ2 onto θ: Pθ#µ, with P
θ : Rd → R, x 7→ ⟨x, θ⟩

3. Compute 1d Wasserstein onto the projected samples in 1d

4. Average all the distances

SW2
2(µ1, µ2) ≜

∫
Sd−1

W2
2 (P

θ
#µ1, P

θ
#µ2)dω(θ),

with ω uniform distribution on Sd−1.

µ1

µ2

P θ
#µ1 = 〈x, θ〉

P θ
#µ2 = 〈y, θ〉

θ ∈ Sd−1

→ provides a lower bound of W2
2 (µ1, µ2) with complexity O(Ln+ Ln log(n)), L number of lines
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Background Computational OT

Computational Optimal Transport
Projected Wasserstein Distance on Rd

1. Slice the distribution along lines θ ∈ Sd−1

2. Project µ1 and µ2 onto θ: Pθ#µ, with P
θ : Rd → R, x 7→ ⟨x, θ⟩

3. Compute Rd Wasserstein onto the permutations obtained by sorting the projections
4. Average all the distances (mettre un theta en indice dans les sigma)

PWD2
2(µ1, µ2) ≜

∫
Sd−1

1
n

n∑
i=1

∥∥xσθ(i) − yτθ(i)
∥∥2
2 dω(θ),

with ω uniform distribution on Sd−1.

µ1

µ2

σ

τ

θ ∈ Sd−1

→ provides an upper bound of W2
2 (µ1, µ2) with complexity O(Ln d +Ln log(n)), L number of lines
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SWGG SWGG with a PWD-like formulation

Sliced Wasserstein Generalized Geodesic
SWGG with a PWD-like formulation
1. Slice the distribution along lines θ ∈ Sd−1

2. Project µ1 and µ2 onto θ: Pθ#µ, with P
θ : Rd → R, x 7→ ⟨x, θ⟩

3. Compute Rd Wasserstein onto the permutations obtained by sorting the projections
4. Take the minimum over all the distances

SWGG22(µ1, µ2, θ) ≜
1
n

n∑
i=1

∥∥xσθ(i) − yτθ(i)
∥∥2
2 ,

min-SWGG22(µ1, µ2) ≜ min
θ∈Sd−1

SWGG22(µ1, µ2, θ)

µ1

µ2

σ

τ

θ ∈ Sd−1

L. Chapel · Fast OT through SWGG · Workshop on Optimal Transport: from theory to applications, Berlin 2024 11 / 24



SWGG SWGG with a PWD-like formulation

Sliced Wasserstein Generalized Geodesic
SWGG with a PWD-like formulation

Properties of min-SWGG
It comes with a transport map: let θ∗ be the optimal projection direction

T(xi) = y
τ−1
θ∗ (σθ∗ (i)), ∀1 ≤ i ≤ n.

It is an upper bound ofW and a lower bound of PWD

W2
2 ≤ min-SWGG22 ≤ PWD2

2

andW2
2 = min-SWGG22 when d > 2n [2]

Complexity O(Lnd + Ln log(n)) with L number of lines

The Monte-Carlo search over the L lines is effective in low dimension only

→ how to design gradient descent techniques for finding θ∗?
→ further properties, such as sample complexity?
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SWGG SWGG with a Generalized Geodesic formulation

Sliced Wasserstein Generalized Geodesic
SWGG with a Generalized Geodesic formulation
1. Slice the distribution along lines θ ∈ Sd−1

2. Project µ1 and µ2 onto θ: Qθ
#µ, with Q

θ : Rd → Rd, x 7→ θ⟨x, θ⟩

3. Define the pivot measure ν to be the Wasserstein mean of the measure Qθ
#µ1 and Q

θ
#µ2

ν = µ1→2
θ ≜ argmin

µ
W2

2 (Q
θ
#µ1, µ) +W2

2 (µ,Q
θ
#µ2)

4. Take the minimum over all the following distances

SWGG22(µ1, µ2, θ) = 2W2
2 (µ1, µ

1→2
θ ) + 2W2

2 (µ
1→2
θ , µ2)− 4W2

2 (µ
1→2
g,θ , µ1→2

θ )

µ1

µ2µ1→2
g,θ

Qθ
#µ1

Qθ
#µ2

ν = µ1→2
θ

θ ∈ Sd−1

→ the two formulations are equivalent (for continuous or discrete distributions)
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SWGG SWGG with a Generalized Geodesic formulation

Sliced Wasserstein Generalized Geodesic
SWGG with a Generalized Geodesic formulation

Why this reformulation?
Define a gradient descent algorithm for optimizing over θ

Rewrite the problem as an OT formulation with a restricted constraint set

Define new properties for SWGG

Properties of min-SWGG
Weak convergence

Translation invariance

SWGG is equal toW when one of the distributions (µ2) is supported on a line of direction θ:

W2
2 (µ1, µ2) = W2

2 (µ1,Q
θ
#µ1) +W2

2 (Q
θ
#µ1, µ2)

that can be computed with a closed form
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SWGG SWGG with a Generalized Geodesic formulation

Sliced Wasserstein Generalized Geodesic
SWGG with a Generalized Geodesic formulation
Gradient descent for optimizing over θ

min-SWGG22(µ1, µ2) = minθ∈Sd−1
1
n

∑n
i=1

∥∥xσθ(i) − yτθ(i)
∥∥2
2 is not amenable to optimization

µ1

Qθ1

#µ2

µ2

Qθ2

#µ1

Qθ1

#µ1

Qθ2

#µ2

0

π/2

π

3π/2

0 7

SWGG value

min-SWGG22(µ1, µ2) = minθ∈Sd−1 2W2
2 (µ1, µ

1→2
θ ) + 2W2

2 (µ
1→2
θ , µ2)− 4W2

2 (µ
1→2
g,θ , µ1→2

θ ) can be
computed with a O(dn+ n log(n)) complexity, butW2

2 (µ
1→2
g,θ , µ1→2

θ ) is still piecewise linear with θ →
rely on the blurred Wasserstein distance [3]

θ1
θ2

Generalized Wasserstein mean

µ1 µ2 µ1→2
g,θ1

µ1→2
g,θ2

Smooth generalized Wasserstein mean

µ̂1→2
g,θk

0

π/2

π

3π/2

5 10

SWGG2
2

˜SWGG
2
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SWGG SWGG with a Generalized Geodesic formulation

Sliced Wasserstein Generalized Geodesic
SWGG with a Generalized Geodesic formulation
OT with a restricted constraint set

Discrete optimal transport, with n = m and uniform masses

W2
2 (µ1, µ2) = minγ∈Γ(µ1,µ2)

∑
i,j c(xi, yj)γi,j

where Γ(µ1, µ2) = {γ ∈ Rn×n s.t. γ1n = 1n/n,γ⊤1n = 1n/n} (Birkhoff polytope).
min-SWGG

min-SWGG22(µ1, µ2) = minγθ∈Π(µ1,µ2)

∑
i,j c(xi, yj)γθ i,j

where Π(µ1, µ2) = {γθ ∈ Rn×n s.t. it is constructed from the permutahedron of the proj. distributions}

0 50 100 150 200 250 300

Dimension

1.025

1.050

1.075

1.100

1.125

1.150

1.175

1.200

1.225 Ratio
min− SWGG
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Number permutations n = 310

Number of permutation from a line n = 310

Π(µ1, µ2) ⊂ Γ(µ1, µ2)
Gives a sample complexity similar to Sinkhorn n−1/2 measures lying on smaller dimensional subspaces
has a better sample complexity than between the original measures
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Sliced Wasserstein Generalized Geodesic
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Experimental results Computational aspects

Experimental results
Computational aspects

Two Gaussian distributions µ1 and µ2
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Experimental results Gradient flows

Experimental results
Gradient flows

Initial µ1: uniform distribution, different target distributions
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Experimental results Pan sharpening / image colorization

Experimental results
Pan sharpening / image colorization, using the map

One distribution is supported on a line

Construct a super-resolution multi-chromatic satellite image from a high-resolution mono-chromatic
image (source) and low-resolution multi-chromatic image (target)
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Experimental results Point cloud matchings

Experimental results
Point cloud matchings, using the map

Iterative Closest Point iterative algorithm for aligning point clouds

Based on several one-to-one correspondences between points

n 500 3000 150 000
NN 3.54 (0.02) 96.9 (0.30) 23.3 (59.37)
OT 0.32 (0.18) 48.4 (58.46) ·
min-SWGG 0.05 (0.04) 37.6 (0.90) 6.7 (105.75)
(the lower the better, timings into parenthesis)
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Experimental results Optimal transport dataset distances

Experimental results
Optimal transport dataset distances

For computing distances between datasets

Cumbersome to compute in practice since it lays down on solving multiple OT problems

1 1 0.8 1.1

1.2 1.2 1.3 1

1.3 1.2 1.3 0.8

1 1.2 1.2 1

1 1.3 1.2 1MNIST

EMNIST

Fashion

KMNIST

USPS

MNIST EMNIST Fashion KMNIST USPS

0.9 0.9 0.7 0.9

1.1 1 1.2 0.9

1.2 1.3 1.2 0.8

0.8 1.1 1.1 0.9

0.9 1.2 1.1 0.9MNIST

EMNIST

Fashion

KMNIST

USPS

MNIST EMNIST Fashion KMNIST USPS

Figure: OTDD results (×102) distances for min-SWGG (left) and Sinkhorn divergence (right) for various datasets.
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Conclusion

Conclusion

Sliced Wasserstein Generalized Geodesic
provides an upper bound for Wasserstein
comes with an associated transport map
has a O(Lnd + n log(n)) complexity
has good statistical properties

Not the only approximation method based on a pivot measure
Factored coupling [4], where ν = argminµ∈P(Rk)

{
W2
2 (µ, µ1) +W2

2 (µ, µ1)
}

Exact OT

Source samples
Target samples

Factored OT

Template samples

HROT (exact) HROT (thresholded)Partial OT

Subspace detours [6], where ν = argminν∈P(Rd)

{
W2
2 (P

E
#µ1, ν) +W2

2 (ν, P
E
#µ2)

}
Some open questions

how do the Birkhoff polytope and the considered permutahedron relate?
concentration results?
extension to incomparable spaces through a pivot measure?
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