
Certified Algorithms for Program Slicing
PhD thesis defense

Jean-Christophe Léchenet

July 19th, 2018
Palaiseau

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Let’s cook pastry cream

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 2 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The recipe from my cookbook

prepare pastry

prepare pastry cream

fill puffs with cream

Cream Puff Recipe

prepare puffs

prepare pastry cream

fill puffs with cream

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 3 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The recipe from my cookbook

prepare pastry

prepare pastry cream

fill puffs with cream

Cream Puff Recipe

prepare puffs

prepare pastry cream

fill puffs with cream

?

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 3 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The recipe from my cookbook

prepare pastry

prepare pastry cream

fill puffs with cream

Cream Puff Recipe

prepare puffs

prepare pastry cream

fill puffs with cream

?

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 3 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The recipe from my cookbook

prepare pastry

prepare pastry cream

fill puffs with cream

Cream Puff Recipe

prepare puffs

prepare pastry cream

fill puffs with cream

?

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 3 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The recipe from my cookbook

prepare pastry

prepare pastry cream

fill puffs with cream

Cream Puff Recipe

prepare puffs

prepare pastry cream

fill puffs with cream

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 3 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The recipe from my cookbook

prepare pastry

prepare pastry cream

fill puffs with cream

Cream Puff Recipe

prepare puffs

prepare pastry cream

fill puffs with cream

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 3 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The recipe from my cookbook

prepare pastry

prepare pastry cream

fill puffs with cream

Cream Puff Recipe

prepare puffs

prepare pastry cream

fill puffs with cream

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 3 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

My grandmother’s recipe
mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat?
add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Cream Puff Recipe

mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat

add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 4 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

My grandmother’s recipe
mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat?
add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Cream Puff Recipe

mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat

add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

?

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 4 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

My grandmother’s recipe
mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat?
add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Cream Puff Recipe

mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat

add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

?

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 4 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

My grandmother’s recipe
mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat?
add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Cream Puff Recipe

mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat

add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

?

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 4 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

My grandmother’s recipe
mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat?
add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Cream Puff Recipe

mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat

add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

?

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 4 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

My grandmother’s recipe
mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat?
add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Cream Puff Recipe

mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat

add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 4 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

My grandmother’s recipe
mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat?
add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Cream Puff Recipe

mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat

add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 4 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

My grandmother’s recipe
mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat?
add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Cream Puff Recipe

mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat

add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 4 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

My grandmother’s recipe
mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat?
add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Cream Puff Recipe

mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat
add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 4 / 43

over low heat

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

My grandmother’s recipe
mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat?
add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Cream Puff Recipe

mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat
add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 4 / 43

over low heat

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

My grandmother’s recipe
mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

		

mix milk, salt, vanilla over heat?
add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Cream Puff Recipe

mix butter, water, salt, sugar,
flour over heat until it leaves
the pan

mix milk, salt, vanilla over heat
add eggs to the first mixture

mix sugar, eggs, flour

get pastry cream by combining
this mix with the boiling milk

shape puffs and bake them

fill puffs with cream

Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 4 / 43

over low heat

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

A recipe from the Internet

(a) Cream Puff Recipe

?

(b) Pastry Cream Recipe

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 5 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Program Slicing vs. Recipe Extraction

• Program slicing ' extraction of a sub-recipe
• Extraction of the important steps w.r.t. a given goal

• Properties considered in this work:
• Interpretation of errors
• Handling of complex structures
• Efficient
• Provably correct

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 6 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Outline

Context: Static Backward Slicing

Slicing in the Presence of Errors

An Algorithm for Arbitrary Control Dependence

An Optimized Algorithm

Conclusion

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 7 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Outline

Context: Static Backward Slicing

Slicing in the Presence of Errors

An Algorithm for Arbitrary Control Dependence

An Optimized Algorithm

Conclusion

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 8 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Definition

Static backward slicing (introduced by Weiser in 1981)
• simplifies a given program p but preserves the behavior w.r.t.
a point of interest C (slicing criterion, typically a statement)
• removes irrelevant statements that do not impact C
• produces a simplified program q (slice)

program p

slicing criterion C
slice qsimplifysimplify

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 9 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Example: test if b divides a (a, b > 0)

1 : quo = 0;

2 : r = a;

3 : while (b <= r) {

4 : quo = quo + 1;

5 : r = r - b;

}

6 : if (r != 0) {

7 : res = 0;

} else {

8 : res = 1;

}

eu
cl
id
ea
n

di
vi
sio

n
of

a
by

b
is
th
e
re
m
ai
nd

er
eq
ua
lt
o
0
?

Original program p

?

Slice q w.r.t. line 8

control

data

• Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 10 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Example: test if b divides a (a, b > 0)

1 : quo = 0;

2 : r = a;

3 : while (b <= r) {

4 : quo = quo + 1;

5 : r = r - b;

}

6 : if (r != 0) {

7 : res = 0;

} else {

8 : res = 1;

}

eu
cl
id
ea
n

di
vi
sio

n
of

a
by

b
is
th
e
re
m
ai
nd

er
eq
ua
lt
o
0
?

Original program p

?

Slice q w.r.t. line 8

control

data

• Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 10 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Example: test if b divides a (a, b > 0)

1 : quo = 0;

2 : r = a;

3 : while (b <= r) {

4 : quo = quo + 1;

5 : r = r - b;

}

6 : if (r != 0) {

7 : res = 0;

} else {

8 : res = 1;

}

eu
cl
id
ea
n

di
vi
sio

n
of

a
by

b
is
th
e
re
m
ai
nd

er
eq
ua
lt
o
0
?

Original program p

?

Slice q w.r.t. line 8

control

data

• Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 10 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Example: test if b divides a (a, b > 0)

1 : quo = 0;

2 : r = a;

3 : while (b <= r) {

4 : quo = quo + 1;

5 : r = r - b;

}

6 : if (r != 0) {

7 : res = 0;

} else {

8 : res = 1;

}

eu
cl
id
ea
n

di
vi
sio

n
of

a
by

b
is
th
e
re
m
ai
nd

er
eq
ua
lt
o
0
?

Original program p

?

Slice q w.r.t. line 8

control

data

• Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 10 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Example: test if b divides a (a, b > 0)

1 : quo = 0;

2 : r = a;

3 : while (b <= r) {

4 : quo = quo + 1;

5 : r = r - b;

}

6 : if (r != 0) {

7 : res = 0;

} else {

8 : res = 1;

}

eu
cl
id
ea
n

di
vi
sio

n
of

a
by

b
is
th
e
re
m
ai
nd

er
eq
ua
lt
o
0
?

Original program p

?

Slice q w.r.t. line 8

control

data

• Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 10 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Example: test if b divides a (a, b > 0)

1 : quo = 0;

2 : r = a;

3 : while (b <= r) {

4 : quo = quo + 1;

5 : r = r - b;

}

6 : if (r != 0) {

7 : res = 0;

} else {

8 : res = 1;

}

eu
cl
id
ea
n

di
vi
sio

n
of

a
by

b
is
th
e
re
m
ai
nd

er
eq
ua
lt
o
0
?

Original program p

?

Slice q w.r.t. line 8

control

data

• Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 10 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Example: test if b divides a (a, b > 0)

1 : quo = 0;

2 : r = a;

3 : while (b <= r) {

4 : quo = quo + 1;

5 : r = r - b;

}

6 : if (r != 0) {

7 : res = 0;

} else {

8 : res = 1;

}

eu
cl
id
ea
n

di
vi
sio

n
of

a
by

b
is
th
e
re
m
ai
nd

er
eq
ua
lt
o
0
?

Original program p

?

Slice q w.r.t. line 8

control

data

• Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 10 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Example: test if b divides a (a, b > 0)

1 : quo = 0;

2 : r = a;

3 : while (b <= r) {

4 : quo = quo + 1;

5 : r = r - b;

}

6 : if (r != 0) {

7 : res = 0;

} else {

8 : res = 1;

}

eu
cl
id
ea
n

di
vi
sio

n
of

a
by

b
is
th
e
re
m
ai
nd

er
eq
ua
lt
o
0
?

Original program p

2 : r = a;

3 : while (b <= r) {

5 : r = r - b;

}

6 : if (r != 0) {

} else {

8 : res = 1;

}

Slice q w.r.t. line 8

control

data

• Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 10 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Example: test if b divides a (a, b > 0)

1 : quo = 0;

2 : r = a;

3 : while (b <= r) {

4 : quo = quo + 1;

5 : r = r - b;

}

6 : if (r != 0) {

7 : res = 0;

} else {

8 : res = 1;

}

eu
cl
id
ea
n

di
vi
sio

n
of

a
by

b
is
th
e
re
m
ai
nd

er
eq
ua
lt
o
0
?

Original program p

2 : r = a;

3 : while (b <= r) {

5 : r = r - b;

}

6 : if (r != 0) {

} else {

8 : res = 1;

}

Slice q w.r.t. line 8

control

data

• Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 10 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Outline

Context: Static Backward Slicing

Slicing in the Presence of Errors

An Algorithm for Arbitrary Control Dependence

An Optimized Algorithm

Conclusion

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 11 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Motivation

Let q be a slice of p.
• If an error is found in q, is it also present in p ?
• If there are no errors in q, what can be said about p ?

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 12 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Classic soundness property
Let p a program without failing instructions and q a slice of p.

Theorem (Classic soundness property, [Weiser, 1981] [Reps et al, 1989])
Let σ be an input state of p. Suppose that p halts on σ. Then q
halts on σ and the executions of p and q on σ agree after each
statement preserved in the slice on the variables that appear in this
statement.

Formalized with a trajectory-based semantics
as an equality of projections

Application to verification
Does this result also hold in the presence of errors and non-
termination ?

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 13 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Classic soundness property
Let p a program without failing instructions and q a slice of p.

Theorem (Classic soundness property, [Weiser, 1981] [Reps et al, 1989])
Let σ be an input state of p. Suppose that p halts on σ. Then q
halts on σ and the executions of p and q on σ agree after each
statement preserved in the slice on the variables that appear in this
statement.

Formalized with a trajectory-based semantics
as an equality of projections

Application to verification
Does this result also hold in the presence of errors and non-
termination ?

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 13 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Modeling

• WHILE language: skip, x:= e, if, while, assert
• Assertions make runtime errors explicit
• Assertions protect all statements that may cause a runtime
error

assert (l: N != 0);

l1: x = k/N;

assert (l: k < N);

l1: x = a[k];

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 14 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Dependence-based slicing
Control dependence Data dependence

if (l: b) {
...
lthen: stmt;
...

} else {
...
lelse: stmt;
...

}

while (l: b) {
...
lbody : stmt;
...

}

ldef : x = e; // def
... // x not assigned
... // x not assigned
... // x not assigned
luse: y = ... x ...; // use

Assertion dependence
assert (l: N != 0);

l1: x = k/N;

assert (l: k < N);

l1: x = a[k];

• Dependence-based slice q of p w.r.t. C : all statements on
which one of the statements of C is (directly or indirectly)
dependent
• Formally: q = {l ∈ p | l →∗ l ′, l ′ ∈ C},
where −→= ctrl−−→∪ data−−→∪ assert−−−→

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 15 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Case 1: same error

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 w h i l e (i < N){
5 a s s e r t (i < N) ;
6 s1 = s1 + a [i] ;
7 i = i + k ;
8 }
9 j = 0 ;

10 a s s e r t (k != 0) ;
11 l a s t = N/k ;
12 w h i l e (j <= l a s t){
13 a s s e r t (k∗ j < N) ;
14 s2 = s2 + a [k∗ j] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0) ;
20 avg2 = s2 / N;
21 i f (avg1 == avg2)
22 p r i n t (" equa l ") ;

Original program p

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 wh i l e (i < N){
5 a s s e r t (i < N) ;
6 s1 = s1 + a [i] ;
7 i = i + k ;
8 }
9 j = 0 ;
10 a s s e r t (k != 0) ;
11 l a s t = N/k ;
12 w h i l e (j <= l a s t){
13 a s s e r t (k∗ j < N) ;
14 s2 = s2 + a [k∗ j] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0) ;
20 avg2 = s2 / N;
21 i f (avg1 == avg2)
22 p r i n t (" equa l ") ;

Slice q w.r.t. line 20

Execution for test input: N = 2, k = 4

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 16 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Case 2: error hidden by another error (not preserved)

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 w h i l e (i < N){
5 a s s e r t (i < N) ;
6 s1 = s1 + a [i] ;
7 i = i + k ;
8 }
9 j = 0 ;

10 a s s e r t (k != 0) ;
11 l a s t = N/k ;
12 w h i l e (j <= l a s t){
13 a s s e r t (k∗ j < N) ;
14 s2 = s2 + a [k∗ j] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0) ;
20 avg2 = s2 / N;
21 i f (avg1 == avg2)
22 p r i n t (" equa l ") ;

Original program p

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 w h i l e (i < N){
5 a s s e r t (i < N) ;
6 s1 = s1 + a [i] ;
7 i = i + k ;
8 }
9 j = 0 ;
10 a s s e r t (k != 0) ;
11 l a s t = N/k ;
12 wh i l e (j <= l a s t){
13 a s s e r t (k∗ j < N) ;
14 s2 = s2 + a [k∗ j] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0) ;
20 avg2 = s2 / N;
21 i f (avg1 == avg2)
22 p r i n t (" equa l ") ;

Slice q w.r.t. line 18

Execution for test input: N = 0, k = 0

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 17 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Case 3: error hidden by a loop (not preserved)

		

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 wh i l e (i < N){
5 a s s e r t (i < N) ;
6 s1 = s1 + a [i] ;
7 i = i + k ;
8 }
9 j = 0 ;

10 a s s e r t (k != 0) ;
11 l a s t = N/k ;
12 w h i l e (j <= l a s t){
13 a s s e r t (k∗ j < N) ;
14 s2 = s2 + a [k∗ j] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0) ;
20 avg2 = s2 / N;
21 i f (avg1 == avg2)
22 p r i n t (" equa l ") ;

Original program p

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 wh i l e (i < N){
5 a s s e r t (i < N) ;
6 s1 = s1 + a [i] ;
7 i = i + k ;
8 }
9 j = 0 ;
10 a s s e r t (k != 0) ;
11 l a s t = N/k ;
12 w h i l e (j <= l a s t){
13 a s s e r t (k∗ j < N) ;
14 s2 = s2 + a [k∗ j] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0) ;
20 avg2 = s2 / N;
21 i f (avg1 == avg2)
22 p r i n t (" equa l ") ;

Slice q w.r.t. line 20

Execution for test input: N = 4, k = 0

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 18 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

• Equality of projections does not hold in general, due to:
• Non-termination [Ball et al.,1993] [Ranganath et al., 2007] [Amtoft, 2008]
• Errors [Harman et al., 1995] [Allen et al., 2003] [Rival, 2005]

• Three possible directions:
• change the semantics [Cartwright et al., 1989] [Giacobazzi et al., 2003]

[Nestra, 2009] [Barraclough et al., 2010]
Extend the classic soundness property
Consider non-existing trajectories

• add more dependencies [Ranganath et al., 2007]

Extend the classic soundness property
Bigger slices
All loops and assertions preceding the criterion will be systematically
preserved

• keep same kind of dependencies [Amtoft, 2008]

Keep slices small
B A weaker soundness property required

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 19 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

• Equality of projections does not hold in general, due to:
• Non-termination [Ball et al.,1993] [Ranganath et al., 2007] [Amtoft, 2008]
• Errors [Harman et al., 1995] [Allen et al., 2003] [Rival, 2005]

• Three possible directions:
• change the semantics [Cartwright et al., 1989] [Giacobazzi et al., 2003]

[Nestra, 2009] [Barraclough et al., 2010]
Extend the classic soundness property
Consider non-existing trajectories

• add more dependencies [Ranganath et al., 2007]

Extend the classic soundness property
Bigger slices
All loops and assertions preceding the criterion will be systematically
preserved

• keep same kind of dependencies [Amtoft, 2008]

Keep slices small
B A weaker soundness property required: relaxed slicing

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 19 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Soundness property of relaxed slicing

Let q be a slice of p.

Theorem
The projection of the trajectory of p is a prefix of the
projection of the trajectory of q. If the execution of p
terminates normally, the projections are equal.

Corollary
The classic soundness property.

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 20 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Case 2: error hidden by another error (not preserved)

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 w h i l e (i < N){
5 a s s e r t (i < N) ;
6 s1 = s1 + a [i] ;
7 i = i + k ;
8 }
9 j = 0 ;

10 a s s e r t (k != 0) ;
11 l a s t = N/k ;
12 w h i l e (j <= l a s t){
13 a s s e r t (k∗ j < N) ;
14 s2 = s2 + a [k∗ j] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0) ;
20 avg2 = s2 / N;
21 i f (avg1 == avg2)
22 p r i n t (" equa l ") ;

Original program p

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 w h i l e (i < N){
5 a s s e r t (i < N) ;
6 s1 = s1 + a [i] ;
7 i = i + k ;
8 }
9 j = 0 ;
10 a s s e r t (k != 0) ;
11 l a s t = N/k ;
12 wh i l e (j <= l a s t){
13 a s s e r t (k∗ j < N) ;
14 s2 = s2 + a [k∗ j] ;
15 j = j + 1 ;
16 }
17 a s s e r t (N != 0) ;
18 avg1 = s1 / N;
19 a s s e r t (N != 0) ;
20 avg2 = s2 / N;
21 i f (avg1 == avg2)
22 p r i n t (" equa l ") ;

Slice q w.r.t. line 18

Execution for test input: N = 0, k = 0

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 21 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Verification on relaxed slices
Let q be a slice of p.
Theorem (No errors in the slice)
If there are no runtime errors in q, then
there are none in p, in the statements
preserved in q.

?

?
?
?
?
?
?
?
?

1 s1 = 0 ;
2 s2 = 0 ;
3 i = 0 ;
4 w h i l e (i < N){
5 a s s e r t (i < N) ;
6 s1 = s1 + a [i] ;
7 i = i + k ;
8 }
9 j = 0 ;

10 a s s e r t (k != 0) ;
11 l a s t = N/k ;
12 w h i l e (j <= l a s t){
13 a s s e r t (k∗ j < N) ;
14 s2 = s2 + a [k∗ j] ;
15 j = j + 1 ;
16 } ...

Theorem (An error in the slice)
If there is a runtime error in q, then
either the same error occurs in p, or
another error or an infinite loop caused
by a statement not preserved in q
masks it.

		

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 22 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

A few words about the formalization in Coq

• Results proved in Coq
• Size: 3,200 loc of spec, 6,500 loc of proof
• Certified slicer in OCaml extracted from Coq

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 23 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Outline

Context: Static Backward Slicing

Slicing in the Presence of Errors

An Algorithm for Arbitrary Control Dependence

An Optimized Algorithm

Conclusion

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 24 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Control dependence on a structured language

if (l: b) {
...
lthen: stmt;
...

} else {
...
lelse: stmt;
...

}

while (l: b) {
...
lbody : stmt;
...

}

control

data

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 25 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Control dependence on a control flow graph [Ferrante et al., 1987]

v is control-dependent on u iff u has two children u1 and u2 such
that u1 is always followed (post-dominated) by v , but not u2

u

u1 u2

v

end

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 26 / 43

control

data

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Control dependence on a control flow graph [Ferrante et al., 1987]

v is control-dependent on u iff u has two children u1 and u2 such
that u1 is always followed (post-dominated) by v , but not u2

u

u1 u2

v

end

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 26 / 43

control

data

v is present
on all paths u1 end ,
but not on u2 end

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Control dependence on a finite directed graph

• Remove the unique end node requirement [Amtoft, 2008]

• Unifying theory [Danicic et al., 2011]
• Generalizes previous formalizations

[Ferrante et al., 1987] [Amtoft, 2008]

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 27 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Control dependence on a finite directed graph

• Remove the unique end node requirement [Amtoft, 2008]

• Unifying theory [Danicic et al., 2011]
• Generalizes previous formalizations

[Ferrante et al., 1987] [Amtoft, 2008]

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 27 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Definitions
• Defined for a subset of vertices V ′
• Non-restrictive assumption for the talk:

• all nodes are reachable from V ′

• V ′ is closed under control dependence (or control-closed) iff
every node has at most one observable in V ′

V ′

•
•

• •
•

•

•
•

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
obs(v2) = {u2}
obs(u1) = {u1}
obs(u2) = {u2}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 28 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Definitions
• Defined for a subset of vertices V ′
• Non-restrictive assumption for the talk:

• all nodes are reachable from V ′

• V ′ is closed under control dependence (or control-closed) iff
every node has at most one observable in V ′

V ′

•
u

•
v

•v1 • v2

. . .

•u2

•u1

•y
•x

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
obs(v2) = {u2}
obs(u1) = {u1}
obs(u2) = {u2}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 28 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Definitions
• obs(u): set of first-reachable nodes (observables) from u in V ′

• V ′ is closed under control dependence (or control-closed) iff
every node has at most one observable in V ′

V ′

•
u

•
v

•v1 • v2

. . .

•u2

•u1

•y
•x

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
obs(v2) = {u2}
obs(u1) = {u1}
obs(u2) = {u2}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 28 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Definitions
• obs(u): set of first-reachable nodes (observables) from u in V ′

• V ′ is closed under control dependence (or control-closed) iff
every node has at most one observable in V ′

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
obs(v2) = {u2}
obs(u1) = {u1}
obs(u2) = {u2}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 28 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Definitions
• obs(u): set of first-reachable nodes (observables) from u in V ′

• V ′ is closed under control dependence (or control-closed) iff
every node has at most one observable in V ′

• Control-closure of V ′: smallest control-closed superset

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
obs(v2) = {u2}
obs(u1) = {u1}
obs(u2) = {u2}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 28 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Definitions
• obs(u): set of first-reachable nodes (observables) from u in V ′

• V ′ is closed under control dependence (or control-closed) iff
every node has at most one observable in V ′

• Control-closure of V ′: smallest control-closed superset
• A node is V ′-deciding if it gives rise to two non-trivial paths
reaching V ′ that share no vertex except their origin

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
obs(v2) = {u2}
obs(u1) = {u1}
obs(u2) = {u2}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 28 / 43

point of divergence
closest to V ′

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Definitions
• obs(u): set of first-reachable nodes (observables) from u in V ′

• V ′ is closed under control dependence (or control-closed) iff
every node has at most one observable in V ′

• Control-closure of V ′: smallest control-closed superset
• A node is V ′-deciding if it gives rise to two non-trivial paths
reaching V ′ that share no vertex except their origin
• Theorem. control-closure(V’) = V’ ∪ { V ′-deciding vertices }

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
obs(v2) = {u2}
obs(u1) = {u1}
obs(u2) = {u2}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 28 / 43

add all points
of divergence
to the closure

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Definitions
• obs(u): set of first-reachable nodes (observables) from u in V ′

• V ′ is closed under control dependence (or control-closed) iff
every node has at most one observable in V ′

• Control-closure of V ′: smallest control-closed superset
• A node is V ′-deciding if it gives rise to two non-trivial paths
reaching V ′ that share no vertex except their origin
• Theorem. control-closure(V’) = V’ ∪ { V ′-deciding vertices }

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

obs(u) = {v}
obs(v) = {v}
obs(v1) = {u2}
obs(v2) = {u2}
obs(u1) = {u1}
obs(u2) = {u2}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 28 / 43

no more points
of divergence

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Danicic’s method to compute control-closure

begin
W ← V ′;
while there exists a node u that is V ′-deciding do

add that node to W
end
return W ; // the control-closure of V ′

end

Formally:
1 ≤ |obs(v)| < |obs(u)|

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 29 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Danicic’s method to compute control-closure

begin
W ← V ′;
while there exists a node u that is V ′-deciding do

add that node to W
end
return W

end

Formally:
1 ≤ |obs(v)| < |obs(u)|

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 29 / 43

u is the last point
of divergence before V ′

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Danicic’s method to compute control-closure

begin
W ← V ′;
while there exists a node u that is V ′-deciding do

add that node to W
end
return W

end
Formally:
1 ≤ |obs(v)| < |obs(u)|

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 29 / 43

with strictly more observables in W
than one of its children v

u is a rich parent
v is a poor child

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Rich parent/poor child illustrated

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
obs(v2) = {u2}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 30 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Rich parent/poor child illustrated

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
obs(v2) = {u2}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 30 / 43

rich parent
(observes u1 and u2)

rich child
(observes u1 and u2)

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Rich parent/poor child illustrated

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
obs(v2) = {u2}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 30 / 43

rich parent
(observes u1 and u2)

poor child
(observes u2)

poor child
(observes u2)

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Rich parent/poor child illustrated

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

obs(u) = {u1, u2}X
obs(v) = {u1, u2}X
obs(v1) = {u2}
obs(v2) = {u2}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 30 / 43

rich parent
(observes u1 and u2)

poor child
(observes u2)

poor child
(observes u2)

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Danicic’s algorithm on an example
V ′ = {u1, u3}

u6

{u1, u3}

u5

{u1, u3}

u0 {u1, u3}

u2

{u1, u3}

u1 {u1}

u4
{u1, u3}

u3 {u3}

W = V ′ = {u1, u3}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 31 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Danicic’s algorithm on an example
Iteration 1a: compute the set of observables of every node

u6

{u1, u3}{u1, u3}

u5

{u1, u3}{u1, u3}

u0 {u1, u3}{u1, u3}

u2

{u1, u3}{u1, u3}

u1 {u1}

u4
{u1, u3}{u1, u3}

u3 {u3}

W = {u1, u3}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 31 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Danicic’s algorithm on an example
Iteration 1b: identify edges (u, v) such that 1≤|obs(v)|< |obs(u)|

u6

{u1, u3}{u1, u3}

u5

{u1, u3}{u1, u3}

u0 {u1, u3}{u1, u3}

u2

{u1, u3}{u1, u3}

u1 {u1}

u4
{u1, u3}{u1, u3}

u3 {u3}

W = {u1, u3}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 31 / 43

identify rich parents
with a poor child

rich parent
(observes u1 and u3)

poor child
(observes u3)

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Danicic’s algorithm on an example
Iteration 1c: update W and throw away annotations

u6

{u1, u3}

u5

{u1, u3}

u0 {u1, u3}{u0}

u2

{u1, u3}{u2}

u1 {u1}

u4
{u1, u3}{u4}

u3 {u3}

W = {u0, u1, u2, u3, u4}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 31 / 43

add rich parents
having a poor child

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Danicic’s algorithm on an example
Iteration 2a: compute the observables of every node

u6

{u1, u3}{u0, u4}

u5

{u1, u3}{u0, u4}

u0 {u1, u3}{u0}

u2

{u1, u3}{u2}

u1 {u1}

u4
{u1, u3}{u4}

u3 {u3}

W = {u0, u1, u2, u3, u4}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 31 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Danicic’s algorithm on an example
Iteration 2b: identify edges (u, v) such that 1≤|obs(v)|< |obs(u)|

u6

{u1, u3}{u0, u4}

u5

{u1, u3}{u0, u4}

u0 {u1, u3}{u0}

u2

{u1, u3}{u2}

u1 {u1}

u4
{u1, u3}{u4}

u3 {u3}

W = {u0, u1, u2, u3, u4}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 31 / 43

identify rich parents
with a poor child

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Danicic’s algorithm on an example
Iteration 2c: update W and throw away annotations

u6

{u1, u3}{u6}

u5

{u1, u3}

u0 {u1, u3}{u0}

u2

{u1, u3}{u2}

u1 {u1}

u4
{u1, u3}{u4}

u3 {u3}

W = {u0, u1, u2, u3, u4, u6}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 31 / 43

add rich parents
having a poor child

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Danicic’s algorithm on an example
Iteration 3a: compute the observables of every node

u6

{u1, u3}{u6}

u5

{u1, u3}{u6}

u0 {u1, u3}{u0}

u2

{u1, u3}{u2}

u1 {u1}

u4
{u1, u3}{u4}

u3 {u3}

W = {u0, u1, u2, u3, u4, u6}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 31 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Danicic’s algorithm on an example
Iteration 3b: identify edges (u, v) such that 1≤|obs(v)|< |obs(u)|

u6

{u1, u3}{u6}

u5

{u1, u3}{u6}

u0 {u1, u3}{u0}

u2

{u1, u3}{u2}

u1 {u1}

u4
{u1, u3}{u4}

u3 {u3}

W = {u0, u1, u2, u3, u4, u6}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 31 / 43

identify rich parents
with a poor child

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Danicic’s algorithm on an example
Iteration 3c: no new node, return W

u6

{u1, u3}{u6}

u5

{u1, u3}{u6}

u0 {u1, u3}{u0}

u2

{u1, u3}{u2}

u1 {u1}

u4
{u1, u3}{u4}

u3 {u3}

Closure: {u0, u1, u2, u3, u4, u6}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 31 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

A few words about the formalization in Coq
• We formalized control-closure in Coq

• We found and fixed a minor inconsistency in Danicic’s paper
proof

• We implemented (a slightly optimized version of) Danicic’s
algorithm and proved it correct
• Size: 2,000 loc of spec, 4,600 loc of proof

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 32 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

A few words about the formalization in Coq
• We formalized control-closure in Coq

• We found and fixed a minor inconsistency in Danicic’s paper
proof

• We implemented (a slightly optimized version of) Danicic’s
algorithm and proved it correct
• Size: 2,000 loc of spec, 4,600 loc of proof

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 32 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Outline

Context: Static Backward Slicing

Slicing in the Presence of Errors

An Algorithm for Arbitrary Control Dependence

An Optimized Algorithm

Conclusion

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 33 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Motivation for a more efficient algorithm

• Danicic et al. believe that “better than O(|V |3) worst-case
time complexity algorithms may exist”

• Fundamental limitation of Danicic’s algorithm:
• It does not take advantage of previous iterations to speed up

the following ones

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 34 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

New iterative algorithm: key ideas

• Rich parent/poor child detection
• no need to compute the set of observables exactly
• just exhibit a witness: a node observable from the parent, but

not from the child
• Label each vertex with a candidate observable (if any)

• each vertex is labeled with at most one vertex
• can be temporarily outdated
• the labeling survives the iterations and can be reused

• One additional output
• at the end, labels are the true observables

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 35 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Rich parent/poor child illustrated again

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 36 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Rich parent/poor child illustrated again

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 36 / 43

observes u1

does not observe u1

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Rich parent/poor child illustrated again

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 36 / 43

observes u1

does not observe u1

u1 is a witness that
v is richer than v1

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Rich parent/poor child illustrated again

V ′

•
u

•
v

•v1 • v2
•u2

•u1

•
•

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 36 / 43

observes u1

does not observe u1

u1 is a witness that
v is richer than v1

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The optimized algorithm on an example
V ′ = {u1, u3}

u6

{u1, u3}

u5

{u1, u3}

u0 {u1, u3}

u2

{u1, u3}

u1 u1

u4
{u1, u3}

u3 u3

W = V ′ = {u1, u3}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 37 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The optimized algorithm on an example
Iteration 1a: propagate u1 backwards

u6

{u1, u3}u1

u5

{u1, u3}u1

u0 {u1, u3}u1

u2

{u1, u3}u1

u1 u1

u4
{u1, u3}u1

u3 u3

W = {u1, u3}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 37 / 43

which vertex has u1
as observable?

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The optimized algorithm on an example
Iteration 1b: identify edges (u, v) such that u1∈obs(u), u16∈obs(v)

u6

{u1, u3}u1

u5

{u1, u3}u1

u0 {u1, u3}u1

u2

{u1, u3}u1

u1 u1

u4
{u1, u3}u1

u3 u3

W = {u1, u3}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 37 / 43

identify
rich parent/poor child

with witness u1

none found

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The optimized algorithm on an example
Iteration 2a: propagate u3 backwards

u6

{u1, u3}u3

u5

{u1, u3}u3

u0 {u1, u3}u3

u2

{u1, u3}u3

u1 u1

u4
{u1, u3}u3

u3 u3

W = {u1, u3}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 37 / 43

which vertex has u3
as observable?

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The optimized algorithm on an example
Iteration 2b: identify edges (u, v) such that u3∈obs(u), u36∈obs(v)

u6

{u1, u3}u3

u5

{u1, u3}u3

u0 {u1, u3}u3

u2

{u1, u3}u3

u1 u1

u4
{u1, u3}u3

u3 u3

W = {u1, u3}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 37 / 43

identify
rich parent/poor child

with witness u3

observes u3

does not observe u3

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The optimized algorithm on an example
Iteration 2c: update W

u6

{u1, u3}u3

u5

{u1, u3}u3

u0 {u1, u3}u0

u2

{u1, u3}u3

u1 u1

u4
{u1, u3}u3

u3 u3

W = {u0, u1, u3}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 37 / 43

add u0

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The optimized algorithm on an example
Iteration 3a: propagate u0 backwards

u6

{u1, u3}u0

u5

{u1, u3}u0

u0 {u1, u3}u0

u2

{u1, u3}u0

u1 u1

u4
{u1, u3}u0

u3 u3

W = {u0, u1, u3}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 37 / 43

which vertex has u0
as observable?

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The optimized algorithm on an example
Iteration 3b: identify edges (u, v) such that u0∈obs(u), u06∈obs(v)

u6

{u1, u3}u0

u5

{u1, u3}u0

u0 {u1, u3}u0

u2

{u1, u3}u0

u1 u1

u4
{u1, u3}u0

u3 u3

W = {u0, u1, u3}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 37 / 43

identify
rich parent/poor child

with witness u0

observes u0

observes u0 does not observe u0

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The optimized algorithm on an example
Iteration 3c: update W

u6

{u1, u3}u0

u5

{u1, u3}u0

u0 {u1, u3}u0

u2

{u1, u3}u2

u1 u1

u4
{u1, u3}u4

u3 u3

W = {u0, u1, u2, u3, u4}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 37 / 43

add u2

add u4

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

The optimized algorithm on an example
Iteration 7: no more unprocessed vertex, return W

u6

{u1, u3}u6

u5

{u1, u3}u6

u0 {u1, u3}u0

u2

{u1, u3}u2

u1 u1

u4
{u1, u3}u4

u3 u3

Closure: {u0, u1, u2, u3, u4, u6}

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 37 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

A few words about the formalization in Why3

The Why3 development has two parts:
• the new algorithm (250 loc)

• split into 3 functions
• most proofs are discharged automatically
• preservation of the main invariants proved manually in Coq

(100 lines of Coq proof)
• a small fragment of control dependence theory (80 loc)

• everything proved
• one lemma admitted (but proved in the Coq formalization)

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 38 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Experiments

• Both algorithms were implemented in OCaml using
OCamlgraph
• They were run on randomly generated graphs
• Checked on small graphs against a certified version extracted
from Coq

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 39 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Coq extraction vs. Danicic

0 200 400 600 800

0

20

40

60

80

100

number of nodes

ti
m
e(
s)

Coq extraction
Danicic

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 40 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Danicic vs. the new optimized algorithm

0 5 000 10 000 15 000 20 000 25 000 30 000

0

10

20

30

40

number of nodes

ti
m
e(
s)

Danicic
Optimized

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 41 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Contributions

• A theoretical justification of slicing in the presence of errors
and non-termination
• An algorithm computing efficiently control dependence on
finite graphs

• All results are certified (in Coq or Why3)
• including Danicic’s algorithm

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 42 / 43

Static Backward Slicing Slicing with Errors Arbitrary Control Dependence Optimized Algorithm Conclusion

Perspectives

• Formalize strong control dependence from [Danicic et al.,
2011]
• Perform experiments on realistic CFGs
• Investigate more optimizations

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 43 / 43

Graph theory

Alt-Ergo (1.30) CVC4 (1.5) Coq (8.6.1) Eprover (2.0) Z3 (4.5.0)

Number 10 14 4 6 0
Min time (s) 0 0,02 0,27 0,01 0
Max time (s) 0,01 0,67 0,37 0,44 0
Avg time (s) 0,01 0,083 0,3 0,093 N/A

+ 1 axiom (but proved in the Coq formalization)

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 44 / 43

Algorithm

Alt-Ergo (1.30) CVC4 (1.5) Coq (8.6.1) Eprover (2.0) Z3 (4.5.0)

Number 233 12 4 4 2
Min time (s) 0,01 0,08 0,32 0,08 0,34
Max time (s) 3,96 0,83 0,76 2,35 3,18
Avg time (s) 0,18 0,46 0,48 0,72 1,76

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 45 / 43

Control dependence on a control flow graph [Ferrante et al., 1987]

v is control-dependent on u iff u has two children u1 and u2 such
that u1 is always followed (post-dominated) by v , but not u2

start

L1: quo=0

L2: r=a

L3: while (b<=r)
u

L4: quo=quo+1
u2

L5: r=r-b
v

L6: if(r!=0)
u

L7: res=0
u2

L8: res=1
v , u1

end

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 46 / 43

Control dependence on a control flow graph [Ferrante et al., 1987]

v is control-dependent on u iff u has two children u1 and u2 such
that u1 is always followed (post-dominated) by v , but not u2

start

L1: quo=0

L2: r=a

L3: while (b<=r)
u

L4: quo=quo+1
u2

L5: r=r-b
v

L6: if(r!=0)
u

L7: res=0
u2

L8: res=1
v , u1

end

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 46 / 43

L8 is present on all paths L8 end,
but not on L7 end

control

data

Control dependence on a control flow graph [Ferrante et al., 1987]

v is control-dependent on u iff u has two children u1 and u2 such
that u1 is always followed (post-dominated) by v , but not u2

start

L1: quo=0

L2: r=a

L3: while (b<=r)
u

L4: quo=quo+1
u2

L5: r=r-b
v

L6: if(r!=0)
u

L7: res=0
u2

L8: res=1
v , u1

end

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 46 / 43

control

data

Control dependence on a control flow graph [Ferrante et al., 1987]

v is control-dependent on u iff u has two children u1 and u2 such
that u1 is always followed (post-dominated) by v , but not u2

start

L1: quo=0

L2: r=a

L3: while (b<=r)
u

L4: quo=quo+1
u1

L5: r=r-b
v

L6: if(r!=0)
uu2

L7: res=0
u2

L8: res=1
v , u1

end

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 46 / 43

L5 is present on all paths L4 end,
but not on L6 end

control

data

Control-closure for our running example

start

L1: quo=0

L2: r=a

L3: while (b<=r)

L4: quo=quo+1

L5: r=r-b

L6: if(r!=0)

L7: res=0 L8: res=1

end

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 47 / 43

Control-closure for our running example

start

L1: quo=0

L2: r=a

L3: while (b<=r)

L4: quo=quo+1

L5: r=r-b

L6: if(r!=0)

L7: res=0 L8: res=1

end

Jean-Christophe Léchenet Certified Algorithms for Program Slicing July 19th, 2018 47 / 43

	Context: Static Backward Slicing
	Slicing in the Presence of Errors
	An Algorithm for Arbitrary Control Dependence
	An Optimized Algorithm
	Conclusion
	Appendix

