Fast Optimal Transport through Sliced Generalized Wasserstein Geodesics

Joint work with Guillaume Mahey, Gilles Gasso, Clément Bonet and Nicolas Courty NeurIPS 2023 [5]

Laetitia Chapel laetitia.chapel@irisa.fr

IRISA, Rennes, France Institut Agro Rennes-Angers

Workshop on Optimal Transport: from theory to applications, Berlin 2024

Table of Contents

Background on Optimal Transport

Optimal transport and Wasserstein distance Transport map and Wasserstein Geodesics Curvature of the Wasserstein space Wasserstein Generalized Geodesic Computational Optimal Transport

Sliced Wasserstein Generalized Geodesic

SWGG with a PWD-like formulation SWGG with a Generalized Geodesic formulation

Experimental results

Computational aspects Gradient flows Pan sharpening / image colorization Point cloud matchings Optimal transport dataset distances

Conclusion

Bibliography

Background on Optimal Transport Optimal transport and Wasserstein distance

Optimal transport and Wasserstein distance

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{\gamma \in \Gamma(\mu_1,\mu_2)} \int_{X \times Y} c(x,y) d\gamma(x,y)$$

Linear loce

where $\Gamma(\mu_1, \mu_2) \stackrel{\text{def}}{=} \{ \gamma \in \mathcal{M}_+(X \times Y) \text{ s.t. } (\pi_x)_{\#} \gamma = \mu_1 \text{ and } (\pi_y)_{\#} \gamma = \mu_2 \}$ with $\pi_x : X \times Y \to X$. <u>Marginal constraints</u>

Background on Optimal Transport Optimal transport and Wasserstein distance

Optimal transport and Wasserstein distance

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{\boldsymbol{\gamma}\in\Gamma(\mu_1,\mu_2)} \int_{\boldsymbol{X}\times\boldsymbol{Y}} c(\boldsymbol{X},\boldsymbol{Y}) d\boldsymbol{\gamma}(\boldsymbol{X},\boldsymbol{Y})$$

Linear loss

where $\Gamma(\mu_1, \mu_2) \stackrel{\text{def}}{=} \{ \gamma \in \mathcal{M}_+(X \times Y) \text{ s.t. } | (\pi_x)_{\#} \gamma = \mu_1 \text{ and } (\pi_y)_{\#} \gamma = \mu_2 \} \text{ with } \pi_x : X \times Y \to X.$

Marginal constraints

The **transport plan** $\gamma(x, y)$ specifies for each pair (x, y) how many particles go from x to yWasserstein distance when $c(x, y) = |x - y|^p$

$$\mathcal{W}_{\rho}(\mu_1,\mu_2) \triangleq \left(\inf_{\boldsymbol{\gamma}\in\Gamma(\mu_1,\mu_2)}\int_{\boldsymbol{\chi}\times\boldsymbol{\gamma}}c(\boldsymbol{x},\boldsymbol{y})\,d\boldsymbol{\gamma}(\boldsymbol{x},\boldsymbol{y})\right)^{1/\rho}$$

Background on Optimal Transport Transport map and Wasserstein Geodesics

In some cases, the optimal plan $\gamma *$ is a Monge map of the form $(Id, T) # \mu_1$, e.g. for p = 2

$$\mathcal{W}^p_p(\mu_1,\mu_2) \triangleq \inf_{\mathbf{T}} \int ||\mathbf{x}-\mathbf{T}(\mathbf{x})||_2^2 d\mu_1(\mathbf{x})$$

where **T** is a **transport map** and $T_{\#}\mu_1 = \mu_2$

Background on Optimal Transport Transport map and Wasserstein Geodesics

In some cases, the optimal plan $\gamma *$ is a Monge map of the form $(Id, T) # \mu_1$, e.g. for p = 2

$$\mathcal{W}_p^p(\mu_1,\mu_2) \triangleq \inf_{\mathbf{T}} \int ||\mathbf{x}-\mathbf{T}(\mathbf{x})||_2^2 d\mu_1(\mathbf{x})$$

where **T** is a **transport map** and $\mathbf{T}_{\#}\mu_1 = \mu_2$

Defines for each particle located at x what is its destination T(x)

Background on Optimal Transport Transport map and Wasserstein Geodesics

In some cases, the optimal plan $\gamma *$ is a Monge map of the form $(Id, \mathbf{T}) \# \mu_1$, e.g. for p = 2

$$\mathcal{W}_p^p(\mu_1,\mu_2) \triangleq \inf_{\mathbf{T}} \int ||\mathbf{x}-\mathbf{T}(\mathbf{x})||_2^2 d\mu_1(\mathbf{x})$$

where **T** is a **transport map** and $T_{\#}\mu_1 = \mu_2$

• Wasserstein geodesics $\mu^{1 \to 2}(t) \triangleq (t\mathbf{T}^{1 \to 2} + (1-t)Id) \# \mu_1$ with $\mathbf{T}^{1 \to 2}$ the optimal map

For short, we denote $\mu^{1 \rightarrow 2}$ for t = 0.5

Background on Optimal Transport Curvature of the Wasserstein space

The Wasserstein space is of positive curvature

$$\left|\mathcal{W}_{2}^{2}(\mu^{1
ightarrow 2},
u)
ight|\geqrac{1}{2}\mathcal{W}_{2}^{2}(\mu_{1},
u)+rac{1}{2}\mathcal{W}_{2}^{2}(
u,\mu_{2})-rac{1}{4}\mathcal{W}_{2}^{2}(\mu_{1},\mu_{2})
ight|$$

or equivalently

$$\left[\mathcal{W}_{2}^{2}(\mu_{1},\mu_{2})\right] \geq 2\mathcal{W}_{2}^{2}(\mu_{1},\nu) + 2\mathcal{W}_{2}^{2}(\nu,\mu_{2}) - 4 \mathcal{W}_{2}^{2}(\mu^{1\to2},\nu)$$

Background on Optimal Transport Curvature of the Wasserstein space

The Wasserstein space is of positive curvature

$$|\mathcal{W}_2^2(\mu^{1 o 2},
u)| \geq rac{1}{2}\mathcal{W}_2^2(\mu_1,
u) + rac{1}{2}\mathcal{W}_2^2(
u, \mu_2) - rac{1}{4}\mathcal{W}_2^2(\mu_1, \mu_2)|$$

or equivalently

$$\left| \mathcal{W}_{2}^{2}(\mu_{1},\mu_{2}) \right| \geq 2\mathcal{W}_{2}^{2}(\mu_{1},\nu) + 2\mathcal{W}_{2}^{2}(\nu,\mu_{2}) - 4 \quad \mathcal{W}_{2}^{2}(\mu^{1\to2},\nu)$$

for ν a **pivot measure**.

• The Wasserstein space is flat when μ_1, μ_2, ν are 1d

$$W_2^2(\mu_1,\mu_2) = 2W_2^2(\mu_1,\nu) + 2W_2^2(\nu,\mu_2) - 4W_2^2(\mu^{1\to 2},\nu)$$

Background on Optimal Transport Wasserstein Generalized Geodesics

- Has been introduced by Ambrosio et al. [1]
- Wasserstein Geodesic: $\mu^{1 \to 2}(t) \triangleq (t \ \mathbf{T}^{1 \to 2} + (1 t) ld) \# \mu_1$

■ Wasserstein Generalized Geodesic: $\mu_g^{1\to 2}(t) \triangleq (t \mathbf{T}^{\nu\to\mu_2} + (1-t) \mathbf{T}^{\nu\to\mu_1}) \# \nu$ for ν a pivot measure.

Background on Optimal Transport Wasserstein Generalized Geodesics

- Has been introduced by Ambrosio et al. [1]
- Wasserstein Geodesic: $\mu^{1 \to 2}(t) \triangleq (t \ \mathbf{T}^{1 \to 2} + (1 t) ld) \# \mu_1$
- Wasserstein Generalized Geodesic: $\mu_g^{1 \to 2}(t) \triangleq (t | \mathbf{T}^{\nu \to \mu_2} + (1-t) | \mathbf{T}^{\nu \to \mu_1}) \# \nu$ for ν a pivot measure.
- Negative curvature $\mathcal{W}_2^2(\mu_g^{1\to 2},\nu) \leq \frac{1}{2}\mathcal{W}_2^2(\mu_1,\nu) + \frac{1}{2}\mathcal{W}_2^2(\nu,\mu_2) \frac{1}{4}\mathcal{W}_2^2(\mu_1,\mu_2)$

Background on Optimal Transport Wasserstein Generalized Geodesics

- Has been introduced by Ambrosio et al. [1]
- Wasserstein Geodesic: $\mu^{1 \to 2}(t) \triangleq (t | \mathbf{T}^{1 \to 2} + (1 t) ld) \# \mu_1$
- Wasserstein Generalized Geodesic: $\mu_g^{1 \to 2}(t) \triangleq (t | \mathbf{T}^{\nu \to \mu_2} + (1-t) | \mathbf{T}^{\nu \to \mu_1}) \# \nu$ for ν a pivot measure.
- Negative curvature $\mathcal{W}_2^2(\mu_g^{1\to 2},\nu) \leq \frac{1}{2}\mathcal{W}_2^2(\mu_1,\nu) + \frac{1}{2}\mathcal{W}_2^2(\nu,\mu_2) \frac{1}{4}\mathcal{W}_2^2(\mu_1,\mu_2)$

Computational Optimal Transport Discrete formulation of OT

For
$$\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$$
 and $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$ and a quadratic cost, we solve
 $W_2^2(\mu_1, \mu_2) \triangleq \min_{\gamma \in \Gamma(\mu_1, \mu_2)} \sum_{i,j} c(x_i, y_j) \gamma_{i,j}$

 \rightarrow linear solvers with $O(n^3 \log(n))$ complexity

Computational Optimal Transport Discrete formulation of OT

• For $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$ and $\mu_2 = \sum_{i=1}^m g_i \delta_{y_i}$ and a quadratic cost, we solve

 $W_2^2(\mu_1, \mu_2) \triangleq \min_{\boldsymbol{\gamma} \in \Gamma(\mu_1, \mu_2)} \sum_{i,j} c(x_i, y_j) \gamma_{i,j}$

 \rightarrow linear solvers with $O(n^3 \log(n))$ complexity

• When μ_1 and μ_2 are 1D distributions and n = m with uniform masses, the solution is given by

$$\mathcal{W}_2^2(\mu_1,\mu_2) \triangleq \frac{1}{n} \sum_{i=1}^n (x_{\sigma(i)} - y_{\tau(i)})^2$$

 \rightarrow the optimal transport plan respects the ordering of the elements $x_{\sigma(i-1)} \le x_{\sigma(i)}$ and $y_{\tau(i-1)} \le y_{\tau(i)}$, complexity $O(n \log(n))$ and $O(n + n \log(n))$ for computing the distance

Computational Optimal Transport Geodesic in 1D

In 1D, the middle of the geodesic can be easily computed

 $(x_{\sigma(i)} + y_{\tau(i)})/2$

And when we take the pivot measure ν to be the middle of the geodesic $\mu^{1\rightarrow 2}$, we have

$$\mathcal{W}_{2}^{2}(\mu_{1},\mu_{2}) = \mathcal{W}_{\nu}^{2}(\mu_{1},\mu_{2}) = 2\mathcal{W}_{2}^{2}(\mu_{1},\nu) + 2\mathcal{W}_{2}^{2}(\nu,\mu_{2})$$

Computational Optimal Transport Sliced Wasserstein on \mathbb{R}^d

- 1. Slice the distribution along lines $\theta \in S^{d-1}$
- 2. Project μ_1 and μ_2 onto θ : $P^{\theta}_{\#}\mu$, with $P^{\theta} : \mathbb{R}^d \to \mathbb{R}, \mathbf{x} \mapsto \langle \mathbf{x}, \theta \rangle$
- 3. Compute 1d Wasserstein onto the projected samples in 1d
- 4. Average all the distances

$$\mathcal{SW}_2^2(\mu_1,\mu_2) \triangleq \int_{S^{d-1}} W_2^2(P_{\#}^{\theta}\mu_1,P_{\#}^{\theta}\mu_2)d\omega(\theta),$$

with ω uniform distribution on S^{d-1} .

 \rightarrow provides a lower bound of $W_2^2(\mu_1, \mu_2)$ with complexity $O(Ln + Ln \log(n))$, L number of lines

Computational Optimal Transport Projected Wasserstein Distance on \mathbb{R}^d

- 1. Slice the distribution along lines $\theta \in S^{d-1}$
- 2. Project μ_1 and μ_2 onto θ : $P^{\theta}_{\#}\mu$, with $P^{\theta} : \mathbb{R}^d \to \mathbb{R}, \mathbf{x} \mapsto \langle \mathbf{x}, \theta \rangle$
- 3. Compute \mathbb{R}^d Wasserstein onto the permutations obtained by sorting the projections
- 4. Average all the distances (mettre un theta en indice dans les sigma)

$$\mathcal{PWD}_2^2(\mu_1,\mu_2) \triangleq \int_{S^{d-1}} \frac{1}{n} \sum_{i=1}^n \left\| x_{\sigma_\theta(i)} - y_{\tau_\theta(i)} \right\|_2^2 d\omega(\theta),$$

with ω uniform distribution on S^{d-1} .

 \rightarrow provides an upper bound of $W_2^2(\mu_1, \mu_2)$ with complexity $O(Ln d + Ln \log(n))$, L number of lines

Sliced Wasserstein Generalized Geodesic SWGG with a PWD-like formulation

- 1. Slice the distribution along lines $\theta \in S^{d-1}$
- 2. Project μ_1 and μ_2 onto θ : $P^{\theta}_{\#}\mu$, with $P^{\theta} : \mathbb{R}^d \to \mathbb{R}, \mathbf{x} \mapsto \langle \mathbf{x}, \theta \rangle$
- 3. Compute \mathbb{R}^d Wasserstein onto the permutations obtained by sorting the projections
- 4. Take the minimum over all the distances

$$SWGG_2^2(\mu_1, \mu_2, \theta) \triangleq \frac{1}{n} \sum_{i=1}^n \left\| x_{\sigma_\theta(i)} - y_{\tau_\theta(i)} \right\|_2^2,$$

min-SWGG_2^2(\mu_1, \mu_2)
$$\triangleq \min_{\theta \in S^{d-1}} SWGG_2^2(\mu_1, \mu_2, \theta)$$

Sliced Wasserstein Generalized Geodesic SWGG with a PWD-like formulation

Properties of min-SWGG

It comes with a **transport map**: let θ^* be the optimal projection direction

$$T(\mathbf{x}_i) = \mathbf{y}_{\tau_{\theta^*}^{-1}(\sigma_{\theta^*}(i))}, \quad \forall 1 \le i \le n.$$

It is an upper bound of $\mathcal W$ and a lower bound of \mathcal{PWD}

 $\mathcal{W}_2^2 \leq \mathsf{min}\text{-}\mathsf{SWGG}_2^2 \leq \mathcal{PWD}_2^2$

and $W_2^2 = \min$ -SWGG₂² when d > 2n [2]

- Complexity $O(Lnd + Ln \log(n))$ with L number of lines
- The Monte-Carlo search over the *L* lines is effective in low dimension only
- \rightarrow how to design gradient descent techniques for finding θ^* ?
- \rightarrow further properties, such as sample complexity?

- 1. Slice the distribution along lines $\theta \in S^{d-1}$
- 2. Project μ_1 and μ_2 onto θ : $Q_{\#}^{\theta}\mu$, with $Q^{\theta}: \mathbb{R}^d \to \mathbb{R}^d, \mathbf{x} \mapsto \theta \langle \mathbf{x}, \theta \rangle$
- 3. Define the pivot measure ν to be the Wasserstein mean of the measure $Q^{\theta}_{\#}\mu_1$ and $Q^{\theta}_{\#}\mu_2$

$$u = \mu_{ heta}^{1 o 2} \triangleq \arg \min_{\mu} \mathcal{W}_2^2(\mathcal{Q}_{\#}^{ heta}\mu_1, \mu) + \mathcal{W}_2^2(\mu, \mathcal{Q}_{\#}^{ heta}\mu_2)$$

4. Take the minimum over all the following distances

$$SWGG_{2}^{2}(\mu_{1},\mu_{2},\theta) = 2W_{2}^{2}(\mu_{1},\mu_{\theta}^{1\to2}) + 2W_{2}^{2}(\mu_{\theta}^{1\to2},\mu_{2}) - 4W_{2}^{2}(\mu_{g,\theta}^{1\to2},\mu_{\theta}^{1\to2})$$

 \rightarrow the two formulations are equivalent (for continuous or discrete distributions)

Why this reformulation?

- **Define** a gradient descent algorithm for optimizing over θ
- Rewrite the problem as an OT formulation with a restricted constraint set
- Define new properties for SWGG

Properties of min-SWGG

- Weak convergence
- Translation invariance
- SWGG is equal to W when one of the distributions (μ_2) is supported on a line of direction θ :

$$\mathcal{W}_{2}^{2}(\mu_{1},\mu_{2}) = \mathcal{W}_{2}^{2}(\mu_{1},Q_{\#}^{\theta}\mu_{1}) + \mathcal{W}_{2}^{2}(Q_{\#}^{\theta}\mu_{1},\mu_{2})$$

that can be computed with a closed form

Gradient descent for optimizing over θ

• min-SWGG²₂(μ_1, μ_2) = min_{$\theta \in S^{d-1}$} $\frac{1}{n} \sum_{i=1}^{n} \left\| x_{\sigma_{\theta}(i)} - y_{\tau_{\theta}(i)} \right\|_2^2$ is not amenable to optimization

■ min-SWGG₂²(μ_1, μ_2) = min_{$\theta \in S^{d-1}$} 2 $W_2^2(\mu_1, \mu_{\theta}^{1 \to 2}) + 2W_2^2(\mu_{\theta}^{1 \to 2}, \mu_2) - 4W_2^2(\mu_{g,\theta}^{1 \to 2}, \mu_{\theta}^{1 \to 2})$ can be computed with a O(dn + n log(n)) complexity, but $W_2^2(\mu_{g,\theta}^{1 \to 2}, \mu_{\theta}^{1 \to 2})$ is still piecewise linear with $\theta \to$ rely on the *blurred* Wasserstein distance [3]

OT with a restricted constraint set

Discrete optimal transport, with n = m and uniform masses

$$\mathcal{W}_{2}^{2}(\mu_{1},\mu_{2}) = \min_{\boldsymbol{\gamma}\in\Gamma(\mu_{1},\mu_{2})} \sum_{i,j} c(\boldsymbol{x}_{i},\boldsymbol{y}_{j})\gamma_{i,j}$$

where $\Gamma(\mu_{1},\mu_{2}) = \{\boldsymbol{\gamma}\in\mathbb{R}^{n\times n} \text{ s.t. } \boldsymbol{\gamma}\mathbf{1}_{n} = \mathbf{1}_{n}/n, \boldsymbol{\gamma}^{\top}\mathbf{1}_{n} = \mathbf{1}_{n}/n\}$ (Birkhoff polytope).

min-SWGG

min-SWGG²₂(μ_1, μ_2) = min_{$\gamma_{\theta} \in \Pi(\mu_1, \mu_2)$} $\sum_{i,j} c(x_i, y_j) \gamma_{\theta_{i,j}}$

where $\Pi(\mu_1, \mu_2) = \{ \gamma_{\theta} \in \mathbb{R}^{n \times n} \text{ s.t. it is constructed from the permutahedron of the proj. distributions} \}$

OT with a restricted constraint set

• Discrete optimal transport, with n = m and uniform masses

$$\mathcal{W}_2^2(\mu_1,\mu_2) = \min_{\boldsymbol{\gamma}\in\Gamma(\mu_1,\mu_2)} \sum_{i,j} c(x_i,y_j)\gamma_{i,j}$$

where $\Gamma(\mu_1, \mu_2) = \{ \gamma \in \mathbb{R}^{n \times n} \text{ s.t. } \gamma \mathbf{1}_n = \mathbf{1}_n / n, \gamma^\top \mathbf{1}_n = \mathbf{1}_n / n \}$ (Birkhoff polytope). min-SWGG

min-SWGG²₂(
$$\mu_1, \mu_2$$
) = min _{$\gamma_\theta \in \Pi(\mu_1, \mu_2)$} $\sum_{i,j} c(x_i, y_j) \gamma_{\theta_{i,j}}$

where $\Pi(\mu_1, \mu_2) = \{ \gamma_\theta \in \mathbb{R}^{n \times n} \text{ s.t. it is constructed from the permutahedron of the proj. distributions} \}$ $\Pi(\mu_1, \mu_2) \subset \Gamma(\mu_1, \mu_2)$

Gives a sample complexity similar to Sinkhorn $n^{-1/2}$ measures lying on smaller dimensional subspaces has a better sample complexity than between the original measures

Experimental results Computational aspects

Two Gaussian distributions μ_1 and μ_2

Experimental results Gradient flows

Initial μ_1 : uniform distribution, different target distributions

Experimental results Pan sharpening / image colorization, using the map

One distribution is supported on a line

 Construct a super-resolution multi-chromatic satellite image from a high-resolution mono-chromatic image (source) and low-resolution multi-chromatic image (target)

Experimental results

Point cloud matchings, using the map

- Iterative Closest Point iterative algorithm for aligning point clouds
- Based on several one-to-one correspondences between points

n	500	3000	150 000
NN	3.54 (0.02)	96.9 (0.30)	23.3 (59.37)
OT	0.32 (0.18)	48.4 (58.46)	
min-SWGG	0.05 (0.04)	37.6 (0.90)	6.7 (105.75)
(the lower the better, timings into parenthesis)			

Experimental results Optimal transport dataset distances

- For computing distances between datasets
- Cumbersome to compute in practice since it lays down on solving multiple OT problems

Figure: OTDD results ($\times 10^2$) distances for min-SWGG (left) and Sinkhorn divergence (right) for various datasets.

Conclusion

Conclusion

- Sliced Wasserstein Generalized Geodesic
 - provides an upper bound for Wasserstein
 - comes with an associated transport map
 - has a O(Lnd + n log(n)) complexity
 - has good statistical properties
- Not the only approximation method based on a pivot measure

Factored coupling [4], where $\nu = \arg \min_{\mu \in \mathcal{P}(\mathbb{R}^k)} \left\{ \mathcal{W}_2^2(\mu, \mu_1) + \mathcal{W}_2^2(\mu, \mu_1) \right\}$

Subspace detours [6], where $\nu = \arg \min_{\nu \in \mathcal{P}(\mathbb{R}^d)} \left\{ \mathcal{W}_2^2(\mathcal{P}_{\#}^{\mathcal{E}}\mu_1, \nu) + \mathcal{W}_2^2(\nu, \mathcal{P}_{\#}^{\mathcal{E}}\mu_2) \right\}$

- Some open questions
 - how do the Birkhoff polytope and the considered permutahedron relate?
 - concentration results?
 - extension to incomparable spaces through a pivot measure?

Fast Optimal Transport through Sliced Generalized Wasserstein Geodesics

Joint work with Guillaume Mahey, Gilles Gasso, Clément Bonet and Nicolas Courty NeurIPS 2023 [5]

Laetitia Chapel laetitia.chapel@irisa.fr

IRISA, Rennes, France Institut Agro Rennes-Angers

Workshop on Optimal Transport: from theory to applications, Berlin 2024

Bibliography

Bibliography I

- [1] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. *Gradient flows: in metric spaces and in the space of probability measures*. Springer Science & Business Media, 2005.
- [2] Thomas M Cover. "The number of linearly inducible orderings of points in d-space". In: *SIAM Journal on Applied Mathematics* 15.2 (1967), pp. 434–439.
- [3] Jean Feydy. "Geometric data analysis, beyond convolutions". PhD thesis. École Normale Supérieure de Cachan, 2020.
- [4] Aden Forrow et al. "Statistical optimal transport via factored couplings". In: *The 22nd International Conference on Artificial Intelligence and Statistics*. PMLR. 2019, pp. 2454–2465.
- [5] Guillaume Mahey et al. "Fast Optimal Transport through Sliced Generalized Wasserstein Geodesics". In: *Advances in Neural Information Processing Systems* 36 (2024).
- [6] Boris Muzellec and Marco Cuturi. "Subspace detours: Building transport plans that are optimal on subspace projections". In: *Advances in Neural Information Processing Systems* 32 (2019).