Certified Algorithms for Program Slicing PhD thesis defense

Jean-Christophe Léchenet

July 19th, 2018 Palaiseau

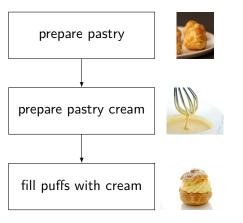
Let's cook pastry cream

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

July 19th, 2018 2 / 43

The recipe from my cookbook

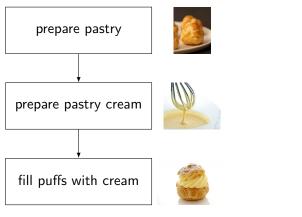


Cream Puff Recipe

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

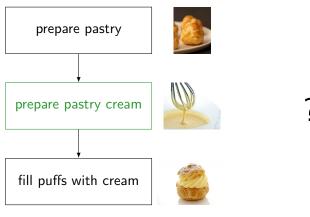
The recipe from my cookbook



Cream Puff Recipe

Pastry Cream Recipe

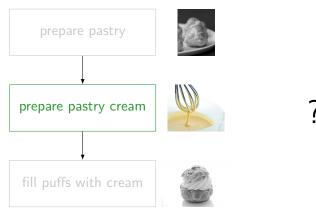
The recipe from my cookbook



Cream Puff Recipe

Pastry Cream Recipe

The recipe from my cookbook



Cream Puff Recipe

Pastry Cream Recipe

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

July 19th, 2018 3 / 43

The recipe from my cookbook

Cream Puff Recipe

Pastry Cream Recipe

The recipe from my cookbook

Cream Puff Recipe

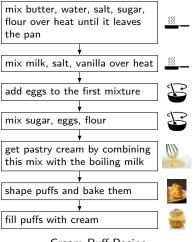
Pastry Cream Recipe

The recipe from my cookbook

Cream Puff Recipe

Pastry Cream Recipe

My grandmother's recipe



Cream Puff Recipe

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

July 19th, 2018 4 / 43

My grandmother's recipe



Pastry Cream Recipe

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

My grandmother's recipe

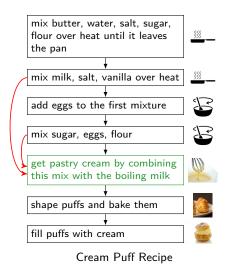


Pastry Cream Recipe

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

My grandmother's recipe



Pastry Cream Recipe

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

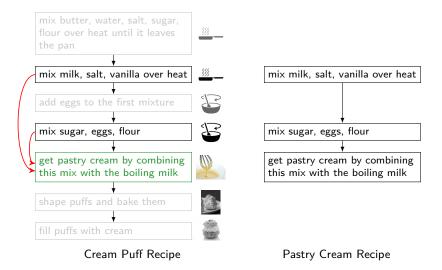
My grandmother's recipe

Pastry Cream Recipe

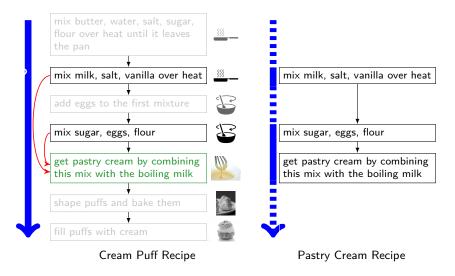
Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

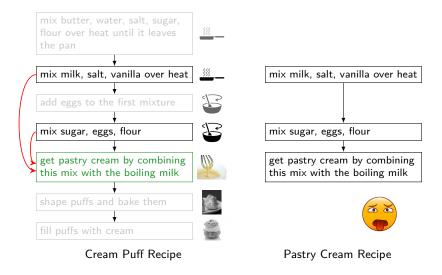
My grandmother's recipe



My grandmother's recipe

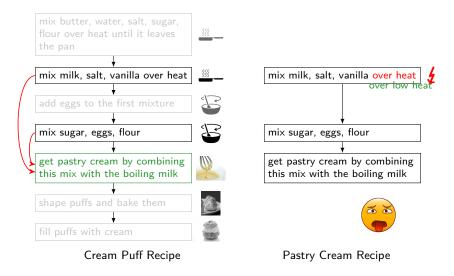


My grandmother's recipe



Jean-Christophe Léchenet

My grandmother's recipe

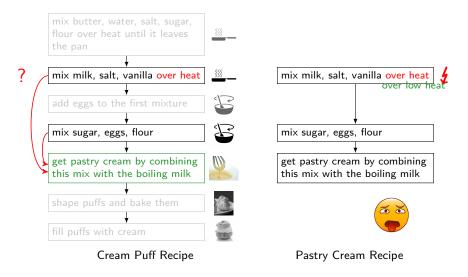


Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

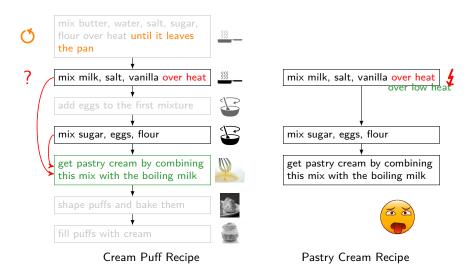
July 19th, 2018 4 / 43

My grandmother's recipe



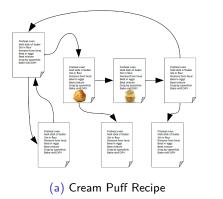
Jean-Christophe Léchenet

My grandmother's recipe



Jean-Christophe Léchenet

A recipe from the Internet



(b) Pastry Cream Recipe

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

July 19th, 2018 5 / 43

Program Slicing vs. Recipe Extraction

- Program slicing \simeq extraction of a sub-recipe
 - Extraction of the important steps w.r.t. a given goal
- Properties considered in this work:
 - Interpretation of errors
 - Handling of complex structures
 - Efficient
 - Provably correct

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

July 19th, 2018 6 / 43

Optimized Algorith

Conclusion

Outline

Context: Static Backward Slicing

Slicing in the Presence of Errors

An Algorithm for Arbitrary Control Dependence

An Optimized Algorithm

Conclusion

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

July 19th, 2018 7 / 43

Outline

Context: Static Backward Slicing

Slicing in the Presence of Errors

An Algorithm for Arbitrary Control Dependence

An Optimized Algorithm

Conclusion

Jean-Christophe Léchenet

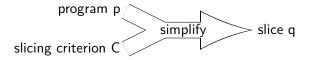
Certified Algorithms for Program Slicing

July 19th, 2018 8 / 43

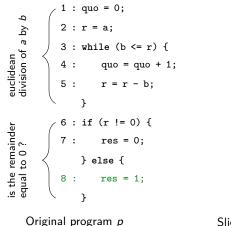
Definition

Static backward slicing (introduced by Weiser in 1981)

- simplifies a given program p but preserves the behavior w.r.t. a point of interest C (slicing criterion, typically a statement)
- removes irrelevant statements that do not impact C
- produces a simplified program q (slice)



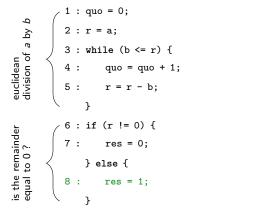
Example: test if *b* divides a (a, b > 0)



Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

July 19th, 2018 10 / 43



Original program p

Slice q w.r.t. line 8

Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet

Example: test if *b* divides a (a, b > 0)

Slice q w.r.t. line 8

• Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet

Original program p

Example: test if *b* divides a (a, b > 0)

Original program p

Slice q w.r.t. line 8

• Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet

Original program p

Slice q w.r.t. line 8

• Goal: preserve the behaviour of p w.r.t. line 8

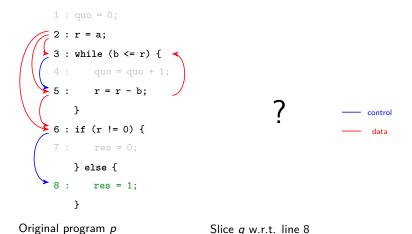
Jean-Christophe Léchenet

Original program p

Slice q w.r.t. line 8

• Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet



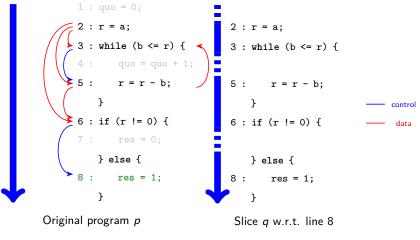
• Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet

2 : r = a; 2 : r = a:control $6: if (r != 0) {$ 6 : if (r != 0) { data 7 : res = 0; } else { 8 : res = 1; } else { 8 : res = 1; } } Original program p Slice q w.r.t. line 8

Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet



• Goal: preserve the behaviour of p w.r.t. line 8

Jean-Christophe Léchenet

Outline

Context: Static Backward Slicing

Slicing in the Presence of Errors

An Algorithm for Arbitrary Control Dependence

An Optimized Algorithm

Conclusion

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

July 19th, 2018 11 / 43

Motivation

Let q be a slice of p.

- If an error is found in q, is it also present in p?
- If there are no errors in q, what can be said about p?

Jean-Christophe Léchenet

Classic soundness property

Let p a program without failing instructions and q a slice of p.

Theorem (Classic soundness property, [Weiser, 1981] [Reps et al, 1989]) Let σ be an input state of p. Suppose that p halts on σ . Then q halts on σ and the executions of p and q on σ agree after each statement preserved in the slice on the variables that appear in this statement.

Formalized with a trajectory-based semantics as an equality of projections

Classic soundness property

Let p a program without failing instructions and q a slice of p.

Theorem (Classic soundness property, [Weiser, 1981] [Reps et al, 1989]) Let σ be an input state of p. **Suppose that** p **halts on** σ . Then q halts on σ and the executions of p and q on σ agree after each statement preserved in the slice on the variables that appear in this statement.

Formalized with a trajectory-based semantics as an equality of projections

Application to verification

Does this result also hold in the presence of errors and non-termination $? \end{tabular}$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

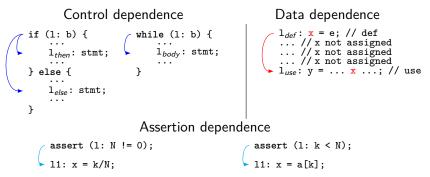
Modeling

- WHILE language: skip, x:=e, if, while, assert
- Assertions make runtime errors explicit
- Assertions protect all statements that may cause a runtime error

assert (1: N != 0); assert (1: k < N); 11: x = k/N; l1: x = a[k];

Certified Algorithms for Program Slicing

Dependence-based slicing



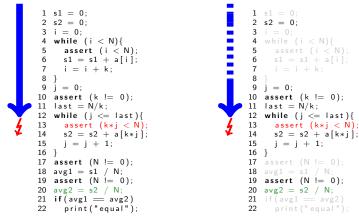
• Dependence-based slice q of p w.r.t. C: all statements on which one of the statements of C is (directly or indirectly) dependent

• Formally:
$$q = \{l \in p \mid l \to^* l', l' \in C\}$$
,
where $\to = \xrightarrow{ctrl} \cup \xrightarrow{data} \cup \xrightarrow{assert}$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

Case 1: same error



Original program p

Slice q w.r.t. line 20

Execution for test input: N = 2, k = 4

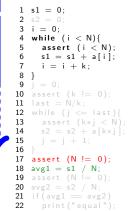
Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

Case 2: error hidden by another error (not preserved)

		1 :	s1 = 0;
		2 :	s2 = 0;
		3	i = 0;
		4	while $(i < N)$ {
		5	assert (i < N);
		6	s1 = s1 + a[i];
		7	i = i + k;
		8	}
1		9	j = 0; assert (k != 0);
4	1	0	assert (k != 0);
¥	1	1	last = N/k;
	1	2	while (j <= last){
	1	3	assert (k*j < N);
	1	4	s2 = s2 + a[k*j];
	1	5	j = j + 1;
	1	6	}
	1	7	assert (N != 0);
			avg1 = s1 / N;
			assert (N != 0);
			avg2 = s2 / N;
	2	1	if(avg1 == avg2)
	2	2	print("equal");

Original program p



Slice q w.r.t. line 18

Execution for test input: N = 0, k = 0

Jean-Christophe Léchenet

s2 = 0:

i = 0: 10 assert (k != 0);

11 last = \dot{N}/k ;

12 while $(j \leq last)$

j = j + 1;

17 assert (N != 0);

19 assert (N != 0);

21 if (avg1 == avg2)

18 avg1 = s1 / N:

20 avg2 = s2 / N;

13 assert (k*j < N);</p>

s2 = s2 + a[k*j];

9

14

15

22

16 }

4 while (i < N){

Case 3: error hidden by a loop (not preserved)

```
s1 = 0;
2 s2 = 0:
3 i = 0;
  while (i < N)
 5
   assert (i < N):
 6
  s1 = s1 + a[i];
    i = i + k;
 7
 8
 9
  i = 0:
10 assert (k = 0);
11 last = N/k;
12 while (j \leq last)
13 assert (k*j < N);</p>
     s2 = s2 + a[k*j];
14
15
    j = j + 1;
16 }
17 assert (N != 0);
18 \text{ avg1} = s1 / N:
19 assert (N != 0);
20 avg2 = s2 / N;
21
   if(avg1 = avg2)
22
     print("equal"):
```

Original program p

Slice q w.r.t. line 20

Execution for test input: N = 4, k = 0

Jean-Christophe Léchenet

- Equality of projections does not hold in general, due to:
 - Non-termination [Ball et al., 1993] [Ranganath et al., 2007] [Amtoft, 2008]
 - Errors [Harman et al., 1995] [Allen et al., 2003] [Rival, 2005]
- Three possible directions:
 - change the semantics [Cartwright et al., 1989] [Giacobazzi et al., 2003] [Nestra, 2009] [Barraclough et al., 2010]

🙂 E

- Extend the classic soundness property
- Consider non-existing trajectories
- add more dependencies [Ranganath et al., 2007]
 - Extend the classic soundness property
 - Bigger slices

All loops and assertions preceding the criterion will be systematically $\ensuremath{\mathsf{preserved}}$

- keep same kind of dependencies [Amtoft, 2008]
 - 🕑 Keep slices small
 - 🔨 Α weaker soundness property required

- Equality of projections does not hold in general, due to:
 - Non-termination [Ball et al., 1993] [Ranganath et al., 2007] [Amtoft, 2008]
 - Errors [Harman et al., 1995] [Allen et al., 2003] [Rival, 2005]
- Three possible directions:
 - change the semantics [Cartwright et al., 1989] [Giacobazzi et al., 2003] [Nestra, 2009] [Barraclough et al., 2010]

ं।

Extend the classic soundness property

Consider non-existing trajectories

- add more dependencies [Ranganath et al., 2007]
 - Extend the classic soundness property
 - Bigger slices

All loops and assertions preceding the criterion will be systematically $\ensuremath{\mathsf{preserved}}$

- keep same kind of dependencies [Amtoft, 2008]
 - Keep slices small

A weaker soundness property required: relaxed slicing

Soundness property of relaxed slicing

Let q be a slice of p.

Theorem

The projection of the trajectory of p is a prefix of the projection of the trajectory of q. If the execution of p terminates normally, the projections are equal.

Corollary

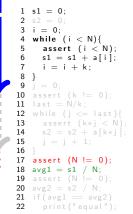
The classic soundness property.

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

Case 2: error hidden by another error (not preserved)

Original program p



Slice q w.r.t. line 18

Execution for test input: N = 0, k = 0

Jean-Christophe Léchenet

Verification on relaxed slices

Let q be a slice of p.

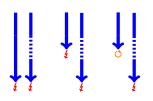
Theorem (No errors in the slice)

If there are no runtime errors in q, then there are none in p, in the statements preserved in q.

Theorem (An error in the slice)

If there is a runtime error in q, then either the same error occurs in p, or another error or an infinite loop caused by a statement not preserved in q masks it.

```
s1 = 0;
       = 0:
      = 0:
    while (i < N){
       assert (i < N);
      s1 = s1 + a[i];
       i = i + k:
      = 0:
       sert (k != 0);
     last
         = N/k:
712 while (j <= last){</p>
713
       assert (k*i < N):
714
      s2 = s2 + a[k*i];
7 15
       i = i + 1:
7 16
```



A few words about the formalization in Coq

- Results proved in Coq
- Size: 3,200 loc of spec, 6,500 loc of proof
- Certified slicer in OCaml extracted from Coq

Optimized Algorith

Conclusion

Outline

Context: Static Backward Slicing

Slicing in the Presence of Errors

An Algorithm for Arbitrary Control Dependence

An Optimized Algorithm

Conclusion

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

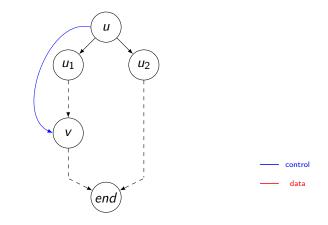
Control dependence on a structured language

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

Control dependence on a control flow graph [Ferrante et al., 1987]

v is control-dependent on u iff u has two children u_1 and u_2 such that u_1 is always followed (*post-dominated*) by v, but not u_2

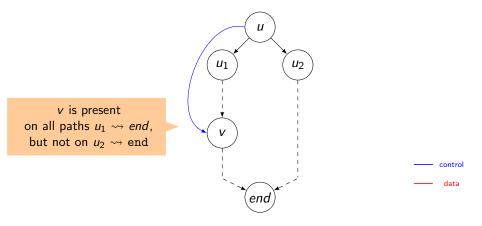


Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

Control dependence on a control flow graph [Ferrante et al., 1987]

v is control-dependent on *u* iff *u* has two children u_1 and u_2 such that u_1 is always followed (*post-dominated*) by *v*, but not u_2



Certified Algorithms for Program Slicing

Control dependence on a finite directed graph

• Remove the unique end node requirement [Amtoft, 2008]

- Unifying theory [Danicic et al., 2011]
 - Generalizes previous formalizations [Ferrante et al., 1987] [Amtoft, 2008]

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

Control dependence on a finite directed graph

• Remove the unique end node requirement [Amtoft, 2008]

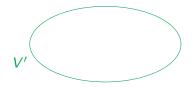
- Unifying theory [Danicic et al., 2011]
 - Generalizes previous formalizations [Ferrante et al., 1987] [Amtoft, 2008]

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

Definitions

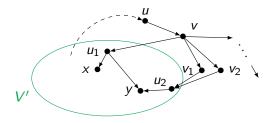
- Defined for a subset of vertices V'
- Non-restrictive assumption for the talk:
 - all nodes are reachable from V'



Jean-Christophe Léchenet

Definitions

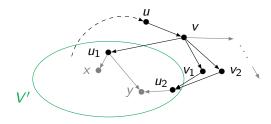
- Defined for a subset of vertices V'
- Non-restrictive assumption for the talk:
 - all nodes are reachable from V'



Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

• *obs*(*u*): set of first-reachable nodes (observables) from *u* in *V*'

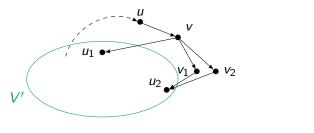


 $obs(u) = \{u_1, u_2\}$ $obs(v) = \{u_1, u_2\}$ $obs(v_1) = \{u_2\}$ $obs(v_2) = \{u_2\}$ $obs(u_1) = \{u_1\}$ $obs(u_2) = \{u_2\}$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

- obs(u): set of first-reachable nodes (observables) from u in V'
- V' is closed under control dependence (or control-closed) iff every node has at most one observable in V'

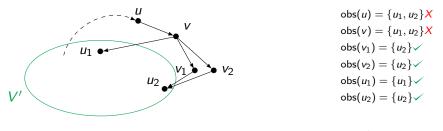


 $obs(u) = \{u_1, u_2\} \times obs(v) = \{u_1, u_2\} \times obs(v_1) = \{u_2\} \vee obs(v_2) = \{u_2\} \vee obs(u_1) = \{u_1\} \vee obs(u_1) = \{u_1\} \vee obs(u_2) = \{u_2\} \vee$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

- obs(u): set of first-reachable nodes (observables) from u in V'
- V' is closed under control dependence (or control-closed) iff every node has at most one observable in V'
- Control-closure of V': smallest control-closed superset



Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

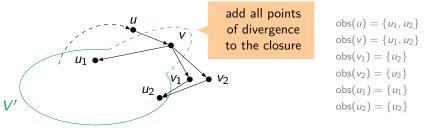
- obs(u): set of first-reachable nodes (observables) from u in V'
- V' is closed under control dependence (or control-closed) iff every node has at most one observable in V'
- Control-closure of V': smallest control-closed superset
- A node is V'-deciding if it gives rise to two non-trivial paths reaching V' that share no vertex except their origin point of divergence

closest to V'

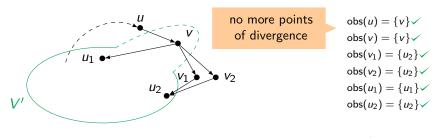
 $obs(u) = \{u_1, u_2\} \times obs(v) = \{u_1, u_2\} \times obs(v_1) = \{u_2\} \times obs(v_2) = \{u_2\} \times obs(u_1) = \{u_1\} \times obs(u_1) = \{u_1\} \times obs(u_2) = \{u_2\} \times obs(u$

Certified Algorithms for Program Slicing

- obs(u): set of first-reachable nodes (observables) from u in V'
- V' is closed under control dependence (or control-closed) iff every node has at most one observable in V'
- Control-closure of V': smallest control-closed superset
- A node is V'-deciding if it gives rise to two non-trivial paths reaching V' that share no vertex except their origin
- Theorem. control-closure(V') = V' \cup { V'-deciding vertices }



- obs(u): set of first-reachable nodes (observables) from u in V'
- V' is closed under control dependence (or control-closed) iff every node has at most one observable in V'
- Control-closure of V': smallest control-closed superset
- A node is V'-deciding if it gives rise to two non-trivial paths reaching V' that share no vertex except their origin
- Theorem. control-closure(V') = V' \cup { V'-deciding vertices }



Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

Danicic's method to compute control-closure

```
beginW \leftarrow V';while there exists a node u that is V'-deciding do| add that node to Wendreturn W;// the control-closure of V'end
```

Danicic's method to compute control-closure

```
beginW \leftarrow V';while there exists a node u that is V'-deciding do| add that node to Wendreturn Wendof divergence before V'
```

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

Danicic's method to compute control-closure *u* is a rich parent *v* is a poor child

with strictly more observables in \mathbf{W} than one of its children v

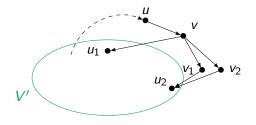
begin

```
W \leftarrow V';
while there exists a node u that is V'-deciding do
\downarrow add that node to W
end
return W
end
```

Formally:

 $1 \leq |obs(v)| < |obs(u)|$

Rich parent/poor child illustrated



$$obs(u) = \{u_1, u_2\}X$$

$$obs(v) = \{u_1, u_2\}X$$

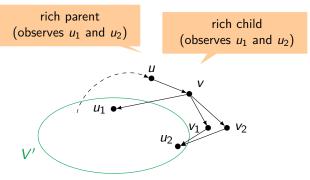
$$obs(v_1) = \{u_2\}V$$

$$obs(v_2) = \{u_2\}V$$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

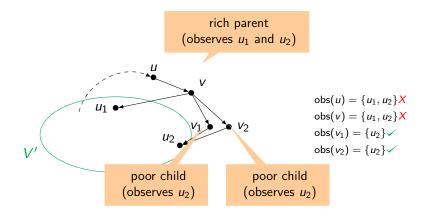
Rich parent/poor child illustrated



Jean-Christophe Léchenet

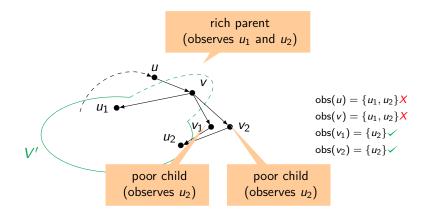
Certified Algorithms for Program Slicing

Rich parent/poor child illustrated



Certified Algorithms for Program Slicing

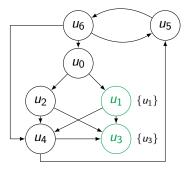
Rich parent/poor child illustrated



Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

Danicic's algorithm on an example $V' = \{u_1, u_3\}$



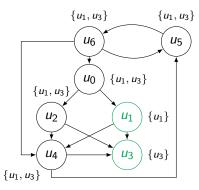
$$W = V' = \{u_1, u_3\}$$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

Danicic's algorithm on an example

Iteration 1a: compute the set of observables of every node

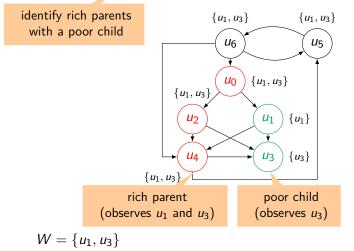


$$W = \{u_1, u_3\}$$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

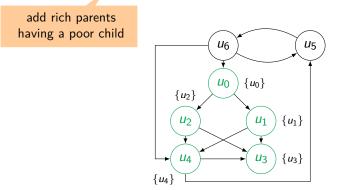
Iteration 1b: identify edges (u, v) such that $1 \le |obs(v)| < |obs(u)|$



Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

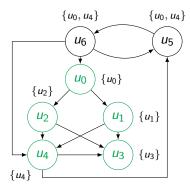
Iteration 1c; update W and throw away annotations



$$W = \{u_0, u_1, u_2, u_3, u_4\}$$

Jean-Christophe Léchenet

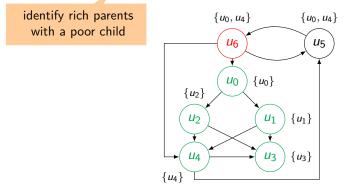
Iteration 2a: compute the observables of every node



$$W = \{u_0, u_1, u_2, u_3, u_4\}$$

Jean-Christophe Léchenet

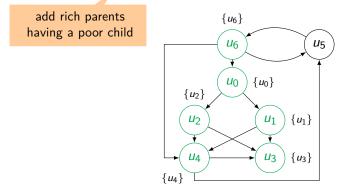
Iteration 2b; identify edges (u, v) such that $1 \le |obs(v)| < |obs(u)|$



$$W = \{u_0, u_1, u_2, u_3, u_4\}$$

Jean-Christophe Léchenet

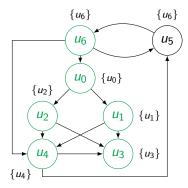
Iteration 2c' update W and throw away annotations



$$W = \{u_0, u_1, u_2, u_3, u_4, u_6\}$$

Jean-Christophe Léchenet

Iteration 3a: compute the observables of every node

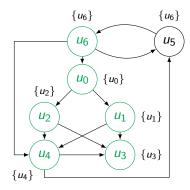


$$W = \{u_0, u_1, u_2, u_3, u_4, u_6\}$$

Jean-Christophe Léchenet

Iteration 3b; identify edges (u, v) such that $1 \le |obs(v)| < |obs(u)|$

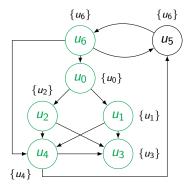
identify rich parents with a poor child



$$W = \{u_0, u_1, u_2, u_3, u_4, u_6\}$$

Jean-Christophe Léchenet

Iteration 3c: no new node, return W



Closure: $\{u_0, u_1, u_2, u_3, u_4, u_6\}$

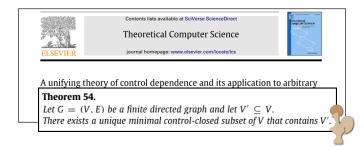
Jean-Christophe Léchenet

A few words about the formalization in Coq

- We formalized control-closure in Coq
 - We found and fixed a minor inconsistency in Danicic's paper proof
- We implemented (a slightly optimized version of) Danicic's algorithm and proved it correct
- Size: 2,000 loc of spec, 4,600 loc of proof

A few words about the formalization in Coq

- We formalized control-closure in Coq
 - We found and fixed a minor inconsistency in Danicic's paper proof
- We implemented (a slightly optimized version of) Danicic's algorithm and proved it correct
- Size: 2,000 loc of spec, 4,600 loc of proof



Optimized Algorithm

Conclusion

Outline

Context: Static Backward Slicing

Slicing in the Presence of Errors

An Algorithm for Arbitrary Control Dependence

An Optimized Algorithm

Conclusion

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

Motivation for a more efficient algorithm

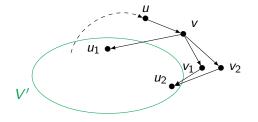
- Danicic et al. believe that "better than $O(|V|^3)$ worst-case time complexity algorithms may exist"
- Fundamental limitation of Danicic's algorithm:
 - It does not take advantage of previous iterations to speed up the following ones

New iterative algorithm: key ideas

• Rich parent/poor child detection

- no need to compute the set of observables exactly
- just exhibit a witness: a node observable from the parent, but not from the child
- Label each vertex with a candidate observable (if any)
 - each vertex is labeled with at most one vertex
 - can be temporarily outdated
 - the labeling survives the iterations and can be reused
- One additional output
 - at the end, labels are the true observables

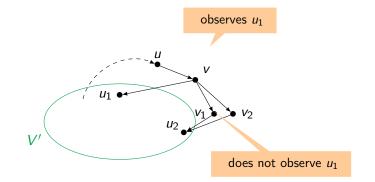
Rich parent/poor child illustrated again



Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

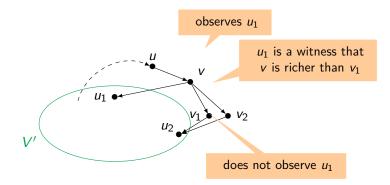
Rich parent/poor child illustrated again



Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

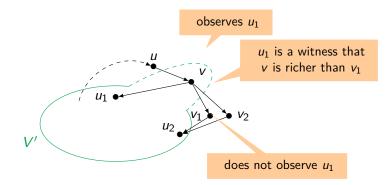
Rich parent/poor child illustrated again



Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

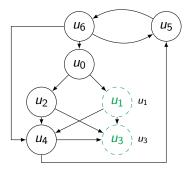
Rich parent/poor child illustrated again



Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

The optimized algorithm on an example $V' = \{u_1, u_3\}$



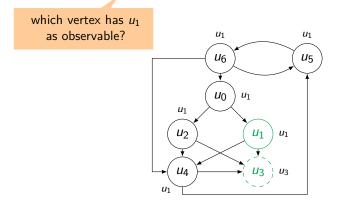
$$W=V'=\{u_1,u_3\}$$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

The optimized algorithm on an example

Iteration 1a: propagate u_1 backwards



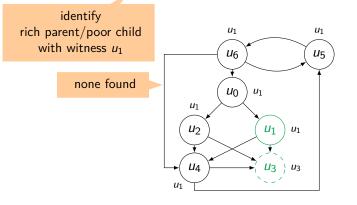
$$W = \{u_1, u_3\}$$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

The optimized algorithm on an example

Iteration 1b: identify edges (u, v) such that $u_1 \in obs(u)$, $u_1 \notin obs(v)$



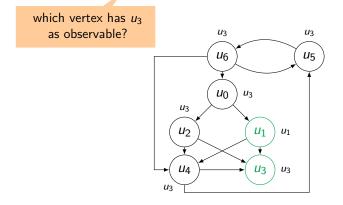
$$W = \{u_1, u_3\}$$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

The optimized algorithm on an example

Iteration 2a: propagate u_3 backwards



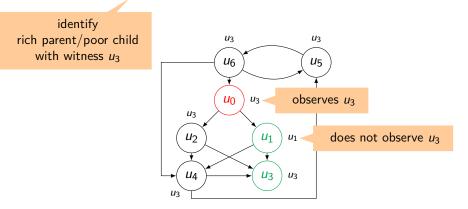
$$W = \{u_1, u_3\}$$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

The optimized algorithm on an example

Iteration 2b: identify edges (u, v) such that $u_3 \in obs(u)$, $u_3 \notin obs(v)$



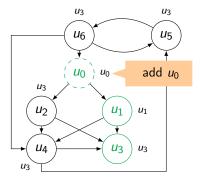
$$W = \{u_1, u_3\}$$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

The optimized algorithm on an example

Iteration 2c: update W

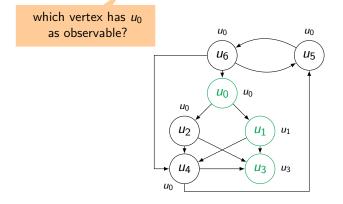


$$W = \{u_0, u_1, u_3\}$$

Jean-Christophe Léchenet

The optimized algorithm on an example

Iteration 3a: propagate u_0 backwards



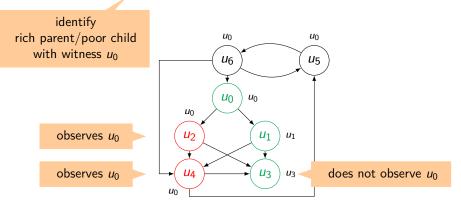
$$W = \{u_0, u_1, u_3\}$$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

The optimized algorithm on an example

Iteration 3b: identify edges (u, v) such that $u_0 \in obs(u)$, $u_0 \notin obs(v)$



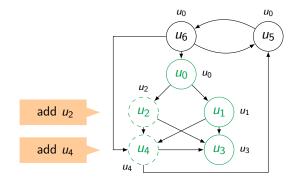
 $W=\{u_0,u_1,u_3\}$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

The optimized algorithm on an example

Iteration 3c: update W



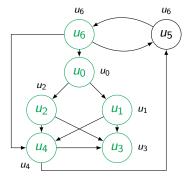
$$W = \{u_0, u_1, u_2, u_3, u_4\}$$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

The optimized algorithm on an example

Iteration 7: no more unprocessed vertex, return \boldsymbol{W}



Closure: $\{u_0, u_1, u_2, u_3, u_4, u_6\}$

Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

A few words about the formalization in Why3

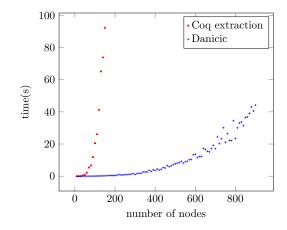
The Why3 development has two parts:

- the new algorithm (250 loc)
 - split into 3 functions
 - most proofs are discharged automatically
 - preservation of the main invariants proved manually in Coq (100 lines of Coq proof)
- a small fragment of control dependence theory (80 loc)
 - everything proved
 - one lemma admitted (but proved in the Coq formalization)

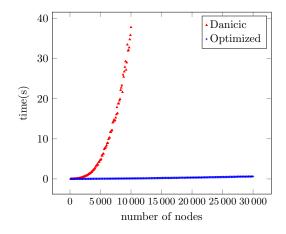
Experiments

- Both algorithms were implemented in OCaml using OCamlgraph
- They were run on randomly generated graphs
- Checked on small graphs against a certified version extracted from Cog

Coq extraction vs. Danicic



Danicic vs. the new optimized algorithm



Contributions

- A theoretical justification of slicing in the presence of errors and non-termination
- An algorithm computing efficiently control dependence on finite graphs

- All results are certified (in Coq or Why3)
 - including Danicic's algorithm

Perspectives

- Formalize strong control dependence from [Danicic et al., 2011]
- Perform experiments on realistic CFGs
- Investigate more optimizations

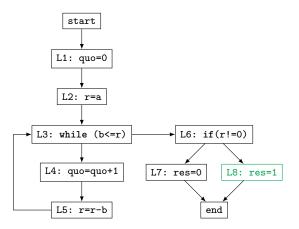
Graph theory

	Alt-Ergo (1.30)	CVC4 (1.5)	Coq (8.6.1)	Eprover (2.0)	Z3 (4.5.0)
Number	10	14	4	6	0
Min time (s)	0	0,02	0,27	0,01	0
Max time (s)	0,01	0,67	0,37	0,44	0
Avg time (s)	0,01	0,083	0,3	0,093	N/A

+ 1 axiom (but proved in the Coq formalization)

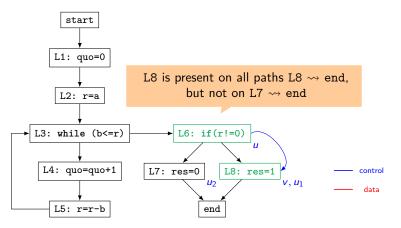
Algorithm

	Alt-Ergo (1.30)	CVC4 (1.5)	Coq (8.6.1)	Eprover (2.0)	Z3 (4.5.0)
Number	233	12	4	4	2
Min time (s)	0,01	0,08	0,32	0,08	0,34
Max time (s)	3,96	0,83	0,76	2,35	3,18
Avg time (s)	0,18	0,46	0,48	0,72	1,76



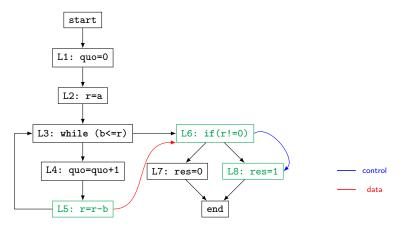
Jean-Christophe Léchenet

Certified Algorithms for Program Slicing



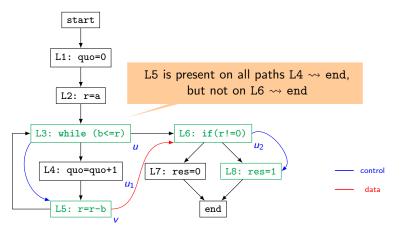
Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

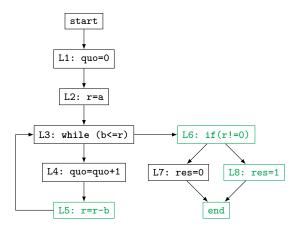


Jean-Christophe Léchenet

Certified Algorithms for Program Slicing



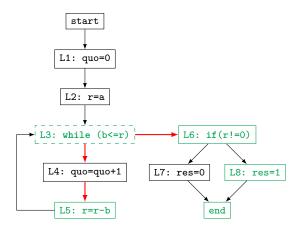
Control-closure for our running example



Jean-Christophe Léchenet

Certified Algorithms for Program Slicing

Control-closure for our running example



Jean-Christophe Léchenet

Certified Algorithms for Program Slicing