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Summary. The general problem discussed here concerns the approximatioa ntithber
of solutions of a boolean formula in conjunctive normal fdfmResults previously obtained
(Rouat (1999), Lerman and Rouat (1999)) are reconsidereccamgleted. Our method is
based on the general principle “divide to resolve”. The division is &elidy cutting a seri-
ation built on an incidence data table associated Wit this, the independence probability
concept is finely exploited. Theoretical justification and intensive exmaiation validate the
considerable reduction of the computational complexity obtained by otirade

1 Introduction

The Classification and Combinatorial Data Analysis methuase two general and
related aims:

1. extracting high density regions in the data represemafpace;
2. reducing the complexity of the data interpretation.

This objective can be associated with fundamental problarti® field of com-
putational complexity (Lerman (1995), Rouat (1999), Lenn@and Rouat (1999)).
The most representative of them concern satisfiability afidmn equations. Let us
introduce these problems; namely the SAT problem and th& #Béblem.

Consider a s&f = {x1,...,%,...,Xn} of boolean variables, a clause built\@ns
adisjunction of literaly1 Vy> V... Vyq V... Vyr (r <N)where{y1,y2,...,Yq, .- ¥r}
is defined from a subset ofvariables ofV. Each of them is taken in its positive
or (exclusively) negative formx{ or —x;). An assignment of the boolean variables
satisfies the clause if at least one of the variaplgs true, 1< q <r.

A SAT instance is defined by a conjunction of clauses built fom etV of
boolean variables. The SAT problem is that of the satisfigibilff a SAT instance;
that is to say, the recognition of the existence of a solutionther words, does there
exist an assignment of the boolean variables for which thE iSgtance is true?

#SAT problem consists of evaluating the number of solutmfres SAT instance.
Obviously an answer to the SAT problem is immediately predithy a solution of
the #SAT problem.
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SAT problem is at the origin of the definition of the NP-contplproblems (Cook
(1971)). They constitute the most difficult subclass of tNefi deterministic Poly-
nomial problems” (NP-problems). The nature of a large abdiskecision problems is
NP. Establishing the conjecture for which there does natexPolynomial algorithm
to resolve the SAT problem ( NP) is the most crucial point in the computational
complexity theory. The #SAT problem for which all the soduts of a SAT instance
have to be enumerated is clearly and a priori more difficaliekd it is situated in
the class of #P-complete problems (Valiant (1979)). Théssl‘comprises” all the
polynomial hierarchy (Toda (1989)). It has then very paitic importance in the
computational complexity theory. Consequently, the p&#SAT problem in this
theory is becoming more and more important these last yegua@@mitriou (1994)).

Several algorithms of exact resolution of #SAT have beempgsed (Dubois
(1991), Lozinskii (1992)). But all of them have an exponahtiature and then be-
come intractable even for reduced sizes of the SAT instaht@sever, approximat-
ing the number of solutions has a crucial interest in the fi¢ldomputational com-
plexity. Very important applications arise in computinglpabilities managing large
systems. Many methods have been proposed. One approadbkteonsnterrupt-
ing an exact resolution algorithm in order to infer an estiora(Rouat and Lerman
(1997, 1998)). Other approaches are based on random sgnpknrepresentation
space of the SAT instance (Karp and Luby (1983), Bailleux@hdbrier (1997)).

The basic idea of our method is associated with the genaraiple “divide to
resolve”. The matter consists of dividing the whole problietoe two subproblems
of similar size and reconstituting — in a polynomial algbnit — an approximate
evaluation of the global solution, from the exact solutiofishe two subproblems.
For this purpose an incidence data table crossing clauseariables is associated
with the SAT instance. In these conditions our method canibidet! into three
phases:

1. application of a specific technique of seriation;

2. cutting the seriation into two connected parts of comiplarsizes, in an optimal
manner with respect to a statistical independence critehaving a polynomial
Cost;

3. reconstitution of an approximate value of the total nundfesolutions of the
whole instance by means of a relevant formula, taking intmant the nature of
the random simulation of the SAT instance.

Precisely, we reconsider in this paper, by means of a newnstitation for-
mula, the experimental results obtained previously (REL289), Lerman and Rouat
(1999)). The new equation takes more intimately into acttum statistical depen-
dency of the above mentioned two segments of the seriation.

All of our experiments concern the classical cases of ran88AI and random
2SAT. The generation model assumes total probabilistiepeddence and uniform
distribution over the clause space, for which exactly tresp. two) variables per
clause are instanciated for 3SAT (resp. 2SAT). Thus, farttdel the probability of
a given clause is AY)23 (resp. ¥(%)22), where(Y) denotes a binomial coefficient.
This random model for which there is not any hidden staasttructure, provides
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the difficult cases of algorithmic resolution. It has beenvgh that the hardest of
them for 3SAT corresponds to a ratio aRIbetween the numbé? of clauses and
the numbeN of variables (Rouat (1999)).

2 The representation of the problem

2.1 Preliminary definitions

Let us recall the combinatorial and geometrical represiemtaLerman (1995),
Rouat and Lerman (1997, 1998)) that we have introduced guidiéed in our analy-
sis. This representation allows Combinatorial Data Arialishave a part in treating
SAT problems.

As mentioned above relative to a $et {x,...,X,...,xn} of boolean variables,
a clause of order(r < N) can be written:

C'=y1Vy2V...VyqV...Vy; 1)

where{1,2,...,q,...,r} designates a subsit,io,...,iq,...,ir} Of r subscripts of
{L,2,...,i,...,N} and whereyq represents;, or (exclusively)-x,, 1< q<r. Thus,
for example, by supposinyg greater than 7,

C3 =x1 VX3V X7 is a clause of order 3 for whigh = X1,y> = —x3 andys = x7.

An assignment of the boolean variables is a solution of (bsfées) the clause
if and only if at least one of the variablgs,1 < q <r, is true. It is the case in the
preceding example i; is true or (non exclusively}s is false or (non exclusively)
X7 IS true.

2.2 Pinpoint cylinder associated with a clause

A logical cube{0,1}N is associated with the s¥t of the N boolean variables. It
corresponds to the value set of the vector of boolean vasaky, ..., Xi,...,xn). A
value 1 (resp. 0) of th&gh component does mean that the variablés true (resp.
false), 1<i < N. The pinpoint cylinder associated with a given claGsis simply
defined by the set of points ¢0, 1}N which falsify the claus€. This set of vertices
has a particular geometric structure. More precisely, @atowith the above clause
C', its negation, the anti-clauseC". By writing C" in a more explicit form

Ch =V, VY, V.. . VYig Vo Vi, 2

we have —C" ==Y, AYi, A A A AT, 3)
where-yi, = X, (resp.—xiy) if yi; = =i, (resp.xi), 1<q<r.

The subset of points of the cuf®, 1}N satisfying (3) may be represented by
a vector of which the only specified components aré,...,ig,...,ir, the other
components being indeterminate. More precisely, by degati theith component
of such a vector, we have:
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ai,= 1 (resp. 0) ifyi, = —xi, (resp.x,), 1< q<r,
ai=cifi¢ {i17i27...,iq,...,ir}

wheree is an indeterminate boolean.
This structure that we can denote by

E' =E(C") ={(i1,i2,...,ir), (ai,, iy,..., 0 ) } 4)
defines in the logical cube space a cylinder whose the bakis int(a;, , ai,, . .., i, )
in the subspace underlined by the components, ... ,i,. This is the reason why we

call E" a “pinpoint cylinder of order”. Note that intersection of pinpoint cylinders
is a pinpoint cylinder.

2.3 Set theoretic expressions for SAT and #SAT problems
SAT instance can be put in the following conjunctive norneat
F=ClACZA...AC'A...ACJ (5)

whereCiri is a clause of order;,1 <i < P. Let Eiri denote the pinpoint cylinder
associated witﬁ:,ri ,1<i <P. The negate@ formula—F will be represented by the
union:
G= |J g" (6)
1<i<P

In these conditions, the SAT instance is satisfiable if anlgg dnG is a strict
subset of the cubg0, 1}N; that is to say, if and only iG does not cover all the cube
(2N —card G) # 0). On the other hand, the #SAT problem consists of evalgatia
cardinality cardG) of G. Thus, the resolution of the #SAT problem will be given by:

NBS(F) =2V —cardG). 7

3 Logical and probabilistic independences between two SAT
instances on the same variable set

According to (Simon and Dubois (1989)) two clauszandC’ are “logically inde-
pendent” if and only if no assignment of tiNe variables contradicts both clauses.
Since, the contradiction of a given clause is equivalenht datisfiability of the
associated anti-clause, this notion of logical independeasorresponds exactly to
disjunction in the set theoretic sense, between the twooimgylindersg(C) and
E(C') respectively associated wihandC':

logical independence betwe€randC’' < E(C)NE(C’) = 0. (8)

Let us now denote b andC’ the respective sets of clauses corresponding to
two SAT instances. More explicitly we have:
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C={Cl1<i<r} and C={Cl|1<i<r}. )

Consider now the set§(C) and G(C’) respectively associated with andC’
in the same manner & has been associated with(see (5) and (6) above§(C)
andG(C’) are unions of pinpoint cylinders. It follows that we may extehe above
definition (see (8)) by putting:

logical independence betwe@nandC’ <= G(C)NG(C’) = 0. (10)

The second member is equivalent to:
V(i) 1<ij<P Cinci=o. (11)

However the concerned independence notion that we haviedtadd exploited
(Rouat (1999), Lerman and Rouat (1999)) is probabilistiewNesults are reported
here. Let us now recall the general theoretical framework.

For a pinpoint cylindeE(C) representing a clausg we define the probability
P[E(C)] for a vertex — taken randomly in the cul®, 11N, provided by an uniform
distribution — to enteE(C). This probability represents the proportion of the cube
vertices which belong t&(C). Therefore, clearly FE(C")] = 27", whereC' is a
clause of order(r < N).

Definition 1. The clauses C and’'@re said to be independent (in probability) if and
only if

P[E(C)NE(C))] = P[E(C)] x P[E(C')] (12)
where EC) and E(C') are the pinpoint cylinders associated with C and C

Let nowW(C) andW(C') be two variable sets respectively instanciated in the
clause<C andC/, we have the following results (Rouat (1999), Lerman andaRou
(1999)).

Lemma 1. The clauses C and'Gre independent in probability if and only if {&)
and W(C') are disjoint WMC) N"W(C') = 0).

The generalization of the independence relation (12) toseée of clause€ and
C’ (see (9) above) can be stated as follows:

PG(C)NG(C)] = P[G(C)] x PG(C')] (13)

whereG(C) andG(C’) have been defined above. In these conditions we have the
following:

Theorem 1.C and C’ are two independent sets of clauses if whatever the pair of
clauses C and (oelonging respectively t6 andC’' (Ce CandC € C’),CandC
are independent.

Note that this condition is sufficient but not necessary. \&e have the following
result:

Theorem 2.C and C’ being two sets of clauses a necessary and sufficient comditio
for each clause of to be independent of each clauseGifis that the variable sets
W(C) and W(C’) are disjoint W(C) N"W(C’) = 0).
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4 Measuring dependency degree and reconstitution formula

In the context of the principle of our method “divide to resl consider an ordered
sequence of claus&= {Ci|1 <i < P} and imagine a decomposition Gfinto two
setsA. andB. delimited by a given subscrigt More precisely,

Ac={GC|1<i<c} and B;={Cjlc+1<i<P}. (14)

Let
A.={E|l1<i<c} and B;={E|c+1<i<P} (15)

the two sets of pinpoint cylinders respectively associatétd A. andB.. Finally,
denote byG. andH the unions

Ge= |J E and H.= ] E. (16)

1<i<c c+1i<P

As mentioned above (see (13)) the probabilistic indepecel&etweerA. and
B is expressed at the level & andH; by means of the equation:

P[G:NH¢] = P[G¢] x P[Hc]. a7)

In case of non independence the proposed dependency mé&agiven by the
joint probability density with respect to the product of thmarginal probabilities,
namely:

P[GcNH(]
depGe, He) PG < PiH

In these conditions the dependency degree betwgeand B, is related to the
distance of this index to unity.

Note thatG. N H. represents in its development the uniorcef (P — ¢) pinpoint
cylinders. Consequently, the computational complexitdeyiG.,Hc) becomes ex-
ponential. To see that, refer to the inclusion-exclusiomida.

In order to avoid this complexity we have proposed an appnakpn of defGc, Hc)
given by:

(18)

> acG, 2beH, Planb)
[Yaca. Plal] x [Zoen, Plbl]
It is of importance to note that this index preserves the dasbperties of
dep(Gg, He). As a matter of fact we have:

apdefGe,Hc) = (29)

Theorem 3.apdefGe, Hc) is equal to unity if G and H; are independent in proba-
bility.
Theorem 4.apdefGe, Hc) is equal to zero if and only if Gand H; are disjoint.

We leave the proofs of these theorems to be re-establishtéebgader.

It is clear that the computational complexity of apd8g Hc) is polynomial of

order 2 with respect to the s€tof clauses. Notice that all theses properties remain
valid for apdepG.,Hc)® wherea is a positive real number.
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Let us now denote by andJ the respective formulas correspondingGgand
Hc. On the other hand, note that the equation (7) can be written:

NBS(F) = (1—P[F]) x 2N (20)

where BF] is the probability of non satisfiability of the formuka(see (5))F is re-
garded here as the conjunctionl &ndJ. Now, by considering the following formula

card Gc UH¢) = card G¢) 4 cardH¢) — card Ge N H) (21)
one may establish the following result:

Theorem 5.

NBS(I) x NBSJ)

NBSF) = N

) -8 )

This equation can also be put in the following form:

+2N (1—

NBS(I) NBS(J)
X ZN X ZN X

N N
<1+ (1f NBZS(U) (1f NBZS(J)) (dep(ec, He) — 1)) . (23)

Imagine thaiG; andH. have the same size, namély2. In case of the consid-
ered random model the mathematical expectation of (B@esp. NB%J)) is given
by® (Simon and Dubois (1989))L — 2-3)P/2 x 2N and then the magnitude order of
the multiplicative factor o{dep(Ge, Ho) 1) is given by(1- (8/7)P/2)2 ~ (8/7)P
which is equal approximatively to 63000 forP = 100.

As described in the introduction our method consists inmgithe formulaF into
two complementary partsandJ having more or less the same number of clauses
and as independent in probability as possible. For thismeosition for which with
the above notations, we haeex (P — c) large and defG¢,Hc) near unity, a re-
constitution formula is proposed. In our earlier experitsewe have retained an
approximation for which the complementary term added totvéen the brackets
of (23) is neglected. More precisely, the previous appratiom that we denote by
ap1lNBSF) is written:

NBS(F) = 2N

NBS(1) x NBS(J)
2N '
Now, for the new approximation, a part is given for the abowntioned comple-

mentary term by substituting dé®, H¢) with apdegGe, Hc)?, with a small value
of a. The reason for this exponentiation consists of improvimg @approximation

apINBSF) = (24)

3 wherel andJ are conjunctions of clauses of order 3.
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quality of dedG¢, Hc) by apdeG¢, He) and also numerical accuracy in computing.
In these conditions, by denoting ap2N@&S the new approximation, we have:
NBS(1) x NBS(J)

oN

") (1- M55 ((apdee o) - 1), (@5)

ap2NBSF) =

+2N (17

5 “Divide to resolve”: cutting seriation associated with SA

Let there be an arbitrary SAT instance for which we desig@atereviously by
{X1,%2,...,X;j,...,xn } the variable set and b{Cy, ..., G;, ...,Cp} the clause set. The
(i, j) entry of the incidence data table associated with such a B#&nce is defined
by:

__ [ Oif neitherx; and—x; appear in théth clauseCi
&= { 1if xj or —x; appearsin théth clauseC;

1<i<P,1<j<N.

According to the above theorem 2, the ideal structure to gas wf block se-
riation (Lerman (1972), Leredde (1979), Marcotorchino§Zp with exactly two
blocks having equal sizes. Clearly, this pure form is inasif#e in real cases of
SAT instances. Moreover, it is quasi impossible for thisrfdo occur in case of ran-
dom SAT instances. Nevertheless and whatever will be thétyed the obtained
result, we have to approximate as close as possible this ligrmpermuting rows
and columns of the incidence data table. We have shown (Rowgbterman (1997,
1998)) that the most flexible strategy consists of first deieing global seriation
on the incidence data table and second, cutting this samiag optimally as possi-
ble. For this purpose, relative to the established serigsee Figure 1) we define
in the row set a median segmgat4P, 0.6P] covering 20% of the whole row set. In
this segment we seek for the best cutting by means of theiontapdefGe, Hc)
(see (19)). More explicitly, in this latter expressianindicates the row just before
the cutting,G¢ (resp.Hc) represents the union of the pinpoint cylinders respelgtive
associated with the first (resp.(P — c) last) rows. Thug is determined according
to:

(26)

argmin{ ‘ log (apdefGe, Hc)) ‘ |04P <c< O.GP}. 27)

A direct and specific technique of seriation has been prapwsthe context of this
research (Rouat and Lerman (1997, 1998), Rouat (1999)).

In these conditions, for each random generation of a SAkint, the experi-
mental design is decomposed as follows:

1. Seriation of the incidence data table defined in (26).

2. Determination of the best cutting according to the abaiter@n (27).

3. Computing the exact numbers of solutions of both sulaimsts obtained by
means of a variant of the Davis & Putnam algorithm (see in ®and Putnam
(1960), Andé and Dubois (1992)).
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N variables

P clauses

04P
} 05P
06P

05N

Fig. 1. Existence matrix: the clear part contains only zeros.

2SAT 3SAT

N 70 80 40 50
a 105 | 106 || 104 | 105
aplb][ 0.895[ 0.875 [ 0.803| 0.806
ap2b|| 0.915| 0.902 || 0.811 | 0.812
apl [ 0.727] 0.711 ] 0.597 [ 0.587
ap2 || 0.730| 0.712|| 0.598 | 0.590

Table 1. Slopes of the regression lines.

4. Computing of an approximation of the number of soluticithe whole instance
by means of the equation (25).

6 Experimental results

Consider the following results (Table 1 and Table 2) wheseréasons of hardness
of the SAT problemP/N has been taken equal respectively t@ i case of 2SAT
and to 2 in case of 3SAT. On the other hand, note that ap1b. @pgp) concerns the
cutting giving the best approximation by means of equatif) (resp. (25)). Oth-
erwise, apl and ap2 concern respectively the approxinmatjven by (24) and (25)
and obtained from the cutting detected by (27). Bhparameter has been adjusted
by taking into account the accuracy of the computing. Glgithle new results im-
prove the previous ones. This is more clear and significatiténcase of the best
cutting (see the results for ap2b with respect to those fabppEven in case where
the cutting is automatically obtained by means of the date(27), Table 1 shows
some tendency of a better behavior of ap2 with respect to ap1.

This cannot be neglected if we take into account all the difffjcof the problem
related to the random generation model of the SAT instaht@sever, itis of impor-
tance to notice that a criterion such (27) has a great catyatoildetect independent
blocks in case of a statistical dependency hidden structimder these conditions
and in order to improve our results we have to avoid the ingmmeé of the role of
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2SAT 3SAT
N 70 | 80 40 | 50
X a 105 |10°% | 1074 | 10°°
aplb 00 011 20 28
ap2b | NpgE < 03| 05| 20| 28
apl 48 | 5.1 || 12.7| 136
ap2 48 | 5.1 || 13.1| 141
aplb 95.8] 95.2][ 90.7 | 89.0
ap2b | L < gy <M || 96.4 | 95.1 | 91.3 | 88.8
apl 785 | 779 65.2| 61.4
ap2 78.4| 78.1| 65.2 | 60.9
aplb 42 | 4.7 73 | 82
X
ap2b|  M< yE5E 33| 44 | 6.7 | 84
apl 16.7 | 17.0| 22.1| 25.0
ap2 16.8 | 16.8 | 21.7 | 25.0

Table 2. Percentage of instances for which the raidNBSF) is limited by the boundaries
1/mandm (m= 2 for 2SAT andm = 1.5 for 3SAT).

the blind cutting of the seriation by means of a criterionts(27). As a matter of
fact, till now, we have proposed to approximate the exacfficoent (18) by means

of a coefficient such (19) having a polynomial cost and présgrthe formal prop-
erties of (18) (see theorems 3 and 4). But notice that therderator of dejG, Hc),
namely BRG] x P[Hc], is known (see point 3 of the experimental design described
above in section 5). Thus, a new idea consists of evaluafi@gH.] by means of

its mathematical expectation under the generation randontehof the concerned
SAT instance.

IndeedG; N Hc is union ofc x (P — c) pinpoint cylinders. Some of them can
be empty. In the case ofSAT, the volume of a hon empty pinpoint cylinder can
be N-r-itl 1< j <r+1. In these conditions, the mathematical expectation
of the random variable associated witiGPN H], conditioned by the structure
{@ Q) | 1<j<r+1) (28)
is given by

1- (1_ 2(f+i*1)Qj)
1I<)<r+1
(Simon and Dubois (1989), more directly Lerman (1992) citeerman (1995)).
By exploiting this result we have the following:

(29)

Theorem 6. The mathematical expectation of the random variable assediwith
NBSF), knowing NBH ), NBSJ) and (28), is given by

NBYF)=NBSI)+NBgJ)-2" [] (1-2"17Y9), (30)

1<)<r+1

(30) is equal to the following formula that is in a nearestresgion of (25):
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NBS(I) x NBS(J)
2N

i NBS(I NBS(J
+2N((l_1<1|:|r+1(1_2( +j 1)QJ>)_(1_ zN( ))(l— ZN( )))

This new approximation formula will be experimented in niegwre.

7 Conclusion

Implicitly, we have shown in this paper the importance of ithke of combinatorial
data analysis in the field of computational complexity. Mpeeticularly, the prob-
lem of approximating #SAT is considered in terms of filling fbgical cube{0, 1}N
by pinpoint cylinders. A proposed method (Rouat (1999)nhaem and Rouat (1999))
based on cutting seriation is more deeply studied and navitsese obtained. These
results are very competitive with respect those publishettié literature (Bailleux
and Chabrier (1996)). New and improving results can be drgédollowing the last
proposition (see theorem 6). The next stage of this reseamebists of introducing
statistical sampling theory (Karp and Luby (1983)) in orteevaluate more accu-
rately the dependence degree between two sets of clauses.
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