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Abstract. Mathematical representation of complex data knowledge is one of the
most important problems in Classification and Data Mining. In this contribution
we present an original and very general formalization of various types of knowledge.
The specific data are endowed with biological descriptions of phlebotomine sandfly
species. Relative to a descriptive categorical variable, subsets of categories values
have to be distinguished. On the other hand, hierarchical dependencies between
the descriptive variables, associated with the mother → daughter relation, have to
be taken into account. Additionally, an ordinal similarity function on the modality
set of each categorical variable. The knowledge description is formalized by means
of a new type of descriptor that we call “Taxonomic preordonance variable with
multiple choice”. Probabilistic similarity index between concepts described by such
variables can be built.

1 Introduction

An early work (Lerman and Peter (1988), Lerman and Peter (1989)) is revis-
ited here in a clearer, more synthetic and more accurate manner. In order to
build similarity indices between complex descriptions, a mathematical repre-
sentation of structured data by a knowledge expert is needed. This subject
is becoming more and more important in Classification and Data Mining
(Batagelj (1989), Bock and Diday (2000), Lerman (2000), Pennerath and
Napoli (2006)). This work results from a collaboration with the late Jacques
Lebbe.

This collaboration took place when Diday introduced the general idea of
logical knowledge data analysis that he called “symbolic” data analysis Di-
day (1989). In this case and for a description of an objects set by attributes,
the attribute value on a given object is not necessarily reduced to a single
element of the scale associated with the concerned attribute. In other words
the description system (attribute, single value) is left and substituted by the
system (attribute, knowledge value). For example let us consider a knowledge
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value of a categorical attribute on a given object; this can be endowed with
a logical formula on the category set, satisfied by the described object. An-
other example can be given by a probability distribution over the category
set expressing uncertainty for the attributed value. In our subsequent devel-
opment we consider only qualitative descriptions. A categorical attribute will
also be called qualitative variable and a category value is expressed in terms
of modality of the concerned qualitative variable.

Often, in “symbolic” data analysis papers qualitative data analysis is
improperly interpreted as belonging to the “symbolic” domain. For this rea-
son we prefer to speak in terms of “knowledge” data analysis. Furthermore,
the notion of a classical data table which crosses an object set with an at-
tribute set, is neglected and even rejected for knowledge description in (Di-
day (1989)). However, some evolution can be noticed in (Billard and Diday
(2003)). From the begining (1988) the general notion of data table has played
a fundamental part in our approach of knowledge data analysis. The only dis-
tinction considered is defined by the difference in nature of the cell content
corresponding to the value of a descriptive variable on a given object. Seman-
tic data relative to the scale associated with the value set of a given attribute
can be recorded separately. On the other hand, logical relationships between
descriptive variables have to be integrated in order to build the most synthetic
attributes. In this paper we will be concerned by this type of construction
leading to a very general and multivalued structured attribute called “taxo-
nomic preordonance variable with multiple choice”.

This type of descriptive variable or “descriptor” has been obtained by
a formalization of the expert knowledge of the biological descriptions of phle-
botomine sandflies of French Guiana (Lebbe et al. (1987)). Descriptions are
very complex. Each species is a class of specimens and its description must
represent not only a prototype, but all possible variations in the species.
Thus, the description by a qualitative variable of a given species, requires -
most often - a subset of possible modalities. For sake of generality, we as-
sume that the value of a given variable on a given species is defined by a
probability distribution on a collection of modality subsets of this variable.
Moreover, descriptive attributes are related by the mother → daughter rela-
tion; that is to say, if (v0, v1) is a such ordered pair of variables, v1 is only
defined when v0 takes some of its values. Finally, we assume an ordinal sim-
ilarity function on the modality set of each variable. A mathematical coding
of this function in terms of a binary weighted relation is given in Section 3.
In order to address the problem of conceptual knowledge description, Section
2 introduces the general notion of qualitative variable with multiple choice.
The mother → daughter relations among the descriptive attributes lead to
taxonomic variables organizing the initial qualitative variables (Section 4).
By combining this structuration with local ordinal similarities, established on
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the respective modality sets of the different qualitative variables, we obtain
the “taxonomic preordonance variable”. Its construction and its mathemat-
ical coding are discussed in Section 5. In our description the components of
a taxonomic preordonance variable are qualitative attributes with multiple
choice. By integrating this descriptive property, “taxonomic preordonance
variable with multiple choice” is derived. Section 6 is devoted to clarify the
value set of a such variable. A similarity index between two concepts (or
classes) described by this variable, has been proposed in (Lerman and Pe-
ter (1988), Lerman and Peter (1989)). Relative to a description by many
taxonomic preordonance variables with multiple choice, a statistical normal-
ization process was considered in order to establish a probabilistic similarity
index. The latter is employed in the LLA (Likelihood of the Linkage Anal-
ysis) hierarchical classification method (Lerman (1993), Lerman and Peter
(1988), Lerman and Peter (1989)). For concision reasons, these last aspects
cannot be reported in this paper.

2 Qualitative variable with multiple choice

As mentioned above the data which have motivated this work are knowledge
biological descriptions of species of phlebotomine sandflies of French Guiana
(Lebbe et al. (1987)). Let us consider the 33rd variable of this description:
“Aspect of individual duct”. Its modalities are:

1. Smooth non-sclerotized
2. Smooth sclerotized
3. Transversely striated or annulated
4. With small prominent tubercles

The knowledge description of a given species (e.g. Lutzomyi carvalhoi)
can be expressed as follows: “Specimens of this species have the value 1 and
others of the same species have the value 3”.

In these conditions, the value of the qualitative variable with multiple
choice is defined by the modality subset {1, 3}, or equivalently by the con-
junction 1&3. Thus, a qualitative variable with multiple choice is directly
deduced from an ordinary qualitative (categorical) variable, for concept (one
may also say class) description. For this, a given value is then defined in
terms of a modality subset of the initial variable, or equivalently, in terms of
a modality conjunction.

More formally, let us consider a universe U of elementary units (the whole
set of phlebotomine sandflies specimens in our case) and suppose defined on
U a partition where a distinct concept is associated with each of its classes.
Let us denote by C the set of concepts or classes (the set of species in our
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case). Now, let us consider a classical qualitative (categorical) variable v de-
fined on U . For u belonging to U , v(u) is a single value of the modality set
of v. Now, J coding this modality set, assume a collection of subsets of J :

Pv(J) = {J1, J2, ..., Ji, ..., Jk} (1)

so that for each concept c of C, only one subset Ji of modality values can
be met in c. The qualitative variable with multiple choice deduced from v

and which we denote by vC , is defined as a mapping of C onto Pv(J)

vC : C −→ Pv(J) (2)

For generality reasons, we will consider a higher description level intro-
ducing a probability distribution {pi | 1 ≤ i ≤ k} on Pv(J). Therefore the vC
value can be written as follows:

(J1, p1)&...&(Ji, pi)&...&(Jk, pk) (3)

or, more explicitly:

(&{j | j ∈ J1}, p1)&...&(&{j | j ∈ Ji}, pi)&...&(&{j | j ∈ Jk}, pk) (4)

This type of description introduces uncertainty in the concept recogni-
tion or can be associated with a partition of C in higher concepts (genus in
our case) which can be described by (3). In this richer case the descriptive
variable can be expressed in terms of probabilistic qualitative variable with
multiple choice.

Because of the generalized data table formalization, the included value
in the entry situated at the intersection of the c row and the vC column is
given by expression (3) or by that (4).

3 Preordonance structure on the modality set of a

qualitative variable. Representation

A “preordonance” qualitative variable is a qualitative (categorical) variable
whose modality set is endowed with an ordinal similarity. Formally, a pre-
ordonance is a total preorder (ranking with ties) on the set of unordered
(or ordered) modality pairs. By denoting J = {1, 2, ..., j, ..., m} the modality
codes of the concerned variable, the total preorder is defined on the following
set:

J{2} = {(j, h) | 1 ≤ j ≤ h ≤ m} (5)

(Lerman and Peter (1985), Lerman (1987), Ouali-Allah (1991), Lerman
(2000), Lerman and Peter (2003)). This total preorder is established by the
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expert knowledge by going from the highest ordinal similarity pairs to the
lowest ones. For two pairs (j, h) and (j′, h′), two cases have to be considered:
either

(j, h) > (j′, h′) (6)

or

(j, h) ∼ (j′, h′) (7)

In the first case j and h are assumed, without loss of generality, to be
more similar than j′ and h′ and in the second case, j and h are assumed to
be equally similar as j′ and h′.

Let us consider the above example of the previous section (“Aspect of
individual duct”) where J = {1, 2, 3, 4}. By going from the most similar
modality pair to the least similar one, the submitted preordonance by the
expert is the following:

11 ∼ 22 ∼ 33 ∼ 44 > 12 ∼ 13 ∼ 23 > 14 ∼ 24 ∼ 34 (8)

where jh represents the pair {j, h}, 1 ≤ j ≤ h ≤ 4.

The total preorder on J{2} is coded by means of the “mean rank function”
given by the table:

{rjh | 1 ≤ j ≤ h ≤ m} (9)

where the rank rjh is computed with the following equation:

rjh = l1 + l2 + ... + lp−1 +
1

2
× (lp + 1) (10)

where lq denotes the qth class size of the total preorder on J{2} according
to an increasing order and where jh belongs to the pth class.

Then, in our example, the above table (9) becomes in our example:

{8.5, 5, 5, 5, 2, 8.5, 5, 2, 8.5, 2, 8.5} (11)

4 Taxonomic variable organizing a set of dependent

variables. Representation

Let us begin by an example and consider the variables 1, 18, 19 and 20 of
Lebbe et al. (1987) that we denote v1, v21, v31, and v32, respectively. v1 is
the “Sex” attribute, v21 is defined by the “Number of style spines”, v31 in-
dicates the “Distribution of 4 style spines” and v32, the “Distribution of 5
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style spines”. The value sets of these variables are:

{1: male, 2: female}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5, 6} and {1, 2, 3, 4, 5},
respectively, where each integer code is associated with a modality value.

We obtain the following taxonomic structure:

v1

m, 1, v21 f, 2, 15

1, 1 2, 2 3, 3 v31, 4 v32, 5

1, 4 2, 5 3, 6 4, 7 5, 8 6, 9 1, 10 2, 11 3, 12 4, 13 5, 14

1

2

3

4

Fig. 1. Taxonomic variable

Clearly, the variable v21 is defined only when the v1 value is 1. On the
other hand, the variables v31, and v32 are defined only when the values of
v21 are 4 and 5, respectively. The mother variable of v31 and v32 is v21.

More generally, a taxonomic variable denoted ω, organizing a set of log-
ically dependent variables consists of a sequence of collections of qualitative
variables of the following form:

ω = ({v1}, {v21, v22, ..., v2k2}, ..., {vp1, vp2, ..., vpkp},

..., {vq1, vq2, ..., vqkq}) (12)

The first collection is necessarily reduced to one element: the variable v1.
This corresponds to the root of the tree representing the taxonomic variable
ω. The variables vp1, vp2, ..., vpkp are represented at the pth level of this tree
built in a descendant fashion. The set of variables {vp1, vp2, ..., vpkp} can be
divided into disjoint subsets (classes) according to mother variable concerned.
More precisely, if {vpi, ..., vpi′} (i′ > i) denotes a such subset, two of its el-
ements vpj and vpj′ are characterized by the same mother variable v(p−1)h.
They are respectively defined on two distinct subsets of the described objects
(specimens of phlebotomine sandflies in our case), where each subset is de-
fined by one modality of v(p−1)h.

In the above example ω is instanciated as follows:

ω = ({v1}, {v21}, {v31, v32}) (13)

The structure associated with this variable is represented in terms of a
“ultrametric preordonance” (Lerman (1970), Lerman (2000)) on the set of
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taxonomy leaves (in the above example the cardinality of this set is 15). By
considering a decreasing construction of the taxonomic tree from the root to
the leaves, this total preorder on the set of unordered leaf pairs is such that,
the higher the rank of a given pair, the lower the first node which underlies
the two concerned leaves. Thus, in the above example, the pair {6, 8} has
the same rank as that of {10, 12}. The latter is greater than that of {7, 12},
which is equal to the {2, 3} rank and so on ...

Now, let us denote by L the set of the taxonomy leaves, a ranking func-
tion r coding the total preorder defined by the utrametric preordonance is
characterized by the following equation:

(∀{x, y, z} ∈ P3(L)), r(x, z) ≥ min(r(x, y), r(y, z)) (14)

where P3(L)designates the set of all 3-subsets of L.

As in the general case (see Section 3), we adopt the notion of “mean
rank” for the ranking function. Mathematical formula can be derived, relat-
ing the tree shape with the mean rank function (Lerman and Peter (1988)).
The highest rank is assigned to the elements of the preorder class consti-
tuted by the the pairs having the form: {x, x}, x ∈ L. In these conditions,
the taxonomic variable is interpreted as a particular case of a preordonance
variable.

5 Taxonomic preordonance variable. Representation

Let us reconsider here the above ordinal similarity structure endowed with a
taxonomic variable ω organizing a set of logically dependent qualitative vari-
ables. We further assume that the modality set Mpi of a given qualitative
variable vpi (see 12) is endowed with a total preordonance (see Section 3),
1 ≤ i ≤ kp, 1 ≤ p ≤ q. These preordonances are locally defined variable by
variable, they have to be integrated in the taxonomic structure.

In these conditions, we have to build a total preordonance on the set
of the taxonomy leaves, or - equivalently - on the set of the associated com-
plete chains, going from the root to the leaves. This preordonance must take
into account both the preordonance defined in the above Section 4 and those
we have just mentioned.

Such a preordonance is built step by step, decreasingly, with respect to
the resemblance between terminal modalities corresponding to the taxonomy
leaves. The general principle consists in refining the ultrametric preordonance
associated with the taxonomy by means of the preordonances locally defined
on the modality sets of the different variables.
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More clearly, let us begin by the above example (see Figure 1) and con-
sider the leaf sets A = {4, 5, 6, 7, 8, 9} and B = {10, 11, 12, 13, 14} associated
with the modality sets of the variables v31 and v32, respectively. By denoting
P2(A) (resp., P2(B)) the unordered pairs from A (resp., B), P2(A) ∪ P2(B)
determines a unique class of the total preorder defined by the tree structure.
This class comprises all the element pairs joined at the level 3 of the taxon-
omy. Preordonance structures on the modality sets of the variables v31 and
v32 provide total preorders on P2(A) and P2(B), respectively. These, can be
represented by rank functions. Specifically, one may consider the mean rank
functions rA and rB defined on P2(A) and P2(B), respectively. In these con-
ditions, a ranking function rA∪B on P2(A) ∪ P2(B) is deduced from rA and
rB as follows:

rA∪B : P2(A) ∪ P2(B) −→ V al(rA) ∪ V al(rB) (15)

where V al(rA) (resp., V al(rB)) is the value set of rA (resp., rB ). Con-
sequently, rA∪B({x, y}) is defined by rA({x, y}) if {x, y} ∈ P2(A) and by
rB({x, y}) if {x, y} ∈ P2(B).

Therefore, according to the value scale of rA∪B , a total preorder on
P2(A) ∪ P2(B) is induced. This substitutes the unique class P2(A) ∪ P2(B).

Let us continue with the above illustrative example. The next preorder
class construction is given by the preordonance variable v21. Its modality set
C appears at the level 3 of the taxonomy. P2(C) is endowed with a total
preorder. In the latter we have to do the following substitutions:

(∀x ∈ {1, 2, 3}), {x, 4} ← {{x, y} | y ∈ A}

(∀x ∈ {1, 2, 3}), {x, 5} ← {{x, y} | y ∈ B}

for {4, 5} ← {{x, y} | {x, y} ∈ A×B} (16)

where the different pairs included in a given class substitution are inter-
preted as equally similar.

Now, let us give a general expression of the construction of a taxonomic
preordonance variable. We begin by ordering the set

∆(L) = {{x, x} | x ∈ L} (17)

according to the leaf depth in the taxonomy: in other words, the deeper
the leaf, the higher the ordinal similarity between the represented category
and itself. Thus, in the above example, for these pairs we have

{4, 4} ∼ {5, 5} ∼ {6, 6} ∼ {7, 7} ∼ {8, 8} ∼ {9, 9}
∼ {10, 10} ∼ {11, 11} ∼ {12, 12} ∼ {13, 13} ∼ {14, 14}

> {1, 1} ∼ {2, 2} ∼ {3, 3} > {15, 15}
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(18)

Let us reconsider here the general expression 12 of the taxonomic variable
ω. Let us indicate byM(vqj) the modality set of the variable vqj , 1 ≤ j ≤ kq.
These modality sets are figured by the deepest leaves of the tree depicting
ω. Then the next step of refining the ω taxonomic preordonance consists in
introducing the total preorders defined by the preordonance variables vqj on
the set of unordered modality pairs ofM(vqj), that we denote by P2(M(vqj)),
1 ≤ j ≤ kq. The unique class

P =
⋃
{P2(M(vqj)) | 1 ≤ j ≤ kq} (19)

is refined according to the mean rank functions defined on the sets
P2(M(vqj)), 1 ≤ j ≤ kq, respectively. The global ranking function rP on

the union P is defined directly from the partial mean rank functions (see the
example above in this Section):

(∀j, 1 ≤ j ≤ kq), (∀{x, y} ∈ P2(M(vqj))), rP ({x, y}) = rqj({x, y}) (20)

where rqj designates the mean rank function on P2(M(vqj)) associated
with the preordonance variable vqj .

Additionally, the ranking function, that we denote by RU has to take into
account the taxonomic structure. Consequently it can be written as follows:

(∀{x, y} ∈ P2(M(vqj))), RP({x, y}) = rqj({x, y}) + card(L) (21)

For all j, 1 ≤ j ≤ kq.
Thus, two modality pairs {x, y} and {z, t}, belonging to two different sets

P2(M(vqj)) and P2(M(vqj′ )) (j 6= j′) are compared on the basis of their
respective rank functions defined independently on the modality pairs of vqj

and on those of vqj′ . This is consistent with the similarity index construction
(Lerman and Peter (1988), Lerman and Peter (1989)).

Now, let us consider the variable set {vp1, vp2, ..., vpk} introduced at the
pth level of the taxonomy (see 12). The respective modalities of each of these
variables arise at the (p + 1)th level.

⋃
{P2(M(vpi) | 1 ≤ i ≤ kp} determines

a unique class of the taxonomic preorder. For a given i (1 ≤ i ≤ kp), a total
preorder is provided on P2(M(vpi) by the preordonance variable vpi. This re-
fines the subclass P2(M(vpi). Moreover, for {x, y} belonging to P2(M(vpi),
if x (resp., y) is a node tree from which branches issue, the class of the ter-
minal tree chains passing by x (resp., y) is substituted for x (resp., y) (see
16 in the above example). All the concerned pairs are interpreted as equally
similar and the mean rank function value rpi({x, y}) deduced from the pre-
ordonance variable vpi, is applied to all of these pairs. Denote M′(vpi the
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extended value set and r′pi the extended definition of the mean rank function

rpi on P2(M
′(vpi). From the set, denoted R′

p, of rank functions

R′
p = {r′pi | 1 ≤ i ≤ kp} (22)

a unique rank function rP is induced on

P =
⋃
{P2(M

′(vpi)) | 1 ≤ i ≤ kp} (23)

as follows:

∀i, 1 ≤ i ≤ kp, ∀{x, y} ∈ P2(M
′(vpi)), rP ({x, y}) = r′pi({x, y}) (24)

In these conditions, according to the rP values, a total preorder on P is
provided. Besides, rP enables a consistent construction of a similarity index
between described objects or concepts (Lerman and Peter (1989)). For this
purpose we substitute for rP a ranking function RP which takes into account
all the leaf pairs preceeding P in the taxonomic order, strictly. More clearly,
by denoting Pp+1 this set of leaf pairs

∀{x, y} ∈ P2(M
′(vpi)), RP({x, y}) = rP({x, y}) + card(Pp+1) (25)

For all i, 1 ≤ i ≤ kp.
In the case of the above example we have

P3 = {{4, 10}, {4, 11}, ..., {4, 14}, {5, 10}, {5, 11}, ..., {9, 13}, {9, 14}} (26)

The above ranking function RP is defined for all leaf pairs joined at pth

level (first junction). Each leaf can be associated with a terminal tree chain
from the (p + 1)th level. In these conditions, a global ranking function R is
built from its RP restrictions.

At the final step, the set of all complete chains of the tree represented by
the leaf set, is provided with a total preorder. Consequently, the taxonomic
variable is enriched and becomes a “taxonomic preordonance variable”, that
we code by means of the ranking function R.

6 Taxonomic variable with multiple choice

The descriptive structure of the global variable considered here is defined
in the previous Section 4. Nevertheless, the “value” of a given component
variable vpi of the taxonomy p level on a given concept is defined by a prob-
abilistically weighted conjunction of conjunctions on the set J =M(vpi) of
its modalities (see Formula (4) in Section 2). In Lebbe et al. (1987), only
deterministic values are considered and, then, the value of such a variable vpi
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on a given concept is defined by a unique conjunction whose terms belong to
J (or equivalently, as a subset of J) having the following form

&{j | j ∈ G} (27)

where G is a subset of J .

Let us begin with an example and imagine that for the above descriptive
variables v1, v21, v31 and v32, introduced in Section 4, one has the following
values on a given concept (species in our case) c:

v1(c) = 1

v21(c) = (1&2, 0.4)&(2&3&4, 0.2)&(4&5, 0.4)

v31(c) = (1&2, 0.4)&(2&3, 0.6)

v32(c) = (2&3&4, 0.8)&(3&5, 0.2) (28)

Denote here by w the taxonomic variable organizing the preceeding vari-
ables (see Figure 1). One possible value of w on an element u drawn from
c may be: w(u) = 11&12, corresponding to v1(u) = 1 and v21(u) = 1&2.
Another possible value of w may be w(u) = 12&13&141&142 corresponding
to v1(u) = 1, v21(u) = 2&3&4 and v31(u) = 1&2.

The probability of the v21 value is 0.4 and that of the v31 value is 0.2×
0.4 = 0.08. These values are obtained according to computational principle
of a conditional probability.

More precisely, denoting ∨ the logical disjunction, the w value on a ran-
dom unit u∗ provided from the concept c, can be written:

w(u∗) = (11&12, 0.4)∨ (12&13&141&142, 0.08)

∨(12&13&142&143, 0.12)∨ (141&142&152&153&154, 0.128)

∨(141&142&153&155, 0.032)∨ (142&143&152&153&154, 0.192)

∨(142&143&153&155, 0.048) (29)

or, by using the coding of the taxonomy leaves with the integers 1 to 15
(see Figure 1 ),

w(u∗) = (1&2, 0.4)∨ (2&3&4&5, 0.08)

∨(2&3&5&6, 0.12)∨ (4&5&11&12&13, 0.128)

∨(4&5&12&14, 0.032)∨ (5&6&11&12&13, 0.192)

∨(5&6&12&14, 0.048) (30)

The weight sum is a probability sum and consequently, is equal to 1.
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Now, the associated value of w on the concept c, can be put in the fol-
lowing form:

w(c) = (1&2, 0.4)∧ (2&3&4&5, 0.08)

∧(2&3&5&6, 0.12)∧ (4&5&11&12&13, 0.128)

∧(4&5&12&14, 0.032)∧ (5&6&11&12&13, 0.192)

∧(5&6&12&14, 0.048) (31)

where ∧ is another notation for a conjunction.

Thus w(c) consists of a probability distribution on a collection of leaf
subsets of the taxonomic tree or, equivalently, on complete chain subsets of
this tree.

The general case can be easily derived from the above illustration. Rela-
tive to the modality set M(vqi) of the qualitative variable vqi appearing in
the taxonomic variable ω (see 12), let us consider the possible values of vqi.
These values, can be put as follows (see Section 2):

{(Jl, pl) | 1 ≤ l ≤ mqi} (32)

where {Jl | 1 ≤ l ≤ mqi} is a collection of mqi modality subsets and where
Jl occurs with the probability pl, 1 ≤ l ≤ mqi, (

∑
{pl | 1 ≤ l ≤ mqi} = 1).

Now, consider for a given l, a modality xl belonging to Jl for which a
vqi daughter variable v(q+1)j is defined. With its modality set designated by
M(v(q+1)j) associate its values in the above form:

{(J ′
l′ , p

′
l′) | 1 ≤ l′ ≤ m(q+1)j} (33)

where J ′
l′ is a modality subset ofM(v(q+1)j) occuring in c with the prob-

ability p′l′ , (
∑
{p′l′ | 1 ≤ l′ ≤ m(q+1)j} = 1).

The joint probability of Jl and J ′
l′ is obtained according to conditional

probability principle by pl × p′l′ . This can also be expressed as follows:

Pr(&{xl&x′
l′ | (xl, x

′
l′) ∈ Jl × J ′

l′}) = pl × p′l′ (34)

Thus pl×p′l′ is the probability assigned to the conjunction of partial chains
of the two elements xl and x′

l′ belonging to Jl and J ′
l′ , respectively.

Finally and recursively, the value set of the taxonomic variable ω on c

is obtained. This value set consists of a probabilized set of conjunctions of
complete chains of the taxonomic tree. Note that each complete chain can
be represented by its terminal leaf. Denoting as J the set of all leaves, one
can easily see that the probabilized value of the concerned variable has the
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same general structure as that presented in Section 2 (see 3). More specifi-
cally, a given leaf conjunction is concerned by a unique sequence of the initial
qualitative variables, totally ordered by the mother → daughter relation.

7 Conclusion

As claimed above, the conceptual notion of a data table remains fundamental
in analyzing logical data knowledge. And, the only difference concerns the
logical nature of a cell content, describing an object or a concept (class) with
respect to a descriptive variable. In case of absence of missing data, the de-
scription complexity proceeds from two main causes. The first is associated
with the complexity of the relation on the value set of the description endowed
with the expert knowledge. The second results from the level knowledge of
the description on the entities (objects or concepts) to be clustered according
to their similarities. For a concept description by taxonomic preordonance
variables with multiple choice, the structural aspects of the value scale have
been studied in Sections 3, 4 and 5. Whereas, the formalization of the expert
knowledge relative to the values of such descriptive variables on the described
concepts, is given in Sections 2 and 6.

A rough similarity index between described concepts has been built in
order to minutely take into account the two complexity origins mentioned
above (Lerman and Peter (1988), Lerman and Peter (1989)). In case of a
description by many multivalued taxonomic preordonance variables, the in-
tegration process of the rough similarity indices (taken variable by variable),
into the LLA hierarchical classification method (Lerman (1993)), follows a
general principle given in (Lerman and Peter (1985), Lerman (1987), Lerman
(2000) Lerman and Peter (2003)). This approach is comprised in the hier-
archical classification software named CHAVLH (Classification Hiérarchique
par Analyse de la Vraisemblance des Liens en cas de variables Hétérogènes).
Significant and interesting results have been obtained in the hierarchical clas-
sification of 142 species described by 61 taxonomic preordonance variables
with multiple choice (Lerman and Peter (1988)).

Let us end by a general remark: taking into account the expert knowledge
in building structured descriptive attributes enables to obtain more synthetic
and more robust cluster organization; however, “explaining” the general fea-
tures of a given “significant” cluster becomes more difficult.
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