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Abstract

In 2011, Danicic et al. introduced an elegant generalization of the notion of
control dependence for any directed graph. They also proposed an algorithm
computing the weak control-closure of a subset of graph vertices and performed
a paper-and-pencil proof of its correctness. We have performed its machine-
checked proof in the Coq proof assistant. This paper also presents a novel, more
efficient algorithm called lDFS to compute weak control-closure taking benefit
of intermediate propagation results of previous iterations in order to accelerate
the following ones. This optimization makes the design of the algorithm more
complex and requires subtle loop invariants for its proof. lDFS has been formal-
ized and mechanically proven in the Why3 verification tool. To investigate the
impact of several possible optimizations and compare the performances of dif-
ferent versions of the algorithm, we perform experiments on arbitrary generated
graphs with up to hundreds of thousands of vertices. They demonstrate that
the proposed algorithm remains practical for real-life programs and significantly
outperforms all considered versions of Danicic’s initial technique.

Keywords: Control dependence, Control-closure, Graph theory, Proof of
soundness, Coq, Why3, Program slicing

1. Introduction

Context. Control dependence is a fundamental notion in software engineering
and analysis (e.g. [1, 2, 3, 4, 5, 6]). It reflects structural relationships between
different program statements and is intensively used in many software analy-
sis techniques and tools, such as compilers, verification tools, test generators,
program transformation tools, simulators, debuggers, etc. Along with data de-
pendence, it is one of the key notions used in program slicing [2, 7], a program
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transformation technique allowing to decompose a given program into a simpler
one, called a program slice.

In 2011, Danicic et al. [8] proposed an elegant generalization of the notions of
closure under non-termination insensitive (weak) and non-termination sensitive
(strong) control dependence. They introduced the notions of weak and strong
control-closures, that can be defined on any directed graph, and no longer only
on control flow graphs. They proved that weak and strong control-closures
subsume the closures under all forms of control dependence previously known
in the literature. In the present paper, we are interested in the non-termination
insensitive form, i.e. weak control-closure.

Besides the definition of weak control-closure, Danicic et al. also provided
an algorithm computing it for a given set of vertices in a directed graph. This
algorithm was proved by paper-and-pencil. Under the assumption that the given
graph is a CFG (or more generally, that the maximal out-degree of the graph
vertices is bounded), the complexity of the algorithm can be expressed in terms
of the number n of vertices of the graph, and was shown to be Opn3q. This can
explain why this algorithm was not used until now. Danicic et al. themselves
conjectured that it should be possible to improve its complexity.

Motivation. Danicic et al. introduced basic notions used to define weak control-
closure and to justify the algorithm, and proved a few lemmas about them.
While formalizing these concepts in the Coq proof assistant [9, 10], we have
discovered that, strictly speaking, their paper-and-pencil proof of one of them
[8, Lemma 53] is inaccurate, whereas the lemma itself is correct. The first
motivation of this work is to provide a mechanically verified proof of these
results, necessary to avoid any risk of error. Furthermore, Danicic’s algorithm
does not take advantage of its iterative nature and does not reuse the results
of previous iterations in order to speed up the following ones. Our second
motivation is thus to optimize Danicic’s algorithm.

Goals and Main Results. First, we fully formalize Danicic’s algorithm, its cor-
rectness proof and the underlying concepts in Coq. Our second objective is to
design a more efficient algorithm sharing information between iterations in order
to speed up the execution. We call this new algorithm lDFS, since it uses DFS
(Depth-First Search) traversals of the graph to update a labeling of the nodes.
Since lDFS is carefully optimized and more complex, its correctness proof relies
on more subtle arguments than for Danicic’s algorithm. To deal with them and
to avoid any risk of error, we have proved lDFS correct using a mechanized
verification tool once again — this time, the Why3 proof system [11, 12].

Finally, in order to evaluate lDFS with respect to Danicic’s initial tech-
nique, we have implemented both algorithms in OCaml (using OCamlgraph
library [13]) and tested them on a large set of randomly generated graphs with
up to hundreds of thousands of vertices. In addition, we considered a couple
of optimizations, referred to as (opt1) and (opt2), for Danicic’s original algo-
rithm, and implemented and evaluated the corresponding versions. A certified
implementation extracted from the Coq development was also evaluated and
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used as an oracle to check all other implementations. Experiments demonstrate
that the proposed algorithm sharing information between iterations turns out to
be the most efficient: it remains applicable to large graphs (and thus to CFGs
of real-life programs) and significantly outperforms all considered versions of
Danicic’s original technique.

Contributions. The contributions of this paper include:

• a formalization of Danicic’s algorithm and proof of its correctness in Coq;

• a new algorithm lDFS computing weak control-closure and taking benefit
from preserving some intermediary results between iterations;

• a mechanized correctness proof of lDFS in the Why3 tool including a
formalization of the basic concepts and results of Danicic et al.;

• an implementation of Danicic’s initial technique (in several versions, with-
out and with (opt1) and (opt2)) and our new algorithm in OCaml, their
evaluation on randomly generated graphs and a detailed comparison of
their performances.

The Coq, Why3 and OCaml implementations are all available in [14]. This
paper is an extended version of a previous conference paper [15]. The exten-
sions include careful proofs or proof sketches of all results and a larger evalua-
tion campaign, including optimizations (opt1) and (opt2) of Danicic’s original
technique and their comparison with lDFS in order to better understand the
impact of possible optimizations with and without sharing information between
iterations. In particular, a detailed proof is given for Prop. 3 fixing the minor
flaw found in the original proof in [8]. To emphasize all technical difficulties
of the underlying argument, we state and prove a new lemma, Lemma 2, and
carefully illustrate its main steps by several figures.

Outline. We present our motivation and a running example in Sect. 2. Then, we
recall the definitions of some important concepts introduced by [8] in Sect. 3 and
state two important lemmas in Sect. 4. Next, we describe Danicic’s algorithm
in Sect. 5 and lDFS along with a sketch of the proof of its correctness in Sect. 6.
Experiments are presented in Sect. 7. Finally, Sect. 8 presents some related
work and concludes.

2. Motivation and Running Example

This section informally presents weak control-closure using a running exam-
ple.

The inputs of our problem are a directed graph G “ pV,Eq with set of
vertices (or nodes) V and set of edges E, and a subset of vertices V 1 Ď V . The
property of interest of such a subset is called weakly control-closed in [8] (cf.
Def. 3). V 1 is said to be weakly control-closed if each node reachable from V 1

is V 1-weakly committing (cf. Def. 2), i.e. all paths starting at such a node lead
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the flow to at most one (first reachable) node in V 1. If the property is not true,
then, starting from some node u1 reachable from V 1, the flow can diverge at
some node u (not in V 1) and reach V 1 in two different nodes.

If V 1 is not weakly control-closed, we often need to build a superset of V 1
satisfying this property, and more particularly the smallest one, called the weak
control-closure of V 1 in G (cf. Def. 5). Intuitively, a weakly control-closed set
must contain any node u of V reachable from V 1 that can decide to which node
of V 1 the control will flow. These nodes can also be characterized as the points
of divergence closest to V 1. They are called V 1-weakly deciding. Formally, vertex
u is V 1-weakly deciding if there exist two non-trivial paths starting from u and
reaching V 1 that have no common vertex except u (cf. Def. 4). To compute
the weak control-closure, as it will be proved by Lemma 3, we need to add to
V 1 the V 1-weakly deciding vertices that are reachable from V 1.

u6 u5

u0

u2 u1

u4 u3

Figure 1: Example graph G0 “

pV0, E0q, with V 10 “ tu1, u3u

Let us illustrate these ideas on an example
graph G0 “ pV0, E0q shown in Fig. 1. V 10 “
tu1, u3u is the subset of interest represented
with double circles ( ui ) in Fig. 1. Vertex
u5 is reachable from V 10 and is not V 10-weakly
committing, since it is the origin of two paths
u5, u6, u0, u1 and u5, u6, u0, u2, u3 that lead the
flow to two different nodes u1 and u3 in V 10 .
Hence, by definition, V 10 is not weakly control-
closed. We see that these two paths diverge at
u0 and do not have any common node after the
divergence point u0. Thus u0 decides whether
the control flows to u1 and u3 in V 10 .

As mentioned above, to build the weak control-closure of V 10 , we need to
add to V 10 all V 10-weakly deciding nodes reachable from V 10 . Vertex u0 is such a
node. Indeed, it is reachable from V 10 and we have two non-trivial paths u0, u1
and u0, u2, u3 starting from u0, ending in V 10 (respectively, in u1 and u3) and
sharing no other vertex than their origin u0. Similarly, nodes u2, u4 and u6
are V 10-weakly deciding and must be added as well. On the contrary, u5 must
not be added, since every non-empty path starting from u5 has u6 as second
vertex. More generally, a node with only one successor can obviously not be
a “divergence point closest to V 1” and cannot decide to which node in V 1 the
control will flow, hence it never needs to be added to build the weak control-
closure. The weak control-closure of V 10 in G0 is thus tu0, u1, u2, u3, u4, u6u.

Danicic’s algorithm to construct the closure — like the one we propose —
does not directly try to build such two paths sharing only one node in order
to identify a weakly deciding node. Both algorithms identify some V 1-weakly
deciding vertices relying on a concept called observable vertex. Given a vertex
u P V , the set of observable vertices in V 1 from u contains all nodes reachable
from u in V 1 without using edges starting in V 1. Intuitively, they are the first
reachable nodes in V 1 from u. Figure 2a shows our example graph G0, where
each node is annotated with its set of observables in V 10 .
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u6

tu1, u3u

u5

tu1, u3u

u0 tu1, u3u

u2

tu1, u3u

u1 tu1u

u4

tu1, u3u

u3 tu3u

(a) w.r.t. V 10 “ tu1, u3u

u6

tu0, u4u

u5

tu0, u4u

u0 tu0u

u2

tu2u

u1 tu1u

u4

tu4u

u3 tu3u

(b) w.r.t. V 20 “ V 10 Y tu0, u2, u4u

u6

tu6u

u5

tu6u

u0 tu0u

u2

tu2u

u1 tu1u

u4

tu4u

u3 tu3u

(c) w.r.t. V 30 “ V 20 Y tu6u

Figure 2: Example graph G0 annotated with observable sets

The important property about this object underlying the main idea of the
algorithms — as it will follow from Lemmas 5 and 3 — is the following: if there
exists an edge pu, vq P E such that (i) u is reachable from V 1, (ii) u is not in
V 1, (iii) v can reach V 1, and (iv) there exists a vertex w observable from u but
not from v, then u is a V 1-weakly deciding node, and it must be added to V 1 to
build its weak control-closure. Indeed, in this case, u decides at least whether
the control can flow from u to w or another node (reachable from v) in V 1.

In our example, pu0, u1q is an edge such that u0 is reachable from V 10 , u0
is not in V 10 , u1 can reach V 10 (since u1 P V

1
0), and u3 is an observable vertex

from u0 in V 10 but not from u1. Hence u0 is a node to be added into the weak
control-closure. Likewise, considering the edges pu2, u3q and pu4, u3q, we can
deduce that u2 and u4 must belong to the closure. However, we have seen that
u6 belongs to the closure, but it is not possible to directly deduce it by applying
the same reasoning to edges pu6, u0q, pu6, u4q or pu6, u5q.

As Lemma 4 will establish, the computation technique is actually iterative.
We should add to the initial V 10 the nodes that we have already detected and
apply this technique again to this new set V 20 . The vertices that will be detected
this way will also be in the closure of the initial set V 10 . The observable sets with
respect to V 20 “ V 10 Y tu0, u2, u4u are shown in Fig. 2b. This time, applying
the aforementioned property to edge pu6, u4q or edge pu6, u0q allows us to add
u6 to the closure. Applying again the same technique with the augmented set
V 30 “ V 20 Y tu6u (cf. Fig. 2c) does not reveal new vertices to add. This means
that all nodes of the closure have already been found. We obtain the same set
as before for the weak control-closure of V 10 , i.e. tu0, u1, u2, u3, u4, u6u.

3. Basic Concepts

This section introduces basic definitions and properties needed to define the
notion of weak control-closure. The proofs were inspired by Danicic et al.’s
ones [8] and were adapted to give a slightly clearer presentation and to give a
rigorous proof for the key property of Prop. 3 whose proof in [8] was inaccurate.
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All these notions and proofs have been formalized in Coq [14], including in
particular Prop. 3.

From now on, let G “ pV,Eq denote a directed graph, and V 1 a subset of V .
We define a path in G in the usual way. A path is written as the sequence of
visited nodes. A non-trivial path has at least two nodes. We write u path

ÝÝÝÑ v if
there exists a path from u to v. Let RGpV

1q “ tv P V | Du P V 1, u
path
ÝÝÝÑ vu be

the set of nodes reachable from V 1. In our example (cf. Fig. 1), u6, u0, u1, u3 is
a (4-node) path in G0, u1 is a trivial one-node path in G0 from u1 to itself, and
RG0pV

1
0q “ V0.

Definition 1 (V 1-disjoint path, V 1-path). A path π in G is said to be V 1-
disjoint in G if all the vertices in π, except possibly the last one, are not in V 1.
A V 1-path in G is a V 1-disjoint path whose last vertex is in V 1. In particular, if
u P V 1, the only V 1-path starting from u is the trivial path u.

We write u V 1-disjoint
ÝÝÝÝÝÝÝÑ v (resp. u V 1-path

ÝÝÝÝÝÑ v) if there exists a V 1-disjoint path
(resp. a V 1-path) from u to v. A non-trivial path π from u to v can also be
written in the form π “ uπ1v for some (possibly empty) subsequence of nodes
π1 of the path π.

Example 1. In G0, u3; u2, u3; u0, u1; u0, u2, u3 are V 10-paths and thus V 10-
disjoint paths. The path u6, u0 is a V 10-disjoint path but not a V 10-path.

Remark 1. Definition 1 and the following ones used in our formalization are
slightly different from [8], where a V 1-path must contain at least two vertices
and there is no constraint on its first vertex, which can be in V 1 or not. Our
definitions differ from Danicic et al.’s only in the way they deal with the nodes
in V 1. They lead to the same notion of weak control-closure, but seemed to us
to be slightly more natural.

Definition 2 (V 1-weakly committing vertex). A vertex u inG is V 1-weakly
committing if all the V 1-paths from u have the same end point (in V 1). In
particular, any vertex u P V 1 is V 1-weakly committing.

Example 2. In G0, u1 and u3 are the only V 10-weakly committing nodes.

Definition 3 (Weakly control-closed set). A subset V 1 of V is weakly control-
closed in G if every vertex reachable from V 1 is V 1-weakly committing.

Example 3. The empty setH, singletons and the set of all nodes V are trivially
weakly control-closed. In our running example G0, since in particular u2 is
reachable from V 10 but not V 10-weakly committing, we see that V 10 is not weakly
control-closed in G0. Less trivial weakly control-closed sets include tu0, u1u,
tu4, u5, u6u and tu0, u1, u2, u3, u4, u6u.

Definition 3 characterizes a weakly control-closed set, but does not explain
how to build one. It would be particularly interesting to build the smallest
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weakly control-closed set containing a given set V 1. The notion of weakly decid-
ing vertex will help us to give an explicit expression to that set. Intuitively, as
mentioned in Sec. 2, V 1-weakly deciding nodes decide to which node of V 1 the
control will flow from them.

Definition 4 (V 1-weakly deciding vertex). A vertex u is V 1-weakly decid-
ing if there exist at least two non-trivial V 1-paths from u that share no vertex
except u. Let WDGpV

1q denote the set of V 1-weakly deciding vertices in G.

Property 1. V 1 XWDGpV
1q “ H.

Proof. Let u be an element of WDGpV
1q. By Def. 4, there exist two non-trivial

V 1-paths from u ending in V 1. By Def. 1, since u appears as a non-terminal
vertex on such a path, it follows that u R V 1. l

Example 4. In G0, by Prop. 1, u1, u3 R WDG0pV
1
0q. We have illustrated

the definition to show that u0 P WDG0pV
1
0q and u5 R WDG0pV

1
0q in Sect.

2. Similarly, it is easily seen that u2, u4, u6 P WDG0pV
1
0q. Thus we have

WDG0pV
1
0q “ tu0, u2, u4, u6u.

Lemma 1 (Characterization of a weakly control-closed set). V 1 is weakly
control-closed in G if and only if there is no V 1-weakly deciding vertex in G
reachable from V 1.

Proof. Both implications are shown by contradiction. We show first that the
condition is necessary. Indeed, if we have a V 1-weakly deciding vertex reachable
from V 1, then it is not V 1-weakly committing, and therefore is a clear counter-
example to V 1 being weakly control-closed. Assume now that V 1 is not weakly
control-closed. We have a vertex reachable from V 1 and giving rise to two V 1-
paths ending in V 1. The last vertex of the first V 1-path that also occurs on the
other V 1-path is a V 1-weakly deciding node reachable from V 1. l

Example 5. In G0, u2 is reachable from V 10 and is V 10-weakly deciding. By
Lemma 1, this gives another argument that V 10 is not weakly control-closed.

Let us now state two other useful properties of WDG.

Property 2. Let V 11 , V 12 be two subsets of V with V 11 Ď V 12 . Then WDGpV
1
1q Ď

V 12 YWDGpV
1
2q.

Proof. Let u be a vertex in WDGpV
1
1q. By Def. 4, there exist two non-trivial

V 11-paths from u ending in V 11 that share no vertex except u. Since V 11 Ď V 12 ,
these paths also end in V 12 . By considering for each path the shortest prefix
ending in V 12 , we obtain two V 12-paths from u that share no vertex except u. If
one of these V 12-paths is trivial, then u P V 12 (and the other path is trivial too).
Otherwise, u P WDGpV

1
2q by Def. 4. l

7



u R V 1

v1 P V
1

v2 R V
1

v21 P V
1

v22 P V
1

π1

R V
1

π2

R V 1 π21

R V
1

π22

R V 1

Figure 3: Schematic representation of the configuration of Lemma 2

For the next property, we need the following auxiliary lemma that basically
states that if a node u can be the latest point of divergence before reaching
(by V 1-disjoint paths) a node of V 1 and a V 1-weakly deciding node, then u is
V 1-weakly deciding itself. Its statement is more general than the corresponding
statement proved by Danicic et al.

Lemma 2. Let u R V 1, v1 P V
1 and v2 P WDGpV

1q be three distinct vertices in
G, and let uπ1v1 and uπ2v2 be two paths in G that share no vertex except u.
Suppose that π1 and π2 have no vertex in V 1. Then u P WDGpV

1q.

Proof. By Def. 4, since v2 P WDGpV
1q we have two non-trivial V 1-paths

v2π21v21 and v2π22v22, sharing no vertex except v2 (see Fig. 3). Overall, the
lemma is equivalent to the following claim: for any u R V 1 and any three V 1-paths
ρ1 “ uπ1v1, ρ2 “ uπ2v2π21v21 and ρ3 “ uπ2v2π22v22, with no intersection be-
tween π1v1 and π2v2 and between π21v21 and π22v22, there exist two non-trivial
V 1-paths from u sharing no vertex except u.

A detailed proof is very technical and is available in the Coq formalization.
We give here a sketch of a paper-and-pencil proof of the claim providing the
main ideas of the argument without all technical details.

Without loss of generality, we can assume that paths uπ1v1 and uπ2v2 have
no loops (i.e. no node is traversed several times). Indeed, we can eliminate
loops and consider shorter loop-free paths of the same form. Similarly, we also
assume that v2π21v21 is loop-free. Removing loops is illustrated by Figure 4.

Furthermore, we can assume that the whole path ρ2 “ uπ2v2π21v21 is loop-
free as well. Indeed, otherwise, let w2 be the latest node in subpath π21v21 that
also occurs in subpath uπ2. Hence, w2 R V

1, thus w2 cannot be v21. Removing
the loop from w2 to w2 (containing v2) in the whole path ρ2, we obtain a reduced
loop-free path ρ12 from u to v21. Paths ρ12 and ρ3 diverge at w2, so we can deduce
w2 P WDGpV

1q. If w2 is u, we are done. If not, w2 is in π2, and it is indeed
sufficient to prove the claim for paths ρ1, ρ

1
2, ρ3 with a loop-free path ρ12 from u

to v21 (instead of ρ2) and w2 as a divergence point of ρ12 and ρ3 (instead of v2).
Figure 5 shows one example of such a transformation. Similarly, we can assume
that the part of ρ3 between the new divergence point w2 and v22, as well as the
whole path ρ3, are loop-free too.
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u R V 1

v1 P V
1

v2 R V
1

v21 P V
1

v22 P V
1

π1

π2 π21

π22

Figure 4: One configuration where cycles in uπ2v2 and v2π21v21 are removed. The red thick
paths are the loop-free versions of the initial paths. The removed loops are shown dashed.

u R V 1

v1 P V
1

v2 R V
1

π1

π2

v21 P V
1

π21
w2

v22 P V
1π22

ρ12

ρ3

Figure 5: One configuration where a cycle in ρ2 is removed. In the new configuration, the
new path ρ12 (in red) and the unchanged path ρ3 (in blue) diverge at w2. The removed part
of π21 is shown dashed.

It remains to show the claim assuming ρ1, ρ2, ρ3 are loop-free. If ρ1 “ uπ1v1
shares no nodes with at least one of the paths ρ2 or ρ3 except u, we are done.
Otherwise, let w1 be the first node that ρ1 has in common with ρ2 or ρ3; we
can assume (up to renaming) it is common with ρ2. By assumptions, w1 must
then belong to its subpath π21v21. Then, the path ρ3 and the path obtained as
the subpath of ρ1 from u to w1 followed by the (possibly trivial) subpath of ρ2
from w1 to v21 can be shown to be two non-trivial V 1-paths from u to v22 and
v21 sharing no vertex except u. Figure 6 is an example of the construction of
such V 1-paths. l

Based on Lemma 2, we can prove the following property. We detail its proof,
since it is the one that is inaccurate in Danicic at al.’s work.

Property 3. WDGpV
1 YWDGpV

1qq “ H.

Proof. Assume there exists an element u P WDGpV
1 YWDGpV

1qq. By Prop-
erty 1, we have then that u R V 1 Y WDGpV

1q. To obtain a contradiction, let
us deduce from the assumption that u P WDGpV

1q. By Def. 4, there exist two
non-trivial pV 1YWDGpV

1qq-paths from u that share no vertex except u. Either
path can end in V 1 or in WDGpV

1q. This gives four cases.

• In the first case, both paths end in V 1, thus u P WDGpV
1q by Def. 4.
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u R V 1

v2 R V
1

v21 P V
1

v22 P V
1

π1

w1

v1 P V
1

π2

π21

π22

Figure 6: One configuration where uπ1v1 intersects π21v21. The two non-trivial V 1-paths
from u sharing no vertex except u are shown with thick lines.

• The second and third cases are symmetrical. One path ends in V 1, the
other one in WDGpV

1q. Both paths are pV 1 Y WDGpV
1qq-disjoint, thus

they are in particular V 1-disjoint. By Lemma 2, we have u P WDGpV
1q.

• In the fourth case, the two paths are of the form uπ1v1 and uπ2v2 for some
v1, v2 P WDGpV

1q. By Def. 4, v1 (resp., v2) decides if the control can flow
to some v11, v12 P V

1 (resp., some v21, v22 P V
1). Using the corresponding

V 1-paths, we obtain four concatenated paths uπ1v1π11v11, uπ1v1π12v12,
uπ2v2π21v21 and uπ2v2π21v22. If π11 and π2 had a common vertex, the
last vertex in π11 that also occurs in π2 would satisfy the hypotheses of
Lemma 2 (for paths to v11 P V

1 and v2 P WDGpV
1q), thus would be in

WDGpV
1q, which is impossible in π2. Thus π11 and π2 are disjoint. By

applying again Lemma 2 for paths uπ1v1π11v11 and uπ2v2, we deduce that
u P WDGpV

1q.

The contradiction with u R WDGpV
1q finishes the proof. l

Remark 2. Our proof follows the same structure as Danicic et al’s proof [8,
Lemma 53] . But in the fourth case, instead of relying on Lemma 2 like we do,
they refer to the proof of the second and third cases. The hypotheses look the
same, there are two V 1-disjoint paths sharing no vertex except u, one ending
in V 1, the other ending in WDGpV

1q. But actually in the second and third
cases, the hypotheses are stronger, the paths are not only V 1-disjoint, they are
pV 1 YWDGpV

1qq-disjoint. And this is a key argument in Danicic et al.’s proof
of the second and third cases. Thus it is incorrect to apply that proof in the
fourth case. To fix the proof, we proved the auxiliary Lemma 2 whose statement
corresponds to the second and third cases but generalized with V 1-disjoint paths
instead of pV 1YWDGpV

1qq-disjoint paths. That lemma can correctly be applied
in the fourth case.

We are ready to prove that adding to a given set V 1 the V 1-weakly deciding
nodes that are reachable from V 1 gives a weakly control-closed set in G. This
set is the smallest superset of V 1 weakly control-closed in G.
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Lemma 3 (Existence of the weak control-closure). Let W “ WDGpV
1qX

RGpV
1q be the set of vertices in WDGpV

1q that are reachable from V 1. Then
V 1 YW is the smallest weakly control-closed set containing V 1.

Proof. We prove that V 1 YW is weakly control-closed in G. By Lemma 1, it
is sufficient to show that there is no element of WDGpV

1 YW q reachable from
V 1 YW . Let u be an element of WDGpV

1 YW q reachable from V 1 YW . By
Prop. 2, since V 1 YW Ď V 1 YWDGpV

1q, we have

u P WDGpV
1 YW q Ď V 1 YWDGpV

1q YWDGpV
1 YWDGpV

1qq.

By Prop. 3, it follows that u P V 1YWDGpV
1q. Since u is reachable from V 1YW ,

and all elements of W are reachable from V 1, u is reachable from V 1. We can
deduce that u P V 1YW . By Property 1, it is contradictory with the assumption
u P WDGpV

1 YW q. Thus V 1 YW is weakly control-closed in G.
We now prove that V 1 Y W is included in any weakly control-closed set

containing V 1. Let X be a weakly control-closed set containing V 1 and let
u P V 1 YW . Let us show that u P X. If u P V 1, we have u P X by assumption.
Assume that u P W . In particular, we have u P WDGpV

1q. By Prop. 2,
WDGpV

1q Ď X YWDGpXq. If u is in X, the proof is done. If u P WDGpXq, u
is an X-weakly deciding vertex reachable from V 1YW and thus from X, which
contradicts X being weakly control-closed in G by Lemma 1. l

The previous lemma justifies the following definition.

Definition 5 (Weak control-closure). We call weak control-closure of V 1,
denoted WCCGpV

1q, the smallest weakly control-closed set containing V 1.

Property 4. Let V 1, V 11 and V 12 be subsets of V . Then

a) WCCGpV
1q “ V 1 Y pWDGpV

1q X RGpV
1qq “ pV 1 YWDGpV

1qq X RGpV
1q.

b) If V 11 Ď V 12 , then WCCGpV
1
1q Ď WCCGpV

1
2q.

c) If V 1 is weakly control-closed, then WCCGpV
1q “ V 1.

d) WCCGpWCCGpV
1qq “ WCCGpV

1q.

Proof.

a) The equality follows from Lemma 3 and since V 1 Ď RGpV
1q.

b) Since V 11 Ď V 12 Ď WCCGpV
1
2q and WCCGpV

1
2q is weakly control-closed, we

deduce WCCGpV
1
1q Ď WCCGpV

1
2q by minimality of WCCGpV

1
1q.

c) Obvious by Def. 5.

d) This is a direct consequence of c). l
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4. Main Lemmas

This section gives two important lemmas used to justify both Danicic’s al-
gorithm and ours.

Lemma 4. Let V 1 and W be two subsets of V . If V 1 Ď W Ď V 1 YWDGpV
1q,

then W YWDGpW q “ V 1YWDGpV
1q. Moreover, if V 1 ĎW Ď WCCGpV

1q, then
WCCGpW q “ WCCGpV

1q.

Proof. Assume V 1 Ď W Ď V 1 YWDGpV
1q. Since V 1 Ď W , we have by Prop.

2, WDGpV
1q ĎW YWDGpW q. We can deduce V 1YWDGpV

1q ĎW YWDGpW q.
Furthermore, since W Ď V 1 YWDGpV

1q, we have by Prop. 2 and 3

WDGpW q Ď V 1 YWDGpV
1q YWDGpV

1 YWDGpV
1qq “ V 1 YWDGpV

1q.

We deduce W YWDGpW q Ď V 1 YWDGpV
1q, and finally the desired equality.

If now V 1 Ď W Ď WCCGpV
1q, and therefore RGpV

1q “ RGpW q, we deduce
WCCGpW q “ WCCGpV

1q from the previous result by Prop. 4a. l

Lemma 4 allows to design iterative algorithms to compute the closure. In-
deed, assume that we have a procedure which, given a set V 1 that is not weakly
control-closed, can return one or more elements of the weak control-closure of
V 1 that are not yet in V 1. If we apply such a procedure to V 1 once, we get a set
W that satisfies V 1 ĎW Ď WCCGpV

1q. By Lemma 4, WCCGpW q “ WCCGpV
1q.

To compute the weak control-closure of V 1, it is thus sufficient to build the weak
control-closure of W . We can apply our procedure again, this time to W , and
iteratively on all the successively computed sets until the procedure fails to find
any new elements (that is, the weak control-closure WCCGpV

1q is found). Since
each computed set is a strict superset of the previous one, this iterative process
terminates because graph G is finite.

Before stating the second lemma, we introduce a key concept. It is called Θ
in [8]. We use the name “observable” as in [16].

Definition 6 (Observable). Let u P V . The set of observable vertices from u

in V 1, denoted obsGpu, V
1q, is the set of vertices u1 in V 1 such that u V 1-path

ÝÝÝÝÝÑ u1.

Remark 3. A vertex u P V 1 is its unique observable: obsGpu, V
1q “ tuu.

The concept of observable set was illustrated in Fig. 2 (cf. Sect. 2).

Lemma 5 (Sufficient condition for being V 1-weakly deciding). Let pu, vq
be an edge in G such that u R V 1, v can reach V 1 and there exists a vertex u1 in
V 1 such that u1 P obsGpu, V

1q and u1 R obsGpv, V
1q. Then u P WDGpV

1q.

Proof. Since v can reach V 1, there exists a V 1-path π from v to some node
v1 P V 1, possibly trivial if v P V 1. We need to exhibit two V 1-paths from u that
share no vertex except u. We take the V 1-path from u to u1 as the first one, and
the V 1-path uπ from u to v1 as the second one. If these V 1-paths intersected at a
node y different from u, we would have a V 1-path from v to u1 by concatenating
the subpaths from v to y and from y to u1, which is contradictory. l
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Example 6. In G0, obsG0pu0, V
1
0q “ tu1, u3u and obsG0pu1, V

1
0q “ tu1u (cf.

Fig. 2a). Since u1 is a successor of u0, we can apply Lemma 5, and deduce that
u0 is V 10-weakly deciding. obsG0pu5, V

1
0q “ tu1, u3u and obsG0pu6, V

1
0q “ tu1, u3u.

We cannot apply Lemma 5 to u5, and for good reason, since u5 is not V 10-weakly
deciding. But we cannot apply Lemma 5 to u6 either, since u6 and all its
successors u0, u4 and u5 have observable sets tu1, u3u w.r.t. V 10 , while u6 is V 10-
weakly deciding. This shows that with Lemma 5, we have a sufficient condition,
but not a necessary one, for proving that a vertex is weakly deciding.

5. Danicic’s Algorithm

We present here the algorithm described in [8]. This algorithm and a proof
of its correctness have been formalized in Coq [14]. The algorithm is nearly
completely justified by a following lemma (Lemma 6, equivalent to [8, Lemma
60]).

We first need to introduce a new concept, which captures edges that are of
particular interest when searching for weakly deciding vertices. This concept is
taken from [8], where it was not given a name. We call such edges critical edges.

Definition 7 (Critical edge). An edge pu, vq in G is called V 1-critical if:

(1) | obsGpu, V
1q| ě 2;

(2) | obsGpv, V
1q| “ 1;

(3) u is reachable from V 1 in G.

Example 7. In G0, pu0, u1q, pu2, u3q and pu4, u3q are the V 10-critical edges.

Lemma 6. If V 1 is not weakly control-closed in G, then there exists a V 1-critical
edge in G. Moreover, if pu, vq is such a V 1-critical edge, then u P WDGpV

1q X

RGpV
1q, therefore u P WCCGpV

1q.

Proof. By Lemma 1, there exists a vertex x in WDGpV
1q reachable from V 1.

Let π be a V 1-path from x ending in x1 P V 1. It follows that | obsGpx, V
1q| ě 2

and | obsGpx
1, V 1q| “ 1. Let u be the last vertex on π with at least two observable

nodes in V 1 and v its successor on π. Then pu, vq is a V 1-critical edge.
Assume now that pu, vq is a V 1-critical edge. From | obsGpu, V

1q| ě 2 and
| obsGpv, V

1q| “ 1, we deduce that u R V 1, v can reach V 1 and there exists u1
in obsGpu, V

1q but not in obsGpv, V
1q. By Lemma 5, u P WDGpV

1q and thus
u P WCCGpV

1q. l

Remark 4. We can see in the proof above that we do not need the exact values
2 and 1. We just need strictly more observable vertices for u than for v and at
least one observable for v, to satisfy the hypotheses of Lemma 5.

As described in Sect. 4, we can build an iterative algorithm constructing the
weak control-closure of V 1 by searching for critical edges on the intermediate sets
built successively. This is the idea of Danicic’s algorithm shown as Algorithm 1.
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Input: G “ pV,Eq a directed graph
V 1 Ď V

Output: W Ď V the weak control-closure of V 1
Ensures: W “ WCCGpV

1q

1 begin
2 W Ð V 1

3 while there exists a W -critical edge in E do
4 choose such a W -critical edge pu, vq
5 W ÐW Y tuu

6 end
7 return W

8 end
Algorithm 1: Danicic’s original algorithm for weak control-closure [8]

Example 8. Let us apply Algorithm 1 to our running example G0 (cf. Fig. 1).
Note that in G0, every node is reachable from V 10 , thus the reachability con-
ditions always hold and can be ignored in this example. Initially, W0 “ V 10 “
tu1, u3u.

1. obsG0pu0,W0q “ tu1, u3u and obsG0pu1,W0q “ tu1u, therefore pu0, u1q is
a W0-critical edge. Set W1 “ tu0, u1, u3u.

2. obsG0pu2,W1q “ tu0, u3u and obsG0pu3,W1q “ tu3u, therefore pu2, u3q is
a W1-critical edge. Set W2 “ tu0, u1, u2, u3u.

3. obsG0pu4,W2q “ tu0, u3u and obsG0pu3,W2q “ tu3u, therefore pu4, u3q is
a W2-critical edge. Set W3 “ tu0, u1, u2, u3, u4u.

4. obsG0pu6,W3q “ tu0, u4u and obsG0pu0,W3q “ tu0u, therefore pu6, u0q is
a W3-critical edge. Set W4 “ tu0, u1, u2, u3, u4, u6u.

5. There is no W4-critical edge. WCCG0pV
1
0q “W4 “ tu0, u1, u2, u3, u4, u6u.

Proof of Algorithm 1. We denote by Wi the value of W before iteration i` 1.
To establish the correction of the algorithm, we can prove by induction that Wi

satisfies V 1 Ď Wi Ď WCCGpV
1q at any step i. If i “ 0, W0 “ V 1, and both

relations trivially hold. Let i ě 0 and assume that V 1 Ď Wi Ď WCCGpV
1q and

there exists a Wi-critical edge pu, vq. We have Wi`1 “Wi Y tuu. The inclusion
V 1 Ď Wi`1 is obvious. By Lemma 6, u P WCCGpWiq. Therefore, by Lemma 4,
u P WCCGpV

1q, and thus, Wi`1 Ď WCCGpV
1q.

At the end of the algorithm, there is no W -critical edge, therefore W is
weakly control-closed by Lemma 6. Since V 1 ĎW Ď WCCGpV

1q, we have W “

WCCGpV
1q by definition of the weak control-closure (Definition 5). Termination

of the loop follows from the fact that W strictly increases and is upper-bounded
by WCCGpV

1q. l

In terms of complexity, [8] shows that, assuming that the degree of each
vertex is at most 2 (and thus that Op|V |q “ Op|E|q), the complexity of the
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algorithm is Op|V |3q. Indeed, the main loop of Algorithm 1 is run at most
Op|V |q times, and each loop body computes obs in Op|V |q for at most Op|V |q
edges.

Remark 5. We propose two optimizations for Algorithm 1:

(opt1) considers, at each step, all critical edges rather than only one (cf.
lines 4–5 of Algorithm 1), and adds their origins to W ;

(opt2) uses the weaker definition of critical edge suggested in Remark 4.

Example 9. We can replay Algorithm 1 using (opt1). This run corresponds
to the steps shown in Fig. 2. Initially, W0 “ V 10 “ tu1, u3u.

1. pu0, u1q, pu2, u3q, pu4, u3q areW0-critical edges. SetW1 “ tu0, u1, u2, u3, u4u.

2. pu6, u0q is a W1-critical edge. Set W2 “ tu0, u1, u2, u3, u4, u6u.

3. There is no W2-critical edge in G0. WCCG0pV
1
0q “W2.

Using (opt1), we can compute the weak control-closure of V 10 in G0 in only
2 iterations instead of 4. This run also demonstrates that the algorithm is
necessarily iterative: even when considering all V 10-critical edges in the first
step, u6 is not detected before the second step.

One benefit of formalizing Danicic’s algorithm in Coq is that it allows us to
extract a certified implementation of the algorithm in the OCaml programming
language. We will use such an extraction in our experiments (see Sect. 7).

6. Our New Algorithm: lDFS

6.1. Overview
A potential source of inefficiency in Danicic’s algorithm is the fact that no

information is shared between the iterations. The observable sets are recom-
puted at each iteration since the target set W changes. This is the reason why
(opt1) proposed in Remark 5 is interesting, because it allows to work longer
on the same target set and thus to reuse the observable sets.

We propose now to go even further: to store some information about the
paths in the graph and reuse it in the following iterations. The main idea of
the proposed algorithm is to label each processed node u with a node v P W
observable from u in the resulting set W being progressively constructed by the
algorithm. Labels survive through iterations and can be reused. As we will see,
the labeling is based on iterated reverse DFS traversals, explaining the name
we chose for this algorithm, lDFS.

Unlike Danicic’s algorithm, ours does not directly compute the weak control-
closure. It actually computes the set W “ V 1YWDGpV

1q. To obtain the closure
WCCGpV

1q “ W X RGpV
1q, W is then simply filtered to keep only vertices

reachable from V 1 (cf. Prop. 4a).
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In addition to speeding up the algorithm, the usage of labels brings another
benefit: at the end of the algorithm, for each node of G, its label indicates its
observable vertex in W (when it exists). Recall that since WDGpW q “ H (by
Property 3) at the end of the algorithm, each node in the graph has at most
one observable vertex in W .

One difficult point with this approach is that the labels of the nodes need
to be refreshed with care at each iteration so that they remain up-to-date.
Actually, lDFS does not ensure that at each iteration the label of each node is
an observable vertex from this node in W . This state is only ensured at the
beginning and at the end of the algorithm. Meanwhile, some nodes are still in
the worklist and some labels are wrong, but this does not prevent lDFS from
working.

6.2. Informal Description
lDFS is given a directed graph G and a subset of vertices V 1 in G. It

manipulates three objects: a set W which is equal to V 1 initially, which grows
during the algorithm and which at the end contains the result, V 1 YWDGpV

1q;
a partial mapping obs associating at most one label obsrus to each node u in
the graph, this label being a vertex in W reachable from this node (and which
is the observable from u in V 1 YWDGpV

1q at the end); a worklist L of nodes of
the closure not processed yet. Each iteration proceeds as follows. If the worklist
is not empty, a vertex u is extracted from it. All the vertices that transitively
precede vertex u in the graph and that are not hidden by vertices in W are
labeled with u. During the propagation, nodes that are good candidates to
be V 1-weakly deciding are accumulated. After the propagation, we filter them
so that only true V 1-weakly deciding nodes are kept. Each of these vertices is
associated to itself in obs, and is added to W and L. If L is not empty, a new
iteration begins. Otherwise, W is equal to V 1 Y WDGpV

1q and obs associates
each node in the graph with its observable vertex in the closure (when it exists).

Note that each iteration consists in two steps: a complete backward propa-
gation in the graph, which collects potential V 1-weakly deciding vertices, and a
filtering step. The set of predecessors of the propagated node are thus filtered
twice: once during the propagation and once afterwards. We can try to filter as
much as possible in the first step or, at the opposite, to avoid filtering during
the first step and do all the work in the second step. For the sake of simplicity
of mechanized proof, the version we chose does only simple filtering during the
first step. We accumulate in our candidate V 1-weakly deciding nodes all nodes
that have at least two successors and a label different from the one currently
propagated, and we eliminate the false positives in the second step, once the
propagation is done.

Example 10. Let us use our running example (cf. Fig. 1) to illustrate lDFS.
The successive steps are represented in Fig. 7. In the different figures, nodes
in W already processed (that is, in W zL) are represented using a solid double
circle ( ui ), while nodes in W not already processed (that is, still in worklist L)
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Figure 7: lDFS applied on G “ G0 and V 1 “ V 10 “ tu1, u3u

are represented using a dashed double circle ( ui ). A label uj next to a node ui

( ui uj ) means that uj is associated to ui, i.e. obsruis “ uj . Let us detail the
first steps of the algorithm. Initially, W0 “ V 10 “ tu1, u3u (cf. Fig. 1).

1. u1 is selected and is propagated backwards from u1 (cf. Fig. 7a). We find
no candidate, the first iteration is finished, W1 “ tu1, u3u.

2. u3 is selected and is propagated backwards from u3 (cf. Fig. 7b). u0,
u2, u4 and u6 are candidates. The successors of u2, u4 and u6 (u3 and
u4, u3 and u5, and u0 and u4, respectively) are all labeled with u3, thus
those three nodes are filtered out. Only u0, whose successor u1 is labeled
with u1 ‰ u3, is confirmed as a V 10-weakly deciding node. It is stored in
worklist L and its label is set to u0. Now W2 “ tu0, u1, u3u.

3-6. u0, u2, u4 and u6 are processed similarly (cf. Fig. 7c, 7d, 7e, 7f). At the
end, we get W6 “ tu0, u1, u2, u3, u4, u6u “ V 10 YWDGpV

1
0q.

As all nodes in W6 are already reachable from V 10 , W6 “ WCCGpV
1
0q.

We can make two remarks on this example. First, as we can see in Fig. 7f,
each node is labeled with its observable in W at the end of the algorithm.
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Input: G “ pV,Eq a directed graph
obs : MappV, V q associating at most one label to each vertex of
G
u, v P V vertices in G

Output: b : bool
Ensures: b “ true ðñ Du1, pu, u1q P E ^ u1 P obs^ obsru1s ‰ v

Algorithm 2: Contract of confirm pG, obs, u, vq

Second, in Fig. 7e, we have the case of a node labeled with an obsolete label,
since u5 is labeled u4 while its only observable node in W is u6.

6.3. Detailed Description
lDFS is split into three functions:

• confirm is used to check if a given node is V 1-weakly deciding by trying
to find a successor with a different label from its own label given as an
argument.

• propagate takes a vertex and propagates backwards a label over its pre-
decessors. It returns a set of candidate V 1-weakly-deciding nodes.

• main calls propagate on a node of the closure not yet processed, gets
candidate V 1-weakly deciding nodes, calls confirm to keep only true V 1-
weakly deciding nodes, adds them to the closure and updates their labels,
and loops until no more V 1-weakly deciding nodes are found.

Function confirm. A call to confirmpG, obs, u, vq takes four arguments: a graph
G, a labeling of graph vertices obs, and two vertices u and v. It returns true if
and only if at least one successor u1 of u in G has a label in obs different from v,
which can be written u1 P obs^obsru1s ‰ v. This simple function is left abstract
here for lack of space. The Why3 formalization [14] contains a complete proof.
Its contract is given as Algorithm 2.

Function propagate. A call to propagatepG,W, obs, u, vq takes five arguments:
a graph G, a subset W of nodes of G, a labeling of nodes obs, and two vertices u
and v. It traverses G backwards from u (stopping at nodes in W ) and updates
obs so that all predecessors not hidden by vertices in W have label v at the end
of the function. It returns a set of potential V 1-weakly deciding vertices. Again,
this function is left abstract here but is proved in the Why3 development [14].
Its contract is given as Algorithm 3.

propagate requires that, when called, only u is labeled with v (P1) and
that u P W (P2). It ensures that, after the call, all the predecessors of u not
hidden by a vertex in W are labeled v (Q1), the labels of the other nodes are
unchanged (Q2), C contains only predecessors of u but not u itself (Q3), and
all the predecessors that had a label before the call (different from v due to P1)
and that have at least two successors are in C (Q4).
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Input: G “ pV,Eq, W Ď V , obs : MappV, V q, u, v P V
Output: obs1, a new version of obs

C Ď V containing candidate W -weakly deciding nodes
Requires: pP1q @z P V, obsrzs “ v ðñ z “ u
Requires: pP2q u PW

Ensures: pQ1q @z P V, z
W -path
ÝÝÝÝÝÑ u ùñ obs1rzs “ v

Ensures: pQ2q @z P V, pz
W -path
ÝÝÝÝÝÑ uq ùñ obs1rzs “ obsrzs

Ensures: pQ3q @z P C, z ‰ u^ z
W -path
ÝÝÝÝÝÑ u

Ensures: pQ4q @z P V, z ‰ u^ z
W -path
ÝÝÝÝÝÑ u^ z P obs

^| succGpzq| ą 1 ùñ z P C
Algorithm 3: Contract of propagate pG,W, obs, u, vq

Function main. The main function of our algorithm is given as Algorithm 4.
It takes two arguments: a graph G and a subset of vertices V 1. It returns
V 1 YWDGpV

1q and a labeling associating to each node its observable vertex in
this set if it exists. It maintains a worklist L of vertices that must be processed.
L is initially set to V 1, and their labels to themselves (line 2). If L is not empty,
a node u is taken from it and propagatepG,W, obs, u, uq is called (lines 3–5). It
returns a set of candidate V 1-weakly deciding nodes (C) that are not added to
W yet. They are first filtered using confirm (lines 6–10). The confirmed nodes
(∆) are then added to W and to L, and the label of each of them is updated to
itself (line 11). The iterations stop when L is empty (cf. lines 3, 13).

6.4. Proof of Correction of lDFS
We opted for Why3 instead of Coq for this proof to take advantage of Why3’s

automation. Indeed, most of the goals could be discharged in less than a minute
using Alt-Ergo, CVC4, Z3 and E. Some of them still needed to be proved man-
ually in Coq, resulting in 330 lines of Coq proof. The Why3 development [14]
focuses on the proof of the algorithm, not on the concepts presented in Sect. 3
and 4. Most of the concepts are proved, one of them is assumed in Why3 but
was proved in Coq previously. Due to lack of space, we detail here only the
main invariants necessary to prove main (cf. Algorithm 4). The proofs of I1,
I2, I3, I4 are rather simple. while those of I5 and I6 are more complex.

I1 states that each node in W has itself as a label. It is true initially for all
nodes in V 1 and is preserved by the updates.

I2 states that all labels are in W . This is true initially since all labels are
in V 1. The preservation is verified, since all updates are realized using labels in
W .

I3 states that labels in L have not been already propagated. Given a node
y in L, y is the only node whose label is y. It is true initially since every vertex
in V 1 has itself as a label. After an update, the new nodes obey the same rule,
so I3 is preserved.

I4 states that if label z is associated to a node y then there exists a path

19



Input: G “ pV,Eq, a directed graph
V 1 Ď V , the input subset

Output: W Ď V , the main result
obs : MappV, V q, the final labeling

Variables: L Ď V , a worklist of nodes to be treated
C Ď V , a set of candidate V 1-weakly deciding vertices
∆ Ď V , a set of new V 1-weakly deciding vertices

Ensures: W “ V 1 YWDGpV
1q

Ensures: @u, v P V, obsrus “ v ðñ v P obsGpu,W q
1 begin
2 W Ð V 1 ; obs|V 1 Ð idV 1 ; LÐ V 1 // initialization
3 while L ‰ H do // main loop

// invariant: I1 ^ I2 ^ I3 ^ I4 ^ I5 ^ I6
// variant: cardinalpLY V zW)

4 uÐ choosepLq ; LÐ Lztuu
5 C Ð propagate pG,W, obs, u, uq // propagation
6 ∆ ÐH

7 while C ‰ H do // filtering
8 v Ð choosepCq ; C Ð Cztvu
9 if confirm pG, obs, v, uq “ true then ∆ Ð ∆Y tvu

10 end
11 W ÐW Y∆ ; obs|∆ Ð id∆ ; LÐ LY∆ // update
12 end

// assert: A1 ^A2 ^A3 ^A4
13 return pW, obsq
14 end

pI1q @z PW, obsrzs “ z

pI2q @y, z P V, obsrys “ z ùñ z PW

pI3q @y, z P V, obsrys “ z ^ z P L ùñ y “ z

pI4q @y, z P V, obsrys “ z ùñ y
path
ÝÝÝÑ z

pI5q V
1 ĎW Ď V 1 YWDGpV

1q

pI6q @y, z, z
1 P V, y

W -disjoint
ÝÝÝÝÝÝÝÑ z ^ obsrzs “ z1 ^ z1 R L ùñ obsrys “ z1

pA1q @u, v P V, v P obsGpu,W q ùñ obsrus “ v

pA2q WDGpW q “ H

pA3q V
1 ĎW Ď V 1 YWDGpV

1q

pA4q W “ V 1 YWDGpV
1q

Algorithm 4: Function main with annotations
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between y and z. Initially, there exist trivial paths from each node in V 1 to
itself. When obs is updated, there exists a W -path, thus in particular a path.

I5 states that W remains between V 1 and V 1YWDGpV
1q during the execution

of the algorithm. The first part V 1 Ď W is easy to prove, because it is true
initially and W is growing. For the second part, we need to prove that after
the filtering, ∆ Ď V 1 YWDGpV

1q. For that, it is sufficient to prove that ∆ Ď

WDGpW q thanks to Lemma 4. Let v be a node in ∆. Since ∆ Ď C, we know that
v R W and u P obsGpv,W q. Moreover, we have confirmpG, obs, v, uq “ true,
i.e. v has a successor v1 such that v1 P obs, hence v can reach W by I2 and I4,
and obsrv1s ‰ u, hence u R obsGpv

1,W q. We can apply Lemma 5 and deduce
that v P WDGpW q.

I6 is the most complicated invariant. I6 states that if there is a path between
two vertices y and z that does not intersect W , and z has a label already
processed, then y and z have the same label. Let us give a sketch of the proof
of preservation of I6 after an iteration of the main loop. Let us note obs1 the
map at the end of the iteration. Let y, z, z1 P V such that y pWY∆q-disjoint

ÝÝÝÝÝÝÝÝÝÝÑ z,
obs1rzs “ z1 and z1 R pLztuuq Y∆. Let us show that obs1rys “ z1. First, observe
that neither y nor z can be in ∆. Indeed, if z is in ∆, obs1rzs “ z per line 11 of
Algorithm 4, thus z1 “ z, whence z1 is in ∆, which is contradictory. Likewise, if
y is in ∆, the pW Y∆q-disjoint path from y to z is empty, thus z “ y, whence
z is in ∆. By the same reasoning we have just followed, we get a contradiction.
We examine four cases depending on whether the conditions z W -path

ÝÝÝÝÝÑ u pH1q

and y
W -path
ÝÝÝÝÝÑ u pH2q hold.

• H1 ^H2 : Both z and y were given the label u during the last iteration,
thus obs1rzs “ obs1rys “ u as expected.

• H1 ^ p H2q : This case is impossible, since y pWY∆q-disjoint
ÝÝÝÝÝÝÝÝÝÝÑ z.

• p H1q^p H2q : Both z and y have the same label as before the iteration.
We can therefore conclude by I6 at the beginning of the iteration.

• p H1q ^ H2 :. This is the only complicated case. We show that it is
contradictory. For that, we introduce v1 as the last vertex on the pWY∆q-
disjoint path connecting y and z which is also the origin of a W -path to
u, and v2 as its successor on this pW Y ∆q-disjoint path. We can show
that v1 P ∆, which contradicts the fact that it lives on a pW Y∆q-disjoint
path.

We can now prove the assertions A1, A2, A3 and A4 at the end of main.
A1 is a direct consequence of I6 since at the end L “ H. A1 implies that each
vertex u has at most one observable in W : obsrus if u P obs. A W -weakly
deciding vertex would have at least two observables, thus WDGpW q “ H. A3 is
a direct consequence of I5. A4 can be deduced from A2 and Lemma 4 applied to
A3. This proves that at the end W “ V 1 YWDGpV

1q. To prove the other post-
condition, we must prove that if there are two nodes u, v such that obsrus “ v,
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then v P obsGpu,W q. By I4, there is a path from u to v. Let w be the first
element in W on this path. Then u

W -path
ÝÝÝÝÝÑ w. By A1, obsrus “ w. Thus,

w “ v and u
W -path
ÝÝÝÝÝÑ v. This proves the second post-condition. l

7. Experiments

In this section, we compare experimentally lDFS, presented in Sect. 6, and
Danicic’s algorithm presented in Sect. 5, to measure experimentally whether our
proposition is, as we claim, optimized with respect to the latter. In addition to
the comparison of both algorithms, we also compare several variants of Danicic’s
algorithm with each other: the extraction of the Coq formalization of Danicic’s
algorithm mentioned in Sect. 5 and the main implementation in OCaml, possibly
improved by the two optimizations (opt1) and (opt2) mentioned in Remark 5,
and that we recall below:

(opt1) consists in detecting as many critical edges as possible during each
iteration;

(opt2) consists in weakening the definition of critical edge.

More precisely, we want to answer the following research questions:

(RQ1) How the OCaml hand-written implementations of Danicic’s algo-
rithm compare with the extraction of the Coq certified version?

(RQ2) What are the impacts of (opt1) and (opt2) on the performance of
Danicic’s algorithm?

(RQ3) Does lDFS outperform the implementations of Danicic’s algorithm?

First, Sect. 7.1 presents the implementations that we used in the experi-
ments. Next, Sect. 7.2 describes the testing procedure. The results obtained
are presented and analyzed in Sect. 7.3.

7.1. Implementations
We make general remarks before presenting in detail each implementation.

General remarks. All the implementations are written in the same language:
OCaml. The only odd case is the Coq extraction which is not manually written
in OCaml. However, the version that is compiled and run is the extraction
into OCaml, thus it can also be seen as OCaml code. Admittedly, since the
extraction into OCaml produces more complex code than what we would write
directly in OCaml, this penalizes the Coq extraction with respect to the other
implementations.

All hand-written OCaml implementations, i.e. all but the Coq extraction,
are written using the same generic graph library called OCamlgraph (version
1.8.8) [13]. This library provides convenient functions to access the predeces-
sors or the successors of a given node and to traverse the whole graph. It also
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comes with high-level operations, such as cloning of a graph, reachability tests
and dataflow analyses. This library allows to write the implementations in a
concise way, which makes them relatively close to the high-level descriptions
given in this article. OCamlgraph allows to choose between multiple graph im-
plementations: imperative, i.e. mutable, or persistent, i.e. immutable; directed
or undirected edges; standard (every vertex can easily access its successors, but
not its predecessors) or bidirectional (every vertex can easily access both its suc-
cessors and its predecessors). Initially, we used a standard directed imperative
implementation.1 But since both algorithms are based on backward traversal,
we switched to a bidirectional directed imperative implementation, that takes
more memory space, but in which accesses to predecessors are claimed to be in
constant time instead of being linearly dependent on the size of the graph.

Another fact that we must take into account is that Danicic’s algorithm and
lDFS do not compute the same set. Indeed, recall that Danicic’s algorithm
computes from an initial subset V 1 its weak control-closure WCCGpV

1q “ V 1 Y
pWDGpV

1q X RGpV
1qq, while lDFS computes the bigger set V 1 YWDGpV

1q. To
make the comparison fairer, we ensure that the implementation of lDFS also
computes the weak control-closure, by adding to it a filtering step at the end
that preserves only the vertices reachable from the initial subset V 1, as suggested
in Sect. 6.

In all the implementations of Danicic’s algorithm, including the Coq extrac-
tion, the computation of the observable vertices is performed as described in [8].
Given a graph G, a subset of vertices V 1 and a node u in G, the set of observable
vertices from u in V 1 is computed by removing from G all the outgoing edges
from nodes in V 1 and selecting all the nodes in V 1 that are reachable from u in
the resulting graph H. Removing the edges that have their sources in V 1 guar-
antees that the nodes in V 1 that are reachable from u in H are first-reachable
from u in V 1 in graph G, i.e. are observable from u in V 1 in graph G.

The Coq extraction. The first implementation that we consider is the Coq ex-
traction of Danicic’s algorithm. Recall that it is the extraction of the imple-
mentation in Coq of Danicic’s algorithm based on a prototype graph library
presented in [17]. It is a particularly naive implementation. Indeed, as dis-
cussed in Sect. 6, the main weakness of Danicic’s algorithm is the absence of
propagation of information between iterations, and the Coq extraction, as any
implementation of Danicic’s algorithm, inherits this weakness. What makes it
really naive is that it propagates nearly no intermediate information even inside
each iteration. For example, during an iteration, the calculations of the observ-
able sets are independent while they could take advantage of each other. It is
not completely naive, though, since it implements (opt1) (but not (opt2)).

OCaml implementations of Danicic’s algorithm. We implemented Danicic’s al-
gorithm in OCaml, using OCamlgraph. This implementation is much smarter

1The experimental results of [15] were obtained using that graph representation.
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than the Coq extraction, taking advantage of caching in several places. For
example, we compute once at the beginning of the algorithm the set of nodes
reachable from V 1 and use this set for every reachability check needed later in
the algorithm. Moreover, at the beginning of an iteration, we compute simulta-
neously for every node in G its observable set in W using the helper functions
provided by OCamlgraph to write a dataflow analysis. This analysis computes
the observable set of a node from the observable sets of its successors, which
allows to compute the observable information for the whole graph G rather
efficiently.

There are four variants of this implementation: without the two optimiza-
tions, with (opt1) only, with (opt2) only, and with both.

OCaml implementation of lDFS. We implemented lDFS directly in OCaml,
using OCamlgraph, following closely the presentation of Section 6. Contrary to
the implementations of Danicic’s algorithm, this implementation uses only the
low-level functions of OCamlgraph such as the ones iterating over the successors
and the predecessors of a vertex.

7.2. Description of the Testing Procedure
This section presents the methodology we adopted for the experimentation.
The implementations are run on graphs that are randomly generated using

OCamlgraph. More precisely, we use the function Rand.graph of OCamlgraph
that takes as parameters a number v of vertices and a number e of edges and
generates a random graph with v vertices and e edges. For all the experiments,
we set the number of edges to twice the number of vertices. The initial set V 1
consists in three vertices randomly taken in the graph. These choices are not
made to get realistic graphs, but to get cases where computing weak control-
closure is often not trivial, i.e. cases where the weak control-closure is often not
reduced to the initial subset V 1. We informally confirmed that fact during our
experiments, since in most of the cases the weak control-closure is not reduced
to the initial V 1. Moreover, in these cases, the resulting closure nearly always
represents a significant part of the set of vertices of the graph. The exact choice
of 2 as the ratio between the number of vertices and the number of edges is
discussed at the end of Section 7.3.

Before even running the first experiments, we wanted to obtain some guaran-
tees that our implementations are correct. Indeed, among our implementations,
only the Coq extraction is certified. For that, we ran all of them on random
small graphs (typically 30 nodes, and thus 60 edges) and checked that they all
computed the same weak control-closure, and in particular the same results as
the certified Coq extraction. Moreover, during the experiments, when multiple
implementations were run on the same graph, we systematically checked that
the computed results were identical. This does not prove that all the implemen-
tations are correct, but greatly increases our confidence that they are.

The experimentation consisted in running each implementation on hundreds
of random graphs. The parameters used vary on the implementations. For
expensive implementations, such as the Coq extraction, the graphs contain a
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few dozens of nodes and the step between each graph size tested is 10. For the
most efficient implementations, the graphs contain up to hundreds of thousands
of nodes and the step used is 10 000. The exact parameters used are given in
Sect. 7.3. For each implementation and each size of graph tested, we run the
implementation on 10 graphs of this size. As discussed above, for the majority
of the 10 graphs, the weak control-closure is rather large. We decided to ig-
nore the cases in which the weak control-closure is equal to the initial V 1 and
thus contains only three vertices. Indeed, in these cases, the execution time is
insignificant. The result for that implementation and that size of graph is the
average of the running times in the cases where the weak control-closure is not
trivial.

In terms of hardware, experiments have been performed on an Intel Core i7
4810MQ with 8 cores at 2.80 GHz and 16 GB RAM.

7.3. Results
This section presents the main results of the experiments.
Implementations are compared pairwise. In each diagram, the ordinate is

the execution time in seconds and the abscissa is the number v “ |V | of nodes
in the graph. Recall that the number of edges e is equal to 2ˆ v, except in the
last experiment described below. For the sake of clarity, we adopt the following
convention. In each diagram, the implementation that is expected to be slower
is represented using red triangles, while the implementation that is expected to
be faster is represented using blue plus signs.

Comparison between the Coq Extraction and Danicic Implementation. The first
diagram that we present compares the Coq extraction and the implementation
of Danicic’s algorithm without any optimization. As discussed in Sect. 7.1, the
Coq extraction implements (opt1), which gives it an advantage over the imple-
mentation of Danicic’s algorithm. However, the Coq extraction is written rather
naively, in Coq, and using a prototype graph library, which has probably a much
bigger negative impact than (opt1) has a positive impact on the performance.

Figure 8 shows the results. The Coq extraction was run on graphs of sizes
equal to multiples of 10 between 10 and 150. Danicic’s implementation was run
on graphs of sizes equal to multiples of 10 between 10 and 1 600.

We observe that the Coq extraction explodes for barely more than 100 nodes,
while the OCaml implementation can handle graphs with more than 1 000 nodes.
This answers (RQ1). As expected, the Coq extraction is particularly inefficient,
while the implementation of Danicic’s algorithm can handle some non-trivial
graphs.

Impact of the Optimizations on Danicic’s Implementation. We study the impact
of (opt1) and (opt2) on the performance of the implementation of Danicic’s
algorithm. Since the implementation shares intermediate results in each itera-
tion, starting a new iteration should be costly in comparison to performing more
work in the same iteration. Thus (opt1) is expected to be really interesting.
The interest of (opt2) is less clear.
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Figure 8: Comparison between the Coq extraction and the implementation in OCaml of
Danicic’s algorithm
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Figure 9: Comparison between two OCaml implementations of Danicic’s algorithm, with and
without (opt1)
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Figure 10: Comparison between two OCaml implementations of Danicic’s algorithm, with and
without (opt2)

Figure 9 shows the comparison of the implementation without any optimiza-
tion and with (opt1). The implementation without any optimization was run
on graphs of sizes equal to multiples of 10 between 10 and and 1 600. The im-
plementation with (opt1) was run on graphs of sizes equal to multiples of 100
between 100 and 10 000.

This partially answers (RQ2). As expected, (opt1) significantly improves
the performance of the implementation. The optimized variant can handle
graphs with 10 000 nodes that are five times larger than the graphs on which
the unoptimized variant reaches its limits.

Figures 10 and 11 show the impact of (opt2), without and with (opt1)
respectively. In Figure 10, both algorithms were run of graphs of sizes equal to
multiples of 10 between 10 and 1 600. In Figure 11, both algorithms were run
of graphs of sizes equal to multiples of 100 between 100 and 10 000.

In both cases, the impact of (opt2) is negligible, completing the answer to
(RQ2). In combination with (opt1), though, it seems that, for large graphs
of at least 6 000 nodes, the version with both optimizations is slightly faster
than the version with (opt1) only. This can be explained as follows. Alone,
(opt2) is not a great improvement, since its impact is mainly to change the
order in which the nodes are detected. However, in combination with (opt1), it
allows to detect more nodes at each iteration, and thus to potentially reduce the
number of iterations, resulting in the slight improvement observed in Figure 11.

Comparison between Danicic’s algorithm and lDFS. The comparison between
the implementation of Danicic’s algorithm and the implementation of lDFS is
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Figure 11: Comparison between two OCaml implementations of Danicic’s algorithm, one with
(opt1) and one with (opt1) and (opt2)

the main result of the experiments. We choose the OCaml implementation with
(opt1) and (opt2) as implementation of Danicic’s algorithm.

Figure 12 shows the results. The implementation of Danicic’s algorithm was
run on graphs of sizes equal to multiples of 100 between 100 and 10 000, while
the implementation of lDFS was run on graphs of sizes equal to multiples of 100
between 100 and 30 000.

As already discussed above, Danicic’s algorithm with (opt1) and (opt2)
can handle graphs with 10 000 nodes. But for the largest graphs, it takes 40 s
to execute. There is no comparison with lDFS that takes less than 1 s even for
graphs with 30 000 nodes. This allows to answer (RQ3) positively.

Impact of the Number of Edges on the Experiments. The last experiment that
we present does not compare another implementation. It was performed to
give confidence in the experimentation. Indeed, the graphs that are used in
the experiments are randomly generated by OCamlgraph with twice as many
edges as vertices. The results obtained in this setting may not be representative
of the general case. For example, the random generator of OCamlgraph may
introduce some bias in the results. We did not check whether it is the case.
But at least we wanted to question the choice of 2 as the ratio between the
number of edges e and the number of vertices v that seems rather arbitrary.
Actually, it is somewhat arbitrary, since it has no precise meaning, but was
chosen intuitively so that most of the generated graphs give a rather large weak
control-closure. To check that the results are not completely different with fewer
edges, we reproduced two experiments with the smaller ratio e{v “ 1.5.

Figure 13 shows the results for the OCaml implementation of Danicic’s al-
gorithm. The implementation was run on graphs with e{v “ 2 of sizes equal
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Figure 12: Comparison between the OCaml implementation of Danicic’s algorithm with both
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Figure 13: The implementation of Danicic’s algorithm on graphs with e{v “ 2 and e{v “ 1.5
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Figure 14: The OCaml implementation of lDFS on graphs with e{v “ 2 and e{v “ 1.5

to multiples of 10 between 10 and 1 600, and on graphs with e{v “ 1.5 of sizes
equal to multiples of 10 between 10 and 3 800. Figure 14 shows the results for
lDFS. This implementation was run on graphs of sizes equal to multiples of
10 000 between 10 000 and 500 000, first with e{v “ 2 and then with e{v “ 1.5.

For both implementations, the running times are noticeably smaller for the
graphs with fewer edges. For instance, regarding the implementation of Dani-
cic’s algorithm, graphs with around 4 000 nodes and a ratio e{v “ 1.5 are
processed in approximatively the same time as graphs with around 1 500 nodes
and a ratio e{v “ 2.

However, the trends that are revealed are rather similar for both values of
e{v. Regarding the implementation of Danicic’s algorithm, whether e{v is equal
to 2 or 1.5, the implementation reaches its limits for graphs with a few thousand
nodes. More importantly, in both cases, the implementation of lDFS is much
more efficient than the implementation of Danicic’s algorithm.

Summary. The main result of the experiments is the comparison of Danicic’s
and lDFS that confirms our expectations that lDFS is faster than Danicic’s
algorithm. Actually, the experimental results show that the difference in terms
of running times between both algorithms is substantial.

Another outcome of the experiments is the analysis of the impact of the two
optimizations of Danicic’s algorithm. While (opt1) (detecting at each iteration
all the critical edges instead of at most one) is always an interesting optimization,
(opt2) (relaxing the definition of critical edge) is rarely interesting.
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8. Related Work and Conclusion

8.1. Related Work
The last decades have seen various definitions of control dependence given

for larger and larger classes of programs [1, 2, 3, 4, 5, 6]. To consider programs
with exceptions and potentially infinite loops, Ranganath et al. [18] and then
Amtoft [19] introduced non-termination sensitive and non-termination insen-
sitive control dependence on arbitrary program structures. Danicic et al. [8]
further generalized control dependence to arbitrary directed graphs, by defining
weak and strong control-closure, which subsume the previous non-termination
insensitive and sensitive control dependence relations. They also gave a control
dependence semantics in terms of projections of paths in the graph, allowing to
define new control dependence relations as long as they are compatible with it.
This elegant framework was reused for slicing extended finite state machines [20]
and probabilistic programs [21]. In both works, an unverified algorithm comput-
ing weak control-closure, working differently from ours (more in a breadth-first
search way), was designed and integrated in a rather efficient slicing algorithm.

On CFGs with a unique exit point, the standard definition of control depen-
dence in terms of post-dominance can be used. Algorithms computing control
dependence can thus take advantage of the efficient algorithms computing the
dominance relation [22, 23, 24, 25]. Some of these algorithms are even certified
[26], or written with certification in mind [27].

Mechanized verification of control dependence computation was done in for-
malizations of program slicing. Wasserrab [16] formalized language-independent
slicing in Isabelle/HOL, but did not provide an algorithm. Blazy et al. [28] and
our previous work [29] formalized control dependence in Coq, respectively, for
an intermediate language of the CompCert C compiler [30] and on a WHILE
language with possible errors.

8.2. Conclusion and Future Work
Danicic et al. claim that weak control-closure subsumes all other non-

termination insensitive variants. It was thus a natural candidate for mechanized
formalization. We used the Coq proof assistant to formalize it. A certified im-
plementation of the algorithm can be extracted from the Coq development.
During formalization in Coq of the algorithm and its proof, we have detected
an inconsistency in a secondary proof, which highlights how useful proof assis-
tants are to detect otherwise overlooked cases. To the best of our knowledge, the
present work is the first mechanized formalization of weak control-closure and
of an algorithm to compute it. In addition to formalizing Danicic’s algorithm in
Coq, we have designed, formalized and proved a new one, that we name lDFS.
Experiments comparing multiple implementations of Danicic’s algorithm and
lDFS show that lDFS is faster than Danicic’s algorithm, even when the latter
benefits of optimizations.

Short-term future work includes considering further optimizations. In par-
ticular, we can borrow some ideas from Amtoft et al.’s algorithm [20, 21], since
it is also based on Danicic et al.’s work. Long-term future work is to build
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a verified generic slicer. Generic control dependence is a first step towards it.
Adding data dependence is the next step in this direction.
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Laurence, A unifying theory of control dependence and its application to
arbitrary program structures, Theor. Comput. Sci. 412 (49) (2011) 6809–
6842.

[9] The Coq Development Team, The Coq proof assistant, v8.6, http://coq.
inria.fr/ (2017).
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