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Summary. The general problem discussed here concerns the approximation of the number
of solutions of a boolean formula in conjunctive normal formF . Results previously obtained
(Rouat (1999), Lerman and Rouat (1999)) are reconsidered andcompleted. Our method is
based on the general principle “divide to resolve”. The division is achieved by cutting a seri-
ation built on an incidence data table associated withF . In this, the independence probability
concept is finely exploited. Theoretical justification and intensive experimentation validate the
considerable reduction of the computational complexity obtained by our method.

1 Introduction

The Classification and Combinatorial Data Analysis methodshave two general and
related aims:

1. extracting high density regions in the data representation space;
2. reducing the complexity of the data interpretation.

This objective can be associated with fundamental problemsin the field of com-
putational complexity (Lerman (1995), Rouat (1999), Lerman and Rouat (1999)).
The most representative of them concern satisfiability of boolean equations. Let us
introduce these problems; namely the SAT problem and the #SAT problem.

Consider a setV = {x1, . . . ,xi , . . . ,xN} of boolean variables, a clause built onV is
a disjunction of literalsy1∨y2∨ . . .∨yq∨ . . .∨yr(r < N) where{y1,y2, . . . ,yq, . . . ,yr}
is defined from a subset ofr variables ofV. Each of them is taken in its positive
or (exclusively) negative form (xi or ¬xi). An assignment of the boolean variables
satisfies the clause if at least one of the variablesyq is true, 1≤ q≤ r.

A SAT instance is defined by a conjunction of clauses built on the setV of
boolean variables. The SAT problem is that of the satisfiability of a SAT instance;
that is to say, the recognition of the existence of a solution. In other words, does there
exist an assignment of the boolean variables for which the SAT instance is true?

#SAT problem consists of evaluating the number of solutionsof a SAT instance.
Obviously an answer to the SAT problem is immediately provided by a solution of
the #SAT problem.



2 I.C. Lerman and V. Rouat

SAT problem is at the origin of the definition of the NP-complete problems (Cook
(1971)). They constitute the most difficult subclass of the “Non deterministic Poly-
nomial problems” (NP-problems). The nature of a large classof decision problems is
NP. Establishing the conjecture for which there does not exist a Polynomial algorithm
to resolve the SAT problem (P6= NP) is the most crucial point in the computational
complexity theory. The #SAT problem for which all the solutions of a SAT instance
have to be enumerated is clearly and a priori more difficult. Indeed it is situated in
the class of #P-complete problems (Valiant (1979)). This class “comprises” all the
polynomial hierarchy (Toda (1989)). It has then very particular importance in the
computational complexity theory. Consequently, the part of #SAT problem in this
theory is becoming more and more important these last year (Papadimitriou (1994)).

Several algorithms of exact resolution of #SAT have been proposed (Dubois
(1991), Lozinskii (1992)). But all of them have an exponential nature and then be-
come intractable even for reduced sizes of the SAT instances. However, approximat-
ing the number of solutions has a crucial interest in the fieldof computational com-
plexity. Very important applications arise in computing probabilities managing large
systems. Many methods have been proposed. One approach consists in interrupt-
ing an exact resolution algorithm in order to infer an estimation (Rouat and Lerman
(1997, 1998)). Other approaches are based on random sampling in a representation
space of the SAT instance (Karp and Luby (1983), Bailleux andChabrier (1997)).

The basic idea of our method is associated with the general principle “divide to
resolve”. The matter consists of dividing the whole probleminto two subproblems
of similar size and reconstituting — in a polynomial algorithm — an approximate
evaluation of the global solution, from the exact solutionsof the two subproblems.
For this purpose an incidence data table crossing clauses byvariables is associated
with the SAT instance. In these conditions our method can be divided into three
phases:

1. application of a specific technique of seriation;
2. cutting the seriation into two connected parts of comparable sizes, in an optimal

manner with respect to a statistical independence criterion, having a polynomial
cost;

3. reconstitution of an approximate value of the total number of solutions of the
whole instance by means of a relevant formula, taking into account the nature of
the random simulation of the SAT instance.

Precisely, we reconsider in this paper, by means of a new reconstitution for-
mula, the experimental results obtained previously (Rouat(1999), Lerman and Rouat
(1999)). The new equation takes more intimately into account the statistical depen-
dency of the above mentioned two segments of the seriation.

All of our experiments concern the classical cases of random3SAT and random
2SAT. The generation model assumes total probabilistic independence and uniform
distribution over the clause space, for which exactly three(resp. two) variables per
clause are instanciated for 3SAT (resp. 2SAT). Thus, for this model the probability of
a given clause is 1/(N

3)23 (resp. 1/(N
2)22), where(N

k) denotes a binomial coefficient.
This random model for which there is not any hidden statistical structure, provides
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the difficult cases of algorithmic resolution. It has been shown that the hardest of
them for 3SAT corresponds to a ratio of 1.2 between the numberP of clauses and
the numberN of variables (Rouat (1999)).

2 The representation of the problem

2.1 Preliminary definitions

Let us recall the combinatorial and geometrical representation (Lerman (1995),
Rouat and Lerman (1997, 1998)) that we have introduced and exploited in our analy-
sis. This representation allows Combinatorial Data Analysis to have a part in treating
SAT problems.

As mentioned above relative to a setV = {x1, . . . ,xi , . . . ,xN} of boolean variables,
a clause of orderr(r < N) can be written:

Cr = y1∨y2∨ . . .∨yq∨ . . .∨yr (1)

where{1,2, . . . ,q, . . . , r} designates a subset{i1, i2, . . . , iq, . . . , ir} of r subscripts of
{1,2, . . . , i, . . . ,N} and whereyq representsxiq or (exclusively)¬xiq, 1≤ q≤ r. Thus,
for example, by supposingN greater than 7,
C3 = x1∨¬x3∨x7 is a clause of order 3 for whichy1 = x1,y2 = ¬x3 andy3 = x7.

An assignment of the boolean variables is a solution of (or satisfies) the clause
if and only if at least one of the variablesyq,1≤ q≤ r, is true. It is the case in the
preceding example ifx1 is true or (non exclusively)x3 is false or (non exclusively)
x7 is true.

2.2 Pinpoint cylinder associated with a clause

A logical cube{0,1}N is associated with the setV of the N boolean variables. It
corresponds to the value set of the vector of boolean variables(x1, . . . ,xi , . . . ,xN). A
value 1 (resp. 0) of theith component does mean that the variablexi is true (resp.
false), 1≤ i ≤ N. The pinpoint cylinder associated with a given clauseC is simply
defined by the set of points of{0,1}N which falsify the clauseC. This set of vertices
has a particular geometric structure. More precisely, associate with the above clause
Cr , its negation, the anti-clause¬Cr . By writing Cr in a more explicit form

Cr = yi1 ∨yi2 ∨ . . .∨yiq ∨ . . .∨yir , (2)

we have ¬Cr = ¬yi1 ∧¬yi2 ∧ . . .∧¬yiq ∧ . . .∧¬yir (3)
where¬yiq = xiq (resp.¬xiq) if yiq = ¬xiq (resp.xiq), 1≤ q≤ r.

The subset of points of the cube{0,1}N satisfying (3) may be represented by
a vector of which the only specified components arei1, i2, . . . , iq, . . . , ir , the other
components being indeterminate. More precisely, by denoting αi the ith component
of such a vector, we have:
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αiq= 1 (resp. 0) ifyiq = ¬xiq (resp.xiq), 1≤ q≤ r,
αi = ε if i /∈ {i1, i2, . . . , iq, . . . , ir}

whereε is an indeterminate boolean.
This structure that we can denote by

Er = E(Cr) = {(i1, i2, . . . , ir),(αi1,αi2, . . . ,αir )} (4)

defines in the logical cube space a cylinder whose the basis isthe point(αi1,αi2, . . . ,αir )
in the subspace underlined by the componentsi1, i2, . . . , ir . This is the reason why we
call Er a “pinpoint cylinder of orderr”. Note that intersection of pinpoint cylinders
is a pinpoint cylinder.

2.3 Set theoretic expressions for SAT and #SAT problems

SAT instance can be put in the following conjunctive normal form

F = Cr1
1 ∧Cr2

2 ∧ . . .∧Cr i
i ∧ . . .∧C

rp
p (5)

whereCr i
i is a clause of orderr i ,1 ≤ i ≤ P. Let Er i

i denote the pinpoint cylinder
associated withCr i

i ,1≤ i ≤ P. The negatedF formula¬F will be represented by the
union:

G =
⋃

1≤i≤P

Er i
i . (6)

In these conditions, the SAT instance is satisfiable if and only if G is a strict
subset of the cube{0,1}N; that is to say, if and only ifG does not cover all the cube
(2N −card(G) 6= 0). On the other hand, the #SAT problem consists of evaluating the
cardinality card(G) of G. Thus, the resolution of the #SAT problem will be given by:

NBS(F) = 2N −card(G). (7)

3 Logical and probabilistic independences between two SAT
instances on the same variable set

According to (Simon and Dubois (1989)) two clausesC andC′ are “logically inde-
pendent” if and only if no assignment of theN variables contradicts both clauses.
Since, the contradiction of a given clause is equivalent to the satisfiability of the
associated anti-clause, this notion of logical independence corresponds exactly to
disjunction in the set theoretic sense, between the two pinpoint cylindersE(C) and
E(C′) respectively associated withC andC′:

logical independence betweenC andC′ ⇐⇒ E(C)∩E(C′) = /0. (8)

Let us now denote byC andC’ the respective sets of clauses corresponding to
two SAT instances. More explicitly we have:
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C = {Cr i
i |1≤ i ≤ r} and C’ = {C′r ′ i

i |1≤ i ≤ r}. (9)

Consider now the setsG(C) andG(C’) respectively associated withC andC’
in the same manner asG has been associated withF (see (5) and (6) above).G(C)
andG(C’) are unions of pinpoint cylinders. It follows that we may extend the above
definition (see (8)) by putting:

logical independence betweenC andC’ ⇐⇒ G(C)∩G(C’) = /0. (10)

The second member is equivalent to:

∀(i, j),1≤ i, j ≤ P, Cr i
i ∩C′r

′
j

j = /0. (11)

However the concerned independence notion that we have studied and exploited
(Rouat (1999), Lerman and Rouat (1999)) is probabilistic. New results are reported
here. Let us now recall the general theoretical framework.

For a pinpoint cylinderE(C) representing a clauseC, we define the probability
P[E(C)] for a vertex — taken randomly in the cube{0,1}N, provided by an uniform
distribution — to enterE(C). This probability represents the proportion of the cube
vertices which belong toE(C). Therefore, clearly P[E(Cr)] = 2−r , whereCr is a
clause of orderr(r ≤ N).

Definition 1. The clauses C and C′ are said to be independent (in probability) if and
only if

P[E(C)∩E(C′)] = P[E(C)]×P[E(C′)] (12)

where E(C) and E(C′) are the pinpoint cylinders associated with C and C′.

Let nowW(C) andW(C′) be two variable sets respectively instanciated in the
clausesC andC′, we have the following results (Rouat (1999), Lerman and Rouat
(1999)).

Lemma 1. The clauses C and C′ are independent in probability if and only if W(C)
and W(C′) are disjoint (W(C)∩W(C′) = /0).

The generalization of the independence relation (12) to twosets of clausesC and
C’ (see (9) above) can be stated as follows:

P[G(C)∩G(C’)] = P[G(C)]×P[G(C’)] (13)

whereG(C) andG(C’) have been defined above. In these conditions we have the
following:

Theorem 1.C and C’ are two independent sets of clauses if whatever the pair of
clauses C and C′ belonging respectively toC andC’ (C ∈ C and C′ ∈ C’), C and C′

are independent.

Note that this condition is sufficient but not necessary. We also have the following
result:

Theorem 2.C andC’ being two sets of clauses a necessary and sufficient condition
for each clause ofC to be independent of each clause ofC’ is that the variable sets
W(C) and W(C’) are disjoint (W(C)∩W(C’) = /0).
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4 Measuring dependency degree and reconstitution formula

In the context of the principle of our method “divide to resolve” consider an ordered
sequence of clausesC = {Ci |1≤ i ≤ P} and imagine a decomposition ofC into two
setsAc andBc delimited by a given subscriptc. More precisely,

Ac = {Ci |1≤ i ≤ c} and Bc = {Ci |c+1≤ i ≤ P}. (14)

Let
Ac = {Ei |1≤ i ≤ c} and Bc = {Ei |c+1≤ i ≤ P} (15)

the two sets of pinpoint cylinders respectively associatedwith Ac andBc. Finally,
denote byGc andHc the unions

Gc =
⋃

1≤i≤c

Ei and Hc =
⋃

c+1≤i≤P

Ei . (16)

As mentioned above (see (13)) the probabilistic independence betweenAc and
Bc is expressed at the level ofGc andHc by means of the equation:

P[Gc∩Hc] = P[Gc]×P[Hc]. (17)

In case of non independence the proposed dependency measureis given by the
joint probability density with respect to the product of themarginal probabilities,
namely:

dep(Gc,Hc) =
P[Gc∩Hc]

P[Gc]×P[Hc]
. (18)

In these conditions the dependency degree betweenAc andBc is related to the
distance of this index to unity.

Note thatGc∩Hc represents in its development the union ofc× (P−c) pinpoint
cylinders. Consequently, the computational complexity ofdep(Gc,Hc) becomes ex-
ponential. To see that, refer to the inclusion-exclusion formula.

In order to avoid this complexity we have proposed an approximation of dep(Gc,Hc)
given by:

apdep(Gc,Hc) =
∑a∈Gc ∑b∈Hc P[a∩b]

[∑a∈Gc P[a]]× [∑b∈Hc P[b]]
. (19)

It is of importance to note that this index preserves the basic properties of
dep(Gc,Hc). As a matter of fact we have:

Theorem 3.apdep(Gc,Hc) is equal to unity if Gc and Hc are independent in proba-
bility.

Theorem 4.apdep(Gc,Hc) is equal to zero if and only if Gc and Hc are disjoint.

We leave the proofs of these theorems to be re-established bythe reader.
It is clear that the computational complexity of apdep(Gc,Hc) is polynomial of

order 2 with respect to the setC of clauses. Notice that all theses properties remain
valid for apdep(Gc,Hc)

α whereα is a positive real number.
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Let us now denote byI andJ the respective formulas corresponding toGc and
Hc. On the other hand, note that the equation (7) can be written:

NBS(F) = (1−P[F ])×2N (20)

where P[F ] is the probability of non satisfiability of the formulaF (see (5)).F is re-
garded here as the conjunction ofI andJ. Now, by considering the following formula

card(Gc∪Hc) = card(Gc)+card(Hc)−card(Gc∩Hc) (21)

one may establish the following result:

Theorem 5.

NBS(F) =
NBS(I)×NBS(J)

2N

+2N
(

1−
NBS(I)

2N

)(

1−
NBS(J)

2N

)(

dep(Gc,Hc)−1
)

. (22)

This equation can also be put in the following form:

NBS(F) = 2N ×
NBS(I)

2N ×
NBS(J)

2N ×

(

1+
(

1−
2N

NBS(I)

)(

1−
2N

NBS(J)

)(

dep(Gc,Hc)−1
)

)

. (23)

Imagine thatGc andHc have the same size, namelyP/2. In case of the consid-
ered random model the mathematical expectation of NBS(I) (resp. NBS(J)) is given
by3 (Simon and Dubois (1989))(1−2−3)P/2×2N and then the magnitude order of

the multiplicative factor of(dep(Gc,Hc)−1) is given by
(

1− (8/7)P/2
)2

≃ (8/7)P

which is equal approximatively to 630,000 forP = 100.
As described in the introduction our method consists in cutting the formulaF into

two complementary partsI andJ having more or less the same number of clauses
and as independent in probability as possible. For this decomposition for which with
the above notations, we havec× (P− c) large and dep(Gc,Hc) near unity, a re-
constitution formula is proposed. In our earlier experiments we have retained an
approximation for which the complementary term added to 1 between the brackets
of (23) is neglected. More precisely, the previous approximation that we denote by
ap1NBS(F) is written:

ap1NBS(F) =
NBS(I)×NBS(J)

2N . (24)

Now, for the new approximation, a part is given for the above mentioned comple-
mentary term by substituting dep(Gc,Hc) with apdep(Gc,Hc)

α , with a small value
of α. The reason for this exponentiation consists of improving the approximation

3 whereI andJ are conjunctions of clauses of order 3.
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quality of dep(Gc,Hc) by apdep(Gc,Hc) and also numerical accuracy in computing.
In these conditions, by denoting ap2NBS(F) the new approximation, we have:

ap2NBS(F) =
NBS(I)×NBS(J)

2N

+2N
(

1−
NBS(I)

2N

)(

1−
NBS(J)

2N

)(

(

apdep(Gc,Hc)
)α

−1
)

. (25)

5 “Divide to resolve”: cutting seriation associated with SAT

Let there be an arbitrary SAT instance for which we designateas previously by
{x1,x2, . . . ,x j , . . . ,xN} the variable set and by{C1, . . . ,Ci , . . . ,CP} the clause set. The
(i, j) entry of the incidence data table associated with such a SAT instance is defined
by:

ai j =

{

0 if neitherx j and¬x j appear in theith clauseCi

1 if x j or¬x j appearsin theith clauseCi
(26)

1≤ i ≤ P, 1≤ j ≤ N.
According to the above theorem 2, the ideal structure to set up is of block se-

riation (Lerman (1972), Leredde (1979), Marcotorchino (1987)) with exactly two
blocks having equal sizes. Clearly, this pure form is inaccessible in real cases of
SAT instances. Moreover, it is quasi impossible for this form to occur in case of ran-
dom SAT instances. Nevertheless and whatever will be the quality of the obtained
result, we have to approximate as close as possible this formby permuting rows
and columns of the incidence data table. We have shown (Rouatand Lerman (1997,
1998)) that the most flexible strategy consists of first determining global seriation
on the incidence data table and second, cutting this seriation as optimally as possi-
ble. For this purpose, relative to the established seriation (see Figure 1) we define
in the row set a median segment[0.4P,0.6P] covering 20% of the whole row set. In
this segment we seek for the best cutting by means of the criterion apdep(Gc,Hc)
(see (19)). More explicitly, in this latter expression,c indicates the row just before
the cutting,Gc (resp.Hc) represents the union of the pinpoint cylinders respectively
associated with thec first (resp.(P− c) last) rows. Thusc is determined according
to:

argmin
{∣

∣

∣
log

(

apdep(Gc,Hc)
)

∣

∣

∣
| 0.4P≤ c≤ 0.6P

}

. (27)

A direct and specific technique of seriation has been proposed in the context of this
research (Rouat and Lerman (1997, 1998), Rouat (1999)).

In these conditions, for each random generation of a SAT instance, the experi-
mental design is decomposed as follows:

1. Seriation of the incidence data table defined in (26).
2. Determination of the best cutting according to the above criterion (27).
3. Computing the exact numbers of solutions of both sub-instances obtained by

means of a variant of the Davis & Putnam algorithm (see in Davis and Putnam
(1960), Andŕe and Dubois (1992)).
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Fig. 1.Existence matrix: the clear part contains only zeros.

2SAT 3SAT
N 70 80 40 50
α 10−5 10−6 10−4 10−5

ap1b 0.895 0.875 0.803 0.806
ap2b 0.915 0.902 0.811 0.812

ap1 0.727 0.711 0.597 0.587
ap2 0.730 0.712 0.598 0.590

Table 1.Slopes of the regression lines.

4. Computing of an approximation of the number of solutions of the whole instance
by means of the equation (25).

6 Experimental results

Consider the following results (Table 1 and Table 2) where, for reasons of hardness
of the SAT problem,P/N has been taken equal respectively to 0.7 in case of 2SAT
and to 2 in case of 3SAT. On the other hand, note that ap1b (resp. ap2b) concerns the
cutting giving the best approximation by means of equation (24) (resp. (25)). Oth-
erwise, ap1 and ap2 concern respectively the approximations given by (24) and (25)
and obtained from the cutting detected by (27). Theα parameter has been adjusted
by taking into account the accuracy of the computing. Globally the new results im-
prove the previous ones. This is more clear and significant inthe case of the best
cutting (see the results for ap2b with respect to those for ap1b). Even in case where
the cutting is automatically obtained by means of the criterion (27), Table 1 shows
some tendency of a better behavior of ap2 with respect to ap1.

This cannot be neglected if we take into account all the difficulty of the problem
related to the random generation model of the SAT instances.However, it is of impor-
tance to notice that a criterion such (27) has a great capability to detect independent
blocks in case of a statistical dependency hidden structure. Under these conditions
and in order to improve our results we have to avoid the importance of the role of
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2SAT 3SAT
N 70 80 40 50

X α 10−5 10−6 10−4 10−5

ap1b 0.0 0.1 2.0 2.8
ap2b X

NBS(F)
≤ 1

m 0.3 0.5 2.0 2.8

ap1 4.8 5.1 12.7 13.6
ap2 4.8 5.1 13.1 14.1

ap1b 95.8 95.2 90.7 89.0
ap2b 1

m < X
NBS(F)

< m 96.4 95.1 91.3 88.8

ap1 78.5 77.9 65.2 61.4
ap2 78.4 78.1 65.2 60.9

ap1b 4.2 4.7 7.3 8.2
ap2b m≤ X

NBS(F)
3.3 4.4 6.7 8.4

ap1 16.7 17.0 22.1 25.0
ap2 16.8 16.8 21.7 25.0

Table 2. Percentage of instances for which the ratioX/NBS(F) is limited by the boundaries
1/mandm (m= 2 for 2SAT andm= 1.5 for 3SAT).

the blind cutting of the seriation by means of a criterion such (27). As a matter of
fact, till now, we have proposed to approximate the exact coefficient (18) by means
of a coefficient such (19) having a polynomial cost and preserving the formal prop-
erties of (18) (see theorems 3 and 4). But notice that the denominator of dep(Gc,Hc),
namely P[Gc]×P[Hc], is known (see point 3 of the experimental design described
above in section 5). Thus, a new idea consists of evaluating P[Gc∩Hc] by means of
its mathematical expectation under the generation random model of the concerned
SAT instance.

IndeedGc ∩Hc is union of c× (P− c) pinpoint cylinders. Some of them can
be empty. In the case ofrSAT, the volume of a non empty pinpoint cylinder can
be 2N−r− j+1, 1 ≤ j ≤ r + 1. In these conditions, the mathematical expectation
of the random variable associated with P[Gc ∩ Hc], conditioned by the structure
{(2N−r− j+1,Q j) | 1≤ j ≤ r +1} (28)
is given by

1− ∏
1≤ j≤r+1

(

1−2(r+ j−1)Q j
)

(29)

(Simon and Dubois (1989), more directly Lerman (1992) citedin Lerman (1995)).
By exploiting this result we have the following:

Theorem 6.The mathematical expectation of the random variable associated with
NBS(F), knowing NBS(I), NBS(J) and (28), is given by

NBS(F) = NBS(I)+NBS(J)−2N ∏
1≤ j≤r+1

(

1−2(r+ j−1)Q j
)

. (30)

(30) is equal to the following formula that is in a nearest expression of (25):
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NBS(I)×NBS(J)

2N
+2N

(

(

1− ∏
1≤ j≤r+1

(1−2(r+ j−1)Qj )
)

−
(

1−
NBS(I)

2N

)(

1−
NBS(J)

2N

)

)

.

This new approximation formula will be experimented in nearfuture.

7 Conclusion

Implicitly, we have shown in this paper the importance of therole of combinatorial
data analysis in the field of computational complexity. Moreparticularly, the prob-
lem of approximating #SAT is considered in terms of filling the logical cube{0,1}N

by pinpoint cylinders. A proposed method (Rouat (1999), Lerman and Rouat (1999))
based on cutting seriation is more deeply studied and new results are obtained. These
results are very competitive with respect those published in the literature (Bailleux
and Chabrier (1996)). New and improving results can be expected following the last
proposition (see theorem 6). The next stage of this researchconsists of introducing
statistical sampling theory (Karp and Luby (1983)) in orderto evaluate more accu-
rately the dependence degree between two sets of clauses.
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afin d’optimiser la ŕesolution du probl̀eme SAT.C.R. de l’Acad́emie des Sciences, Paris,
315, 217–220.
BAILLEUX, O. and CHABRIER, J.J. (1996): Approximate resolution of hard numbering
problems.In : AAAI Thirteenth National Conference on Artificial Intelligence, 169–174.
COOK, S.A. (1971): The complexity of theorem-proving procedures. In : 3rd Annual ACM
Symposium on the Theory of Computing, 151–158.
DAVIS, M. and PUTNAM, H. (1960): A computing procedure for quantification theory.
Journal of the ACM, vol. 7, 3, 201–215.
DUBOIS, O. (1991): Counting the number of solutions for instances of satisfiability.The-
oretical Computer Science, 81, 49–64.
KARP, R.M. and LUBY, M. (1983): Monte-carlo algorithms for enumeration and reliabil-
ity problems.In : 24th IEEE Symposium of Foundations of Computer Science, 56–64.
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#SAT.Mathématiques, Informatique et Sciences Humaines, 147, 113–134.
LOZINSKII, E.L. (1992): Counting propositional models.Information Processing Letters,
41, 327–332.
MARCOTORCHINO, F. (1987): Block seriation problems: a unified approach.Applied
Stochastic Models and Data Analysis, vol. 3, 2, 73–91.



12 I.C. Lerman and V. Rouat

PAPADIMITRIOU, C.H. (1994):Computational complexity. Addison Wesley.
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