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Equality: Prop vs. bool

• Equality in Prop: Logic.eq, a.k.a. "="
• polymorphic: ∀ A : Type, A → A → Prop
• 4 = 4, "er"= "er", 4 6= 2,�����4 6= "er"

• Equality test in bool:
• one per type/type family
• For a type T, T_eqb : T → T → bool

• Correction: ∀ t1 t2 : T, T_eqb t1 t2 = true ↔ t1 = t2
• Motivation

• Decidable equality: ∀ t1 t2 : T, t1 = t2 ∨ t1 6= t2
• Equality that computes
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An example: nat

Inductive nat : Set := O : nat | S : nat → nat.

Fixpoint nat_eqb (n1 n2 : nat) :=
match n1 with
| O ⇒ match n2 with | O ⇒ true | S _ ⇒ false end
| S n1 ⇒ match n2 with | O ⇒ false | S n2 ⇒ nat_eqb n1 n2 end
end.
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An example: nat

Lemma nat_eqb_correct : ∀ n1 n2, nat_eqb n1 n2 = true → n1 = n2.
Proof.

induction n1; intros n2.
− destruct n2; [reflexivity|discriminate].
− destruct n2; [discriminate|intros ?; f_equal; apply IHn1; assumption].

Qed.

Lemma nat_eqb_refl : ∀ n, nat_eqb n n = true.
Proof. induction n; [reflexivity|assumption]. Qed.

Lemma nat_eqb_OK : ∀ n1 n2, nat_eqb n1 n2 = true ↔ n1 = n2.
Proof.

split; [apply nat_eqb_correct|intros ← ; apply nat_eqb_refl].
Qed.
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Context

Mathematical components
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Problem #1
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Problem #1
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Problem #2
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Problem #3
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Problem #3
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The paper, the talk

• Problem #1: linear schema, this talk!
• Problem #2: heterogeneous tests, see paper
• Problem #3: deep induction, see paper
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The root of all evil
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The idea

10 / 19



Nat
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Term size is O(#constructors) !!!



And then... you benchmark

...and you are still quadratic

The next 4 slides are very Coq specific
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Tame the termination checker
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Non-linear factor: pairs & implicit arguments
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Non-linear factor: conjunctions
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Non-linear factor: rewritings
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Non-linear factor: rewritings
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Benchmarks: synthesis time
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Implementation

Written in Coq-Elpi
• 800 LOC for equality tests and proofs
• 800 LOC for deep induction and related lemmas
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Conclusions

feqb: automatic synthesis in linear time covering subtypes and containers

Status: integrated in Coq-Elpi 1.16

Next:
• synthesis of order relation
• speed up discriminate, inversion

Thank you!
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Bench: execution time of the derived eq test
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Comparison with related tools
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