
Génération automatique de tests d’égalité corrects en Coq, en
pratique

Benjamin Grégoire, Jean-Christophe Léchenet, Enrico Tassi

AFADL 2023 – June 7th, 2023

Equality: Prop vs. bool

• Equality in Prop: Logic.eq, a.k.a. "="
• polymorphic: ∀ A : Type, A → A → Prop
• 4 = 4, "er"= "er", 4 6= 2,�����4 6= "er"

• Equality test in bool:
• one per type/type family
• For a type T, T_eqb : T → T → bool

• Correction: ∀ t1 t2 : T, T_eqb t1 t2 = true ↔ t1 = t2
• Motivation

• Decidable equality: ∀ t1 t2 : T, t1 = t2 ∨ t1 6= t2
• Equality that computes

1 / 19

An example: nat

Inductive nat : Set := O : nat | S : nat → nat.

Fixpoint nat_eqb (n1 n2 : nat) :=
match n1 with
| O ⇒ match n2 with | O ⇒ true | S _ ⇒ false end
| S n1 ⇒ match n2 with | O ⇒ false | S n2 ⇒ nat_eqb n1 n2 end
end.

2 / 19

An example: nat

Lemma nat_eqb_correct : ∀ n1 n2, nat_eqb n1 n2 = true → n1 = n2.
Proof.

induction n1; intros n2.
− destruct n2; [reflexivity|discriminate].
− destruct n2; [discriminate|intros ?; f_equal; apply IHn1; assumption].

Qed.

Lemma nat_eqb_refl : ∀ n, nat_eqb n n = true.
Proof. induction n; [reflexivity|assumption]. Qed.

Lemma nat_eqb_OK : ∀ n1 n2, nat_eqb n1 n2 = true ↔ n1 = n2.
Proof.

split; [apply nat_eqb_correct|intros ← ; apply nat_eqb_refl].
Qed.

3 / 19

Context

Mathematical components

4 / 19

Problem #1

5 / 19

Problem #1

5 / 19

Problem #2

6 / 19

Problem #3

7 / 19

Problem #3

7 / 19

The paper, the talk

• Problem #1: linear schema, this talk!
• Problem #2: heterogeneous tests, see paper
• Problem #3: deep induction, see paper

8 / 19

The paper, the talk

• Problem #1: linear schema, this talk!
• Problem #2: heterogeneous tests, see paper
• Problem #3: deep induction, see paper

8 / 19

The paper, the talk

• Problem #1: linear schema, this talk!
• Problem #2: heterogeneous tests, see paper
• Problem #3: deep induction, see paper

8 / 19

The root of all evil

9 / 19

The idea

10 / 19

Nat

11 / 19

Term size is O(#constructors) !!!

And then... you benchmark

...and you are still quadratic

The next 4 slides are very Coq specific

12 / 19

Tame the termination checker

13 / 19

Non-linear factor: pairs & implicit arguments

14 / 19

Non-linear factor: conjunctions

15 / 19

Non-linear factor: rewritings

16 / 19

Non-linear factor: rewritings

16 / 19

Benchmarks: synthesis time

17 / 19

Implementation

Written in Coq-Elpi
• 800 LOC for equality tests and proofs
• 800 LOC for deep induction and related lemmas

18 / 19

Conclusions

feqb: automatic synthesis in linear time covering subtypes and containers

Status: integrated in Coq-Elpi 1.16

Next:
• synthesis of order relation
• speed up discriminate, inversion

Thank you!

19 / 19

Bench: execution time of the derived eq test

20 / 19

Comparison with related tools

21 / 19

