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My grandmother’s recipe
mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat?
add eggs to the first mixture
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get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them
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A recipe from the Internet

(a) Cream Puff Recipe

?

(b) Pastry Cream Recipe
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Program Slicing vs. Recipe Extraction

• Program slicing ' extraction of a sub-recipe
• Extraction of the important steps w.r.t. a given goal

• Properties considered in this work:
• Interpretation of errors
• Handling of complex structures
• Efficient
• Provably correct
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Outline

Context: Static Backward Slicing

Slicing in the Presence of Errors

An Algorithm for Arbitrary Control Dependence

An Optimized Algorithm

Conclusion
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Definition

Static backward slicing (introduced by Weiser in 1981)
• simplifies a given program p but preserves the behavior w.r.t.
a point of interest C (slicing criterion, typically a statement)
• removes irrelevant statements that do not impact C
• produces a simplified program q (slice)

program p

slicing criterion C
slice qsimplifysimplify
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Example: test if b divides a (a, b > 0)

1 : quo = 0;

2 : r = a;

3 : while (b <= r) {

4 : quo = quo + 1;

5 : r = r - b;

}

6 : if (r != 0) {

7 : res = 0;

} else {

8 : res = 1;

}

eu
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n
of

a
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b
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e
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m
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er
eq
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o
0
?

Original program p

?

Slice q w.r.t. line 8

control

data

• Goal: preserve the behaviour of p w.r.t. line 8
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Motivation

Let q be a slice of p.
• If an error is found in q, is it also present in p ?
• If there are no errors in q, what can be said about p ?
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Classic soundness property
Let p a program without failing instructions and q a slice of p.

Theorem (Classic soundness property, [Weiser, 1981] [Reps et al, 1989])
Let σ be an input state of p. Suppose that p halts on σ. Then q
halts on σ and the executions of p and q on σ agree after each
statement preserved in the slice on the variables that appear in this
statement.

Formalized with a trajectory-based semantics
as an equality of projections

Application to verification
Does this result also hold in the presence of errors and non-
termination ?
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Modeling

• WHILE language: skip, x:= e, if, while, assert
• Assertions make runtime errors explicit
• Assertions protect all statements that may cause a runtime
error

assert (l: N != 0);

l1: x = k/N;

assert (l: k < N);

l1: x = a[k];
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Dependence-based slicing
Control dependence Data dependence

if (l: b) {
...
lthen: stmt;
...

} else {
...
lelse: stmt;
...

}

while (l: b) {
...
lbody : stmt;
...

}

ldef : x = e; // def
... // x not assigned
... // x not assigned
... // x not assigned
luse: y = ... x ...; // use

Assertion dependence
assert (l: N != 0);

l1: x = k/N;

assert (l: k < N);

l1: x = a[k];

• Dependence-based slice q of p w.r.t. C : all statements on
which one of the statements of C is (directly or indirectly)
dependent
• Formally: q = {l ∈ p | l →∗ l ′, l ′ ∈ C},
where −→= ctrl−−→∪ data−−→∪ assert−−−→
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Case 1: same error

  

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 w h i l e ( i < N){
5 a s s e r t ( i < N) ;
6 s1 = s1 + a [ i ] ;
7 i = i + k ;
8 }
9 j = 0 ;

10 a s s e r t ( k != 0 ) ;
11 l a s t = N/k ;
12 w h i l e ( j <= l a s t ){
13 a s s e r t ( k∗ j < N) ;
14 s2 = s2 + a [ k∗ j ] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0 ) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0 ) ;
20 avg2 = s2 / N;
21 i f ( avg1 == avg2 )
22 p r i n t ( " equa l " ) ;

Original program p

  

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 wh i l e ( i < N){
5 a s s e r t ( i < N) ;
6 s1 = s1 + a [ i ] ;
7 i = i + k ;
8 }
9 j = 0 ;
10 a s s e r t ( k != 0 ) ;
11 l a s t = N/k ;
12 w h i l e ( j <= l a s t ){
13 a s s e r t ( k∗ j < N) ;
14 s2 = s2 + a [ k∗ j ] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0 ) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0 ) ;
20 avg2 = s2 / N;
21 i f ( avg1 == avg2 )
22 p r i n t (" equa l " ) ;

Slice q w.r.t. line 20

Execution for test input: N = 2, k = 4
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Case 2: error hidden by another error (not preserved)

  

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 w h i l e ( i < N){
5 a s s e r t ( i < N) ;
6 s1 = s1 + a [ i ] ;
7 i = i + k ;
8 }
9 j = 0 ;

10 a s s e r t ( k != 0 ) ;
11 l a s t = N/k ;
12 w h i l e ( j <= l a s t ){
13 a s s e r t ( k∗ j < N) ;
14 s2 = s2 + a [ k∗ j ] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0 ) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0 ) ;
20 avg2 = s2 / N;
21 i f ( avg1 == avg2 )
22 p r i n t ( " equa l " ) ;

Original program p

  

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 w h i l e ( i < N){
5 a s s e r t ( i < N) ;
6 s1 = s1 + a [ i ] ;
7 i = i + k ;
8 }
9 j = 0 ;
10 a s s e r t ( k != 0 ) ;
11 l a s t = N/k ;
12 wh i l e ( j <= l a s t ){
13 a s s e r t ( k∗ j < N) ;
14 s2 = s2 + a [ k∗ j ] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0 ) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0 ) ;
20 avg2 = s2 / N;
21 i f ( avg1 == avg2 )
22 p r i n t (" equa l " ) ;

Slice q w.r.t. line 18

Execution for test input: N = 0, k = 0
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Case 3: error hidden by a loop (not preserved)

		

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 wh i l e ( i < N){
5 a s s e r t ( i < N) ;
6 s1 = s1 + a [ i ] ;
7 i = i + k ;
8 }
9 j = 0 ;

10 a s s e r t ( k != 0 ) ;
11 l a s t = N/k ;
12 w h i l e ( j <= l a s t ){
13 a s s e r t ( k∗ j < N) ;
14 s2 = s2 + a [ k∗ j ] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0 ) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0 ) ;
20 avg2 = s2 / N;
21 i f ( avg1 == avg2 )
22 p r i n t ( " equa l " ) ;

Original program p

  

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 wh i l e ( i < N){
5 a s s e r t ( i < N) ;
6 s1 = s1 + a [ i ] ;
7 i = i + k ;
8 }
9 j = 0 ;
10 a s s e r t ( k != 0 ) ;
11 l a s t = N/k ;
12 w h i l e ( j <= l a s t ){
13 a s s e r t ( k∗ j < N) ;
14 s2 = s2 + a [ k∗ j ] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0 ) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0 ) ;
20 avg2 = s2 / N;
21 i f ( avg1 == avg2 )
22 p r i n t (" equa l " ) ;

Slice q w.r.t. line 20

Execution for test input: N = 4, k = 0
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• Equality of projections does not hold in general, due to:
• Non-termination [Ball et al.,1993] [Ranganath et al., 2007] [Amtoft, 2008]
• Errors [Harman et al., 1995] [Allen et al., 2003] [Rival, 2005]

• Three possible directions:
• change the semantics [Cartwright et al., 1989] [Giacobazzi et al., 2003]

[Nestra, 2009] [Barraclough et al., 2010]
Extend the classic soundness property
Consider non-existing trajectories

• add more dependencies [Ranganath et al., 2007]

Extend the classic soundness property
Bigger slices
All loops and assertions preceding the criterion will be systematically
preserved

• keep same kind of dependencies [Amtoft, 2008]

Keep slices small
B A weaker soundness property required
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• Equality of projections does not hold in general, due to:
• Non-termination [Ball et al.,1993] [Ranganath et al., 2007] [Amtoft, 2008]
• Errors [Harman et al., 1995] [Allen et al., 2003] [Rival, 2005]

• Three possible directions:
• change the semantics [Cartwright et al., 1989] [Giacobazzi et al., 2003]

[Nestra, 2009] [Barraclough et al., 2010]
Extend the classic soundness property
Consider non-existing trajectories

• add more dependencies [Ranganath et al., 2007]

Extend the classic soundness property
Bigger slices
All loops and assertions preceding the criterion will be systematically
preserved

• keep same kind of dependencies [Amtoft, 2008]

Keep slices small
B A weaker soundness property required: relaxed slicing
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Soundness property of relaxed slicing

Let q be a slice of p.

Theorem
The projection of the trajectory of p is a prefix of the
projection of the trajectory of q. If the execution of p
terminates normally, the projections are equal.

Corollary
The classic soundness property.
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Case 2: error hidden by another error (not preserved)

  

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 w h i l e ( i < N){
5 a s s e r t ( i < N) ;
6 s1 = s1 + a [ i ] ;
7 i = i + k ;
8 }
9 j = 0 ;

10 a s s e r t ( k != 0 ) ;
11 l a s t = N/k ;
12 w h i l e ( j <= l a s t ){
13 a s s e r t ( k∗ j < N) ;
14 s2 = s2 + a [ k∗ j ] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0 ) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0 ) ;
20 avg2 = s2 / N;
21 i f ( avg1 == avg2 )
22 p r i n t ( " equa l " ) ;

Original program p

  

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 w h i l e ( i < N){
5 a s s e r t ( i < N) ;
6 s1 = s1 + a [ i ] ;
7 i = i + k ;
8 }
9 j = 0 ;
10 a s s e r t ( k != 0 ) ;
11 l a s t = N/k ;
12 wh i l e ( j <= l a s t ){
13 a s s e r t ( k∗ j < N) ;
14 s2 = s2 + a [ k∗ j ] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0 ) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0 ) ;
20 avg2 = s2 / N;
21 i f ( avg1 == avg2 )
22 p r i n t (" equa l " ) ;

Slice q w.r.t. line 18

Execution for test input: N = 0, k = 0
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Verification on relaxed slices
Let q be a slice of p.
Theorem (No errors in the slice)
If there are no runtime errors in q, then
there are none in p, in the statements
preserved in q.

?

?
?
?
?
?
?
?
?

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 w h i l e ( i < N){
5 a s s e r t ( i < N) ;
6 s1 = s1 + a [ i ] ;
7 i = i + k ;
8 }
9 j = 0 ;

10 a s s e r t ( k != 0 ) ;
11 l a s t = N/k ;
12 w h i l e ( j <= l a s t ){
13 a s s e r t ( k∗ j < N) ;
14 s2 = s2 + a [ k∗ j ] ;
15 j = j + 1 ;
16 } ...

Theorem (An error in the slice)
If there is a runtime error in q, then
either the same error occurs in p, or
another error or an infinite loop caused
by a statement not preserved in q
masks it.     
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A few words about the formalization in Coq

• Results proved in Coq
• Size: 3,200 loc of spec, 6,500 loc of proof
• Certified slicer in OCaml extracted from Coq
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Outline

Context: Static Backward Slicing

Slicing in the Presence of Errors

An Algorithm for Arbitrary Control Dependence

An Optimized Algorithm

Conclusion
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Control dependence on a structured language

if (l: b) {
...
lthen: stmt;
...

} else {
...
lelse: stmt;
...

}

while (l: b) {
...
lbody : stmt;
...

}

control

data
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Control dependence on a control flow graph [Ferrante et al., 1987]

v is control-dependent on u iff u has two children u1 and u2 such
that u1 is always followed (post-dominated) by v , but not u2

u

u1 u2

v

end

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 26 / 43
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Control dependence on a control flow graph [Ferrante et al., 1987]

v is control-dependent on u iff u has two children u1 and u2 such
that u1 is always followed (post-dominated) by v , but not u2

u

u1 u2

v

end
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v is present
on all paths u1  end ,
but not on u2  end
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Control dependence on a finite directed graph

• Remove the unique end node requirement [Amtoft, 2008]

• Unifying theory [Danicic et al., 2011]
• Generalizes previous formalizations

[Ferrante et al., 1987] [Amtoft, 2008]
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Definitions
• Defined for a subset of vertices V ′
• Non-restrictive assumption for the talk:

• all nodes are reachable from V ′

• V ′ is closed under control dependence (or control-closed) iff
every node has at most one observable in V ′

V ′

•
•

• •
•

•

•
•

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
obs(v2) = {u2}
obs(u1) = {u1}
obs(u2) = {u2}
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• Non-restrictive assumption for the talk:

• all nodes are reachable from V ′

• V ′ is closed under control dependence (or control-closed) iff
every node has at most one observable in V ′

V ′

•
u

•
v

•v1 • v2

. . .

•u2

•u1

•y
•x

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
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Definitions
• obs(u): set of first-reachable nodes (observables) from u in V ′

• V ′ is closed under control dependence (or control-closed) iff
every node has at most one observable in V ′
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•
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•x

obs(u) = {u1, u2}X
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Definitions
• obs(u): set of first-reachable nodes (observables) from u in V ′

• V ′ is closed under control dependence (or control-closed) iff
every node has at most one observable in V ′

• Control-closure of V ′: smallest control-closed superset

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
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Definitions
• obs(u): set of first-reachable nodes (observables) from u in V ′

• V ′ is closed under control dependence (or control-closed) iff
every node has at most one observable in V ′

• Control-closure of V ′: smallest control-closed superset
• A node is V ′-deciding if it gives rise to two non-trivial paths
reaching V ′ that share no vertex except their origin

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
obs(v2) = {u2}
obs(u1) = {u1}
obs(u2) = {u2}
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Definitions
• obs(u): set of first-reachable nodes (observables) from u in V ′

• V ′ is closed under control dependence (or control-closed) iff
every node has at most one observable in V ′

• Control-closure of V ′: smallest control-closed superset
• A node is V ′-deciding if it gives rise to two non-trivial paths
reaching V ′ that share no vertex except their origin
• Theorem. control-closure(V’) = V’ ∪ { V ′-deciding vertices }

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
obs(v2) = {u2}
obs(u1) = {u1}
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Definitions
• obs(u): set of first-reachable nodes (observables) from u in V ′

• V ′ is closed under control dependence (or control-closed) iff
every node has at most one observable in V ′

• Control-closure of V ′: smallest control-closed superset
• A node is V ′-deciding if it gives rise to two non-trivial paths
reaching V ′ that share no vertex except their origin
• Theorem. control-closure(V’) = V’ ∪ { V ′-deciding vertices }

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

obs(u) = {v}
obs(v) = {v}
obs(v1) = {u2}
obs(v2) = {u2}
obs(u1) = {u1}
obs(u2) = {u2}
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Danicic’s method to compute control-closure

begin
W ← V ′;
while there exists a node u that is V ′-deciding do

add that node to W
end
return W ; // the control-closure of V ′

end

Formally:
1 ≤ |obs(v)| < |obs(u)|
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Danicic’s method to compute control-closure

begin
W ← V ′;
while there exists a node u that is V ′-deciding do

add that node to W
end
return W

end

Formally:
1 ≤ |obs(v)| < |obs(u)|
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Danicic’s method to compute control-closure

begin
W ← V ′;
while there exists a node u that is V ′-deciding do

add that node to W
end
return W

end
Formally:
1 ≤ |obs(v)| < |obs(u)|
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with strictly more observables in W
than one of its children v

u is a rich parent
v is a poor child
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Rich parent/poor child illustrated

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
obs(v2) = {u2}
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Rich parent/poor child illustrated

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•
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Danicic’s algorithm on an example
V ′ = {u1, u3}

u6

{u1, u3}

u5

{u1, u3}

u0 {u1, u3}

u2

{u1, u3}

u1 {u1}

u4
{u1, u3}

u3 {u3}

W = V ′ = {u1, u3}
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Danicic’s algorithm on an example
Iteration 1a: compute the set of observables of every node

u6

{u1, u3}{u1, u3}

u5

{u1, u3}{u1, u3}

u0 {u1, u3}{u1, u3}

u2

{u1, u3}{u1, u3}

u1 {u1}

u4
{u1, u3}{u1, u3}

u3 {u3}

W = {u1, u3}
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Danicic’s algorithm on an example
Iteration 1b: identify edges (u, v) such that 1≤|obs(v)|< |obs(u)|

u6

{u1, u3}{u1, u3}

u5

{u1, u3}{u1, u3}

u0 {u1, u3}{u1, u3}

u2

{u1, u3}{u1, u3}

u1 {u1}

u4
{u1, u3}{u1, u3}

u3 {u3}

W = {u1, u3}
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identify rich parents
with a poor child

rich parent
(observes u1 and u3)

poor child
(observes u3)
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Danicic’s algorithm on an example
Iteration 1c: update W and throw away annotations

u6

{u1, u3}

u5

{u1, u3}

u0 {u1, u3}{u0}

u2

{u1, u3}{u2}

u1 {u1}

u4
{u1, u3}{u4}

u3 {u3}

W = {u0, u1, u2, u3, u4}
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Danicic’s algorithm on an example
Iteration 2a: compute the observables of every node

u6

{u1, u3}{u0, u4}

u5

{u1, u3}{u0, u4}

u0 {u1, u3}{u0}

u2

{u1, u3}{u2}

u1 {u1}

u4
{u1, u3}{u4}

u3 {u3}

W = {u0, u1, u2, u3, u4}
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Danicic’s algorithm on an example
Iteration 2b: identify edges (u, v) such that 1≤|obs(v)|< |obs(u)|

u6

{u1, u3}{u0, u4}

u5

{u1, u3}{u0, u4}

u0 {u1, u3}{u0}

u2

{u1, u3}{u2}

u1 {u1}

u4
{u1, u3}{u4}

u3 {u3}

W = {u0, u1, u2, u3, u4}
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Danicic’s algorithm on an example
Iteration 2c: update W and throw away annotations

u6

{u1, u3}{u6}

u5

{u1, u3}

u0 {u1, u3}{u0}

u2

{u1, u3}{u2}

u1 {u1}

u4
{u1, u3}{u4}

u3 {u3}

W = {u0, u1, u2, u3, u4, u6}
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Danicic’s algorithm on an example
Iteration 3a: compute the observables of every node

u6

{u1, u3}{u6}

u5

{u1, u3}{u6}

u0 {u1, u3}{u0}

u2

{u1, u3}{u2}

u1 {u1}

u4
{u1, u3}{u4}

u3 {u3}

W = {u0, u1, u2, u3, u4, u6}
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Danicic’s algorithm on an example
Iteration 3b: identify edges (u, v) such that 1≤|obs(v)|< |obs(u)|

u6

{u1, u3}{u6}

u5

{u1, u3}{u6}

u0 {u1, u3}{u0}

u2

{u1, u3}{u2}

u1 {u1}

u4
{u1, u3}{u4}

u3 {u3}

W = {u0, u1, u2, u3, u4, u6}
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Danicic’s algorithm on an example
Iteration 3c: no new node, return W

u6

{u1, u3}{u6}

u5

{u1, u3}{u6}

u0 {u1, u3}{u0}

u2

{u1, u3}{u2}

u1 {u1}

u4
{u1, u3}{u4}

u3 {u3}

Closure: {u0, u1, u2, u3, u4, u6}
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A few words about the formalization in Coq
• We formalized control-closure in Coq

• We found and fixed a minor inconsistency in Danicic’s paper
proof

• We implemented (a slightly optimized version of) Danicic’s
algorithm and proved it correct
• Size: 2,000 loc of spec, 4,600 loc of proof
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Outline

Context: Static Backward Slicing

Slicing in the Presence of Errors

An Algorithm for Arbitrary Control Dependence

An Optimized Algorithm

Conclusion
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Motivation for a more efficient algorithm

• Danicic et al. believe that “better than O(|V |3) worst-case
time complexity algorithms may exist”

• Fundamental limitation of Danicic’s algorithm:
• It does not take advantage of previous iterations to speed up

the following ones
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New iterative algorithm: key ideas

• Rich parent/poor child detection
• no need to compute the set of observables exactly
• just exhibit a witness: a node observable from the parent, but

not from the child
• Label each vertex with a candidate observable (if any)

• each vertex is labeled with at most one vertex
• can be temporarily outdated
• the labeling survives the iterations and can be reused

• One additional output
• at the end, labels are the true observables
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Rich parent/poor child illustrated again

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•
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The optimized algorithm on an example
V ′ = {u1, u3}

u6

{u1, u3}

u5

{u1, u3}

u0 {u1, u3}

u2

{u1, u3}

u1 u1

u4
{u1, u3}

u3 u3

W = V ′ = {u1, u3}
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The optimized algorithm on an example
Iteration 1a: propagate u1 backwards

u6

{u1, u3}u1

u5

{u1, u3}u1

u0 {u1, u3}u1

u2

{u1, u3}u1

u1 u1

u4
{u1, u3}u1

u3 u3

W = {u1, u3}
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The optimized algorithm on an example
Iteration 1b: identify edges (u, v) such that u1∈obs(u), u16∈obs(v)

u6

{u1, u3}u1

u5

{u1, u3}u1

u0 {u1, u3}u1

u2

{u1, u3}u1

u1 u1

u4
{u1, u3}u1

u3 u3

W = {u1, u3}
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The optimized algorithm on an example
Iteration 2a: propagate u3 backwards

u6

{u1, u3}u3

u5

{u1, u3}u3

u0 {u1, u3}u3

u2

{u1, u3}u3

u1 u1

u4
{u1, u3}u3

u3 u3

W = {u1, u3}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 37 / 43
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The optimized algorithm on an example
Iteration 2b: identify edges (u, v) such that u3∈obs(u), u36∈obs(v)

u6

{u1, u3}u3

u5

{u1, u3}u3

u0 {u1, u3}u3

u2

{u1, u3}u3

u1 u1

u4
{u1, u3}u3

u3 u3

W = {u1, u3}
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The optimized algorithm on an example
Iteration 2c: update W

u6

{u1, u3}u3

u5

{u1, u3}u3

u0 {u1, u3}u0

u2

{u1, u3}u3

u1 u1

u4
{u1, u3}u3

u3 u3

W = {u0, u1, u3}
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The optimized algorithm on an example
Iteration 3a: propagate u0 backwards

u6

{u1, u3}u0

u5

{u1, u3}u0

u0 {u1, u3}u0

u2

{u1, u3}u0

u1 u1

u4
{u1, u3}u0

u3 u3

W = {u0, u1, u3}
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The optimized algorithm on an example
Iteration 3b: identify edges (u, v) such that u0∈obs(u), u06∈obs(v)

u6

{u1, u3}u0

u5

{u1, u3}u0

u0 {u1, u3}u0

u2

{u1, u3}u0

u1 u1

u4
{u1, u3}u0

u3 u3

W = {u0, u1, u3}
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The optimized algorithm on an example
Iteration 3c: update W

u6

{u1, u3}u0

u5

{u1, u3}u0

u0 {u1, u3}u0

u2

{u1, u3}u2

u1 u1

u4
{u1, u3}u4

u3 u3

W = {u0, u1, u2, u3, u4}
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The optimized algorithm on an example
Iteration 7: no more unprocessed vertex, return W

u6

{u1, u3}u6

u5

{u1, u3}u6

u0 {u1, u3}u0

u2

{u1, u3}u2

u1 u1

u4
{u1, u3}u4

u3 u3

Closure: {u0, u1, u2, u3, u4, u6}
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A few words about the formalization in Why3

The Why3 development has two parts:
• the new algorithm (250 loc)

• split into 3 functions
• most proofs are discharged automatically
• preservation of the main invariants proved manually in Coq

(100 lines of Coq proof)
• a small fragment of control dependence theory (80 loc)

• everything proved
• one lemma admitted (but proved in the Coq formalization)
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Experiments

• Both algorithms were implemented in OCaml using
OCamlgraph
• They were run on randomly generated graphs
• Checked on small graphs against a certified version extracted
from Coq
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Coq extraction vs. Danicic
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Danicic vs. the new optimized algorithm
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Contributions

• A theoretical justification of slicing in the presence of errors
and non-termination
• An algorithm computing efficiently control dependence on
finite graphs

• All results are certified (in Coq or Why3)
• including Danicic’s algorithm
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Perspectives

• Formalize strong control dependence from [Danicic et al.,
2011]
• Perform experiments on realistic CFGs
• Investigate more optimizations
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Graph theory

Alt-Ergo (1.30) CVC4 (1.5) Coq (8.6.1) Eprover (2.0) Z3 (4.5.0)

Number 10 14 4 6 0
Min time (s) 0 0,02 0,27 0,01 0
Max time (s) 0,01 0,67 0,37 0,44 0
Avg time (s) 0,01 0,083 0,3 0,093 N/A

+ 1 axiom (but proved in the Coq formalization)
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Algorithm

Alt-Ergo (1.30) CVC4 (1.5) Coq (8.6.1) Eprover (2.0) Z3 (4.5.0)

Number 233 12 4 4 2
Min time (s) 0,01 0,08 0,32 0,08 0,34
Max time (s) 3,96 0,83 0,76 2,35 3,18
Avg time (s) 0,18 0,46 0,48 0,72 1,76
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Control dependence on a control flow graph [Ferrante et al., 1987]

v is control-dependent on u iff u has two children u1 and u2 such
that u1 is always followed (post-dominated) by v , but not u2

start

L1: quo=0

L2: r=a

L3: while (b<=r)
u

L4: quo=quo+1
u2

L5: r=r-b
v

L6: if(r!=0)
u

L7: res=0
u2

L8: res=1
v , u1

end
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v is control-dependent on u iff u has two children u1 and u2 such
that u1 is always followed (post-dominated) by v , but not u2

start

L1: quo=0

L2: r=a

L3: while (b<=r)
u

L4: quo=quo+1
u1

L5: r=r-b
v

L6: if(r!=0)
uu2

L7: res=0
u2

L8: res=1
v , u1

end
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Control-closure for our running example

start

L1: quo=0

L2: r=a

L3: while (b<=r)

L4: quo=quo+1

L5: r=r-b

L6: if(r!=0)

L7: res=0 L8: res=1

end
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