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Abstract: The interestingness measures for pattern associations proposed
in the data mining literature depend only on the observation of relative fre-
quencies obtained from 2×2 contingency tables. They can be called “absolute
measures”. The underlying scale of such a measure makes statistical decisions
difficult. In this paper we present the foundations and the construction of a
probabilistic interestingness measure that we call likelihood of the link index.
This enables to capture surprising association rules. Indeed, its underlying
principle can be related to that of information theory philosophy; but at a
relational level. Two facets are developed for this index: symmetrical and
asymmetrical. Two stages are needed to build this index. The first is “local”
and associated with the two single boolean attributes to be compared. The
second corresponds to a discriminant extension of the obtained probabilistic
index for measuring an association rule in the context of a relevant set of as-
sociation rules. Our construction is situated in the framework of the proposed
indices in the data mining literature. Thus, new measures have been derived.
Finally, we designed experiments to estimate the relevance of our statistical
approach, this being theoretically validated, previously.

Keywords: Probabilistic Intestingness Measure, Association Rules, Inde-
pendence Random Model, Contingency tables.
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Israël-César Lerman1 and Jérôme Azé2
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lerman@irisa.fr

2 Laboratoire de Recherche en Informatique
Université Paris-Sud
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1 Introduction

Seeking for a relevant interestingness measure in the context of a given data
base is a fundamental task at the heart of data mining problems. We assume
that the data are given by a a set of objects described by a set of boolean at-
tributes. Let us denote them by O and A, respectively. The crossing between
O and A leads to an incidence table. This indicates for each object the subset
of attributes (properties) associated with its definition. Let us denote by n
and p the cardinalities of O and A.

Let αj
i specify the value of the attribute aj for the object oi: α

j
i =

aj(oi), 1 ≤ i ≤ n, 1 ≤ j ≤ p. The two possible values for a given αj
i are

“true” and “false”. Generally the “true” and the “false” values are coded by
the numbers 1 and 0, respectively. Without loss of generality we may sup-
pose a “true” value as more significant than a “false” one. This is generally
expressed in terms of statistical frequencies: the number of objects where a
given attribute is “true” is lower than that where it is “false”. We will repre-
sent a boolean attribute a by its extension O(a) which represents the subset
of objects where a is true. Thus, A is represented by a set of parts of the
object set O.

The set O is generally obtained from a training set provided from a uni-
verse of objects U . On the other hand, the boolean attribute set A can be
obtained from conjunctions of more elementary attributes, called itemsets.
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Determining “significant” itemsets is a crucial problem of “Data Mining”[1, 6].
However, this problem will not be addressed here.

Let us now introduce some notations. With the attribute a of A we asso-
ciate the negated attribute ¬a that we represent by the complementary subset
of O(a) in O. For a given pair (a, b) of A×A, we introduce the conjunctions
a∧b, a∧¬b, ¬a∧b and ¬a∧¬b that are respectively represented by O(a)∩O(b),
O(a) ∩ O(¬b), O(¬a) ∩ O(b) and O(¬a) ∩ O(¬b). Cardinalities of these sets
are respectively denoted by n(a ∧ b), n(a ∧ ¬b), n(¬a ∧ b) and n(¬a ∧ ¬b).
Finally, n(a) and n(b) will designate the set cardinalities of O(a) and O(b).
These cardinalities appear in the contingency table crossing the two binary
attributes {a,¬a} and {b,¬b}. Consider also the ratios of these cardinalities
over the number of objects n. These define the following relative frequencies
or proportions: p(a ∧ b), p(a ∧ ¬b), p(¬a ∧ b) and p(¬a ∧ ¬b).

Relative to the entire set of attribute pairs A×A the objective consists
in setting up a reduced subset of pairs (aj , ak), 1 ≤ j < k ≤ p, such that a
true value for the attribute aj has a real tendency to imply a true value for
that ak. In order to measure numerically such a tendency that we denote by
(a → b) for the ordered pair of boolean attributes (a, b), many association
coefficients have been proposed. Inspired by different metric principles, they
have not necessarily comparable behaviours for pattern association in a given
application domain. Methodological comparisons between these measures are
provided in the most recent research works [14, 16, 27]. Logical, statistical and
semantical facets of a collection of 15 interestingness measures are analyzed in
[14]. Comparison behaviour study of 20 indices is considered in [16]. Pairwise
indices are compared according to the similarity of the rankings that they de-
termine on a set of rules. Moreover, in this contribution eight formal criteria
are considered to characterize in a global manner the properties of a measure.
The desired properties proposed in [27] are substantially different from the
latter ones. Relative to an ordered pair of boolean attributes (a, b) belong-
ing to A×A, these properties are more local and directly associated with
a transformation of the respective entries of the contingency table crossing
{a,¬a} with {b,¬b} that we have introduced above. In the invariance prop-
erties considered in [27], the studied interestingness measures are taken one
by one. However, some investigation about the transformation of one type of
measure to another, is required. This aspect is considered in section 4, where
we focus more particularily on the Confidence, Loevinger and Gras’s entropic
indices.

Most of the interestingness measures take into account each attribute pair
independently. The formulation of such a given measure M for an ordered
pair (a, b) depends only on the above mentioned proportions. M is considered
as an absolute measure. For a couple {(a, b), (a′, b′)} of attribute pairs, the
underlying numerical scale enables to answer the question of determining the
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most stressed association between (a → b) and (a′ → b′). However, without
loss of generality, by assuming

M(a→ b) > M(a′ → b′) (1)

we cannot evaluate how much the intensity of (a → b) is significantly
greater than that of (a′ → b′). Moreover, for a given ordered pair (a, b) oc-
curring in two different data bases, it is difficult to situate comparitively by
means of an absolute measure M the intensity evaluation in each of both data
bases. In particular, the size value n does not intervene in the mathematical
expression of M .

Our method consists of evaluating in a relative way the degree of im-
plication a → b by using an original notion of probabilistic index measuring
how much unlikely in terms of probability the pattern is strengthened. A
random model of no relation or independence is introduced associating with
the observed incidence table a random one. Let us denote by N this random
model. Then the general idea consists of substituting the initial scale given
by M for that corresponding to the following equation:

PN (a→ b) = Prob{M(a∗ → b∗) ≤M(a→ b) | N} (2)

where (a∗, b∗) is an ordered pair of independent random attributes associ-
ated with (a, b) according to the model N . There are two forms of this random
model. The first one that we call “context free” model is local and does only
concern the observed ordered pair (a, b) of boolean attributes (see section 2
and subsection 4.2). The second form qualified by “in the context” takes into
account mutual comparison between all the attribute pairs or a relevant part
of them (see section 3 and subsection 4.3). The second version of the random
model N has a conditional meaning. For this model and more precisely, the
above measure M is replaced by a standardized version Ms with respect to a
relevant subset of A×A (see section 3 and subsection 4.3). In these conditions,
the likelihood of the link probabilistic index can be written:

PNs (a→ b) = Prob{Ms(a∗ → b∗) ≤Ms(a→ b) | N} (3)

Such a probabilistic interestingness measure provides clearer answers to
the above evaluation questions. Moreover, in the context of a given data base
a threshold value filtering the strongest rules is more easily controlled.

Thus our approach refers to the philosophy of the information theory,
but at the level of the observed mutual relations. We need to quantify inter-
esting implicative events by means of an index associated with a probability
scale. The valuation of a given event, defining an association rule, takes into
account all its possible positions relatively to an interesting potential subset
of association rules associated in the context of A×A.
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In fact, for a given form of the independence relation N , there is some
invariance property in the probabilistic evaluation given by (3) with respect
to the initial choice of the measure M . More precisely, a set of interestingness
measures can be divided into stable classes associated with different probabil-
ity scales, respectively. For example, relative to the collection of 21 measures
given in [27] and for the no relation random model denoted below by N1

(see subsection 2.1), the following interestingness measures lead to exactly
the same likelihood of the link probabilistic measure: Support, Confidence,
Interest, Cosine, Piatetsky-Shapiro, Jaccard, Kappa and φ coefficient.

Consequently our starting point in building the likelihood of the link prob-
abilistic measure will be one of the respective entries of the 2× 2 contingency
table considered above: n(a ∧ b), n(a ∧ ¬b), n(¬a ∧ b) or n(¬a ∧ ¬b). With a
clear intuitive sense it suffices to consider n(a∧ b) for the symmetrical associ-
ation and n(a ∧ ¬b) for the asymmetrical case. Remind that for the latter we
have to set up (a→ b) more strongly than (b→ a).

Indeed, in the statistical literature, the symmetrical equivalence case
(a → b and b → a) has preceded the asymmetrical implicative one (a → b).
And in fact, several proposed indices in the data mining literature have a
perfect symmetrical nature, that is to say that their expressions are invariant
by substituting the ordered boolean pair (a, b) for (b, a). For example, relative
to the above mentioned measures one may cite: Support, Interest, Cosine,
Jaccard, Piatetsky-Shapiro, Kappa and φ.

The local context free form of the likelihood of the link probabilistic indices
have been established first. The symmetrical version [19, 20, 18] has preceded
the asymmetrical one [9, 23, 11]. The associated probabilistic scale was able to
reveal fine structural relations on the attribute set A, only when the number
n of objects is lower than 103. But nowadays it is often necessary to work
with large data (for example n greater than 106). And, in such situation, the
latter scale becomes not enough discriminant in order to distinguish between
different high values of the computed indices.

The “in the context” random model integrates in its construction the previ-
ous local model. But the probability scale becomes finely discriminant for any
magnitude of n. This global model has been extensively validated theoretically
[17, 7] and experimentally [20] in the framework of our hierarchical classifi-
cation LLA (Likelihood of the Link Analysis) method (Classification Ascen-
dante Hiérarchique par Analyse de la Vraisemblance des Liens) [20, 18, 21].
This validation aspect represents one important contribution of the analysis
presented in this paper.

This analysis leads us to set up new absolute measures expressed in terms
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of the above relative frequencies p(a∧ b), p(a∧¬b), p(¬a∧ b) and p(¬a∧¬b)
(see subsections 2.2 and 4.1). These measures appear as components of the
χ2 statistic.

Therefore, we begin in the second section by describing the probabilistic
construction of the likelihood of the link index in the symmetrical comparison
case and for the “context free” random model. The “in the context” random
model will be expressed in section 3. Section 4 is devoted to implicative sim-
ilarity which directly reflects the asymmetric nature of an association rule
notion. Analysis of classical indices is performed in this section. Otherwise,
local (“context free”) and global (“in the context”) interpretations are devel-
oped. In this section we will present the Probabilistic Normalized Index which
enables to discriminate comparisons between association rules. Precisely, sec-
tion 5 is devoted to experimental results validating the behaviour of this new
index with respect to that locally built. We end in section 6 with a general
conclusion giving the benefits and the prospects of this work.

2 “Context free” comparison between two boolean
attributes

2.1 Building no relation (independence) hypothesis

Let (a, b) be a pair of boolean attributes provided from A×A. We have intro-
duced (see above) the set theoretic representation for this pair. We have also
defined the cardinal parameters n(a∧ b), n(a∧¬b), n(¬a∧ b) and n(¬a∧¬b).
Without loss of generality assume the inequality n(a) < n(b).

Two distinctive but related problems have to be considered in comparing
two boolean attributes a and b. The first consists of evaluating the degree of
symmetrical equivalence relation (a↔ b). The second concerns asymmetrical
implicative relation (a→ b) called “association rule”. Statistical literature has
mainly focused the symmetrical association case. Many coefficients have been
proposed for pairwise comparison of a set A of boolean attributes. All of them
can be expressed as functions of the parameters (n(a∧b), n(a), n(b), n). Most of
them can be reduced to functions of the relative frequencies (p(a∧b), p(a), p(b))
associated with the absolute frequencies n(a∧ b), n(a) and n(b), relative to n.
Thus, the parameter n(a ∧ b) representing the number of objects where the
conjunction a ∧ b is true, appears as a fundamental basis of an association
coefficient construction. We call this index a “raw” association coefficient. As
a matter of fact, each of the association coefficients proposed in the literarture
corresponds to a type of normalization of this raw index, with respect to the
sizes n(a) and n(b). Indeed, tendency to a high or low values of n(a ∧ b) is
associated with high or low values of both parameters, respectively.
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In these conditions, the first step of the normalization process we have
adopted consists in introducing a probabilistic model of independence (or no
relation) defined as a correspondence:

(O(a),O(b),O)→ (X ,Y, Ω) (4)

Three versions of this general model that we designate by N , are consid-
ered. They lead to three distinct analytical forms of an association coefficient.
Ω is associated with the object set O, exactly (Ω = O) or randomly defined.
For a given Ω, X and Y are defined by two independent random subsets of
Ω, associated with O(a) and O(b), repectively. More precisely, the random
model is built in such a way that Ω, X and Y respect exactly or on average
the cardinalities n, n(a) and n(b), respectively. The random subsets X and Y
can also be denoted by O(a∗) and O(b∗) where a∗ and b∗ are two independent
random attributes associated with a and b, respectively.

Denoting by
s = n(a ∧ b) = card(O(a) ∩ O(b)) (5)

the above-mentioned raw index, the random raw index is defined by:

S = n(a∗ ∧ b∗) = card(X ∩ Y) (6)

The first form of normalization is obtained by standardizing s with respect
to the probability distribution of S:

q(a, b) =
s− E(S)√
var(S)

(7)

where E(S) and var(S) designate the mathematical expectation and the
variance of S.

By using normal distribution for the probability law of S, this coefficient
leads to the probabilistic index:

I(a, b) = Pr{S ≤ s|N} = Pr{q(a∗, b∗) ≤ q(a, b)|N} (8)

that we call “local” likelihood of the link association index. Remind that
“local” refers to the logical independence of its construction relative to the
attribute set A from which a and b are taken.

For this index the similarity between a and b is measured by a proba-
bility value stating how much improbable is the bigness of the observed value
of the raw index s. This probability is defined and computed under the inde-
pendence hypothesis N . Clearly, the index (9) is nothing but the complement
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to 1 of a P − value in the sense of statistical hypotheses. However, its mean-
ing does not refer to a conditional test [4] but to a conditional probabilistic
evaluation, when the sizes n(a) and n(b) are given.

Three fundamental forms of the no relation (independence) hypothesis
N have been set up [23, 20]. Let us denote them N1, N2 and N3. These are
distinguished in their ways of associating with a given subset O(c) of O, a
random subset L of an Ω set corresponding to O. Let us designate by P (Ω)
the set of all subsets of Ω organized into levels by the set inclusion relation.
A given level is composed by all subsets having the same cardinality.

Let us now make clearer the hypotheses N1, N2 and N3.

For N1, Ω = O and L is a random element from the n(c) level of P (Ω),
provided by an uniform probability distribution. Then L is a random subset
of O of size n(c).

For N2, Ω = O. But the random model includes two steps. The first
consists of randomly choosing a level of P (O). Then L is defined as a ran-
dom element of the concerned level, provided by an uniform distribution.
More precisely, the level choice follows the binomial distribution with n and
p(c) = n(c)

n as parameters. Under these conditions, the probability of the kth

level, 1 ≤ k ≤ n is given by Ck
np(c)

kp(¬c)n−k, where p(¬c) = n(¬c)
n .

N3 is defined by a random model with three steps. The first consists of
associating with the object set O a random object set Ω. The only require-
ment for Ω concerns its cardinality N which is supposed following a Poisson
probability law, its parameter being n = card(O). The two following steps
are similar to those of the random model N2. More precisely, for N = m
and an object set sized by m, L is a random part of Ω0. L is defined only
for m ≥ n(c) and in this case we define γ = n(c)

m . In these conditions, the
probability to choose the level k of P(Ω0) is defined by the binomial proba-
bility Ck

mγ
k(1− γ)n−k. And for a given level, the random choice of L is done

uniformly on this level.

We established [23, 20] that the distribution of the random raw index
S is:

• hypergeometric of parameters (n, n(a), n(b)), under the model N1 ;
• binomial of parameters (n, p(a) ∗ p(b)), under the model N2 ;
• of Poisson of parameters (n, n ∗ p(a) ∗ p(b)), under the model N3.
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2.2 The different versions of a statistically standardized index

The normalized form of the raw index s, according to equation (8) for the
random modelsN1,N2 andN3, respectively, leads to the following indices [23]:

q1(a, b) =
√
n ∗ p(a ∧ b)− p(a) ∗ p(b)√

p(a) ∗ p(b) ∗ p(¬a) ∗ p(¬b) (9)

q2(a, b) =
√
n ∗ p(a ∧ b)− p(a) ∗ p(b)√

p(a) ∗ p(b) ∗ [1− p(a) ∗ p(b)] (10)

and

q3(a, b) =
√
n ∗ p(a ∧ b)− p(a) ∗ p(b)√

p(a) ∗ p(b) (11)

Notice the perfect symmetry of q1(a, b) according to the following meaning:

q1(a, b) = q1(¬a,¬b) (12)

As mentioned above (see introduction) we assume the positive form of the
boolean attributes established in such a way that the proportional frequency
of the “true” value is less than 0.5. Under this condition we have the following
inequalities:

q2(a, b) > q2(¬a,¬b) (13)

and

q3(a, b) > q3(¬a,¬b) (14)

The last inequality is clearly more differentiated than the previous one.
Therefore, we only consider the two most differentiated indices q1(a, b) and
q3(a, b). One more reason for distinguishing these two indices concerns both
formal and statistical aspects. Indeed, by considering the χ2 statistic associ-
ated with the 2× 2 contingency table crossing (a,¬a) and (b,¬b), we obtain:

χ2{(a,¬a), (b,¬b)} = [q1(a, b)]2

= [q3(a, b)]2 + [q3(a,¬b)]2 +
[q3(¬a, b)]2 + [q3(¬a,¬b)]2 (15)
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Thus, q3(a, b) defines the direct contribution of the entry (a, b) to the χ2

statistic.

Dividing by
√
n the indices q1 and q3, one obtains the respective asso-

ciated indices γ1 and γ3. Correlative interpretation of these can be provided.
Both are comprised between −1 and +1. But depending on p(a) and p(b), γ3

is included into a more narrow interval than that of γ1:

γ1(a, b) =
p(a ∧ b)− p(a) ∗ p(b)√
p(a) ∗ p(b) ∗ p(¬a) ∗ p(¬b) (16)

and

γ3(a, b) =
p(a ∧ b)− p(a) ∗ p(b)√

p(a) ∗ p(b) (17)

Now, let us designate by dab the density of the joint empirical probability
with respect to the product of marginal probabilities, namely:

dab =
p(a ∧ b)
p(a) ∗ p(b) (18)

The latter index is directly related to that tab introduced in [4] by means
of the equation:

tab = dab − 1 (19)

Then, γ1(a, b) and γ3(a, b) can be expressed in terms of dab and the
marginal proportional frequencies. More precisely, we have:

γ1(a, b) =

√
p(a) ∗ p(b)

p(¬a) ∗ p(¬b) ∗ (dab − 1) (20)

γ3(a, b) =
√
p(a) ∗ p(b) ∗ (dab − 1) (21)

2.3 Behaviour of the likelihood of the link local probabilistic index

The general expression of this index is given in (8) where the no relation
(independence) hypothesis N is not yet specified. By substituting N with
N1, N2 or N3, one has to replace q by q1, q2 or q3, respectively. Even for n
relatively high, an exact evaluation of the probability Pr(S ≤ s|Ni)(i = 1, 2 or
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3) can be obtained by means of a computer program. Cumulative distribution
functions of hypergeometric, binomial or of Poisson laws are refered to the
subscipt value i, i = 1, 2 ou 3, respectively. Nevertheless, for n large enough
(for example greater than 100) and p(a) ∗ p(b) not too small, the probability
law of S can be very accurately approximated by the normal distribution:

Ii(a, b) = Pr{S ≤ s|Ni} = Φ[qi(a, b)] = Φ[
√
nγi(a, b)] (22)

where Φ denotes the standardized cumulative normal distribution function
and where i = 1, 2 or 3.

Consequently, if dab is clearly greater than unity and for n large enough,
the local probabilistic index becomes very close to 1. On the contrary, if dab is
lower than 1 and for n enough large, this index tends to 0. Thus, for n large
enough and whatever the computing accuracy reached, this local probabilistic
index is only able to discriminate on an attribute set A two classes of attribute
couples: the positively and the negatively related.

Now, as it is usual in statistical inference, let us imagine the object set O
obtained by means of a random sampling in a universe U of objects. Then, let
us denote at the level of U , by π(a), π(b) and π(a∧ b) the object proportional
frequencies where the boolean attributes a, b and a∧ b have the “true” value.
Note that π(a), π(b) and π(a∧b) can be interpreted as probabilities associated
with a “true” value for a random object taken with equiprobability distribu-
tion from U . In these conditions let us designate by ρi(a, b) the mathematical
expression corresponding to γi(a, b) and defined at the level of U , i = 1, 2 or
3, respectively. In this fashion, γi(a, b) defines an estimation of ρi(a, b), whose
accuracy is an increasing function of n [17].

Now, let us indicate by δ(a, b) the expression associated with (18), but
at the level of U . Clearly, we have the following properties for n enough large:

• δ(a, b) < 1, Ii(a, b) [cf. (22)] tends to 0 ;
• δ(a, b) > 1, Ii(a, b) tends to 1 ;

but, for δ(a, b) = 1, Ii(a, b) can be considered as an observed value of an
uniformly distributed random variable on the [0, 1] interval.

However, our statistical framework is restricted to the object set O and it
is in this context that we have to achieve a probabilistic discriminant index. As
shown above, this index cannot be obtained if we only have to compare in an
absolute manner two boolean attributes a and b independently of the attribute
set A from which they come. And indeed, if our universe is limited to this
single couple of attributes {a, b}, the above proposed index Ii(a, b), ∀i = 1, 2
ou 3, is sufficient. In fact, the objective consists of mutual comparison of many
attribute pairs and generally of the whole set P2(A) of attribute pairs.
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3 “In the context” comparison between two attributes

The context is determined by the set of attribute pairs of a set A of p boolean
attributes:

A = {aj |1 ≤ j ≤ p} (23)

In this context, a probabilistic similarity between two boolean attributes
will be proposed. This similarity will have a relative meaning with respect to
the context. Retain from A×A the following cardinal structure:

{(n(aj ∧ ak), n(aj ∧ ¬ak), n(¬aj ∧ ak), n(¬aj ∧ ¬ak))|1 ≤ j < k ≤ p} (24)

Also denote

{n(aj)|1 ≤ j ≤ p} (25)

the sequence of the cardinalities of the subsets O(aj), 1 ≤ j ≤ p. At the
same time, introduce the associated sequence of the proportional frequencies,
relative to the total number of objects n. Thus the mathematical tables (24)
and (25) give:

{(p(aj ∧ ak), p(aj ∧ ¬ak), p(¬aj ∧ ak), p(¬aj ∧ ¬ak))|1 ≤ j < k ≤ p} (26)

and

{p(aj)|1 ≤ j ≤ p} (27)

Now, reconsider the index q3(a, b) [cf. (11)] locally built by a centring
and reducing process with respect to the no relation hypothesis N3. We have
emphasized above the interesting asymmetrical property of this index where
the similarity between rare attributes is clearly stressed [cf. (13)]. Precisely,
we assume that the set of the p boolean attributes is established in such a
way that:

n(aj) ≤ n(¬aj), 1 ≤ j ≤ p (28)

As expressed in the introduction, a system of values such as (26) cannot be
evaluated in the same way relatively to the induced equivalence or implicative
relations, for any magnitude of the number n of objects. And that matters
from two points of view: statistical and semantical. Moreover, the associations
rules should be situated in a relative way.
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To answer these two requirements let us first reconsider q3(a, b) [cf. (11)].
Now, in order to compare in a mutual and relative manner the set of attribute
pairs, introduce the empirical variance of the index q3 on the set P2(A) of two
element parts of A. This variance can be written:

vare(q3) =
2

p ∗ (p− 1)

∑
{[q3(aj , ak)−moye(q3)]2|1 ≤ j < k ≤ p} (29)

where

moye(q3) =
2

p ∗ (p− 1)

∑
{q3(aj , ak)|1 ≤ j < k ≤ p} (30)

defines the mean of the index q3 on P2(A).

For relative comparison between two attributes belonging to A, we intro-
duce the globally normalized index q3. For example, consider the comparison
between two given attributes a1 and a2. The new index qg

3(a1, a2) is defined
as follows:

qg
3(a1, a2) =

q3(a1, a2)−moye(q3)√
vare(q3)

(31)

This index corresponds to the relative and directed contribution of q3(a1, a2)
to the empirical variance vare(q3).

Under these conditions, the likelihood of the link probabilistic index is
conceived with respect to a global independence hypothesis where we asso-
ciate with the attribute set A [cf. (23)] a random attribute set:

A∗ = {aj∗|1 ≤ j ≤ p} (32)

where the different attributes are mutually independent with respect to
the no relation hypothesis N3. This index can be written:

Pg(a1, a2) = Pr{qg
3(a1∗, a2∗) ≤ qg

3(a1, a2)|N3} (33)

where

qg
3(a1∗, a2∗) =

q3(a1∗, a2∗)−moye(q∗3)√
vare(q∗3)

(34)

Theoretical and experimental proofs [17, 7] show that the probabilistic
index can be computed by means of the following equation :

Pg(a1, a2) = Φ[qg
3(a1, a2)] (35)
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where Φ denotes the standardized normal cumulative distribution.

Let us point out that the table of probabilistic similarity indices

{Pg(aj , ak)|1 ≤ j < k ≤ p} (36)

is that taken into account in the LLA ascendant hierarchical classification
method [18, 21]. Otherwise and for any data analysis method working with
dissimilarities, our approach can provide the following table of dissimilarity
indices:

{D(j, k) = −Log2[Pg(aj , ak)]|1 ≤ j < k ≤ p} (37)

that we call “ informational dissimilarity table ”.

4 Implicative similarity index

4.1 Indices independent of n and of the context

So far we have been interested in the evaluation of the symmetrical equiv-
alence relation degree between two boolean attributes a and b belonging to
a set A of boolean attributes [cf. (23)]. For this purpose we refered to inde-
pendence statistical hypothesis as a basis to establish an adequate measure.
The built indices are clearly situated with respect to this hypothesis. Now,
we have to evaluate the asymmetrical implicative relation of the form a→ b.
Such a relation is completely satisfied at the level of the object set O if the
subset O(a) characterized by a true value of a is included in the subset O(b)
characterized by a true value of b. In practice this event is very rare. When,
without having strict inclusion, there are clear experimental situations defined
at the level of the object set O, where partial inclusion is more or less strong.
And in such situations, we have to evaluate the tendency of b knowing a.

Let us reconsider briefly the complete inclusion situation observed at the
level of the object set O. It can be interesting to study it by introducing
parametrization with (n, p(a), p(b)) where p(a∧¬b) = 0. One can also [26] be
interested in some aspects of the probability law of the conditional relative
frequency p(b∗|a∗) under a very specific model. For the latter it is assumed
that both cardinalities are known : the size N(a) of the U subset where a is
true and the size n(a) of the O subset where a is true.

Now, let us consider the most realistic and the most frequent case where
the number of objects n(a ∧ ¬b) is small without being null. In these con-
ditions, we are interested in evaluating the relative smallness of the number
of objects n(a ∧ ¬b) where a is true and where b is false. These objects con-
tradict the implicative relation a → b. In order to evaluate this smallness,
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most of the proposed indices try to neutralize the size influence of n(a) and
n(b). However notice that for n(a) and n(b) fixed, n(a∧¬b) “small”, n(a∧ b)
“large”, n(¬a ∧ b) “small” and n(¬a,¬b) “large” correspond to concordant
phenomenons. Thus, some proposed indices for the asymmetrical implicative
case have a perfect symmetrical nature with respect to the ordered pair (a, b).
Most if not all of them can be situated with respect to the empirical inde-
pendence hypothesis defined by p(a ∧ b) = p(a) ∗ p(b). According to [26] the
easiest one is (p(a ∧ b) − p(a) ∗ p(b)). The latter corresponds to the common
numerator of q1(a, b), q2(a, b) and q3(a, b) (cf. 9,10,11). This index and γ1(a, b)
are reported in [26] but at the level of the object universe U . γ1 is nothing
else than the K. Pearson coefficient [25]. A symmetrical index called “interest
measure” is also proposed in [6]. This index has been denoted by dab (cf. 18).
It is directly related to the contribution of the entry (a, b) to the χ2 statistic.
This contribution can also be expressed by [q3(a, b)]2.

Nevertheless, many of the proposed indices for evaluating the strength
of an implication a → b are asymmetrical. Clearly, they stress the smallness
of n(a ∧ ¬b) with respect to the bigness of n(a ∧ b). Let us describe some of
them. For coherent reasons in the following development but without explicit
intervention, suppose the inequality n(a) ≤ n(b) which makes possible the
total inclusion of O(a) in O(b).

The easiest and the most direct index that we have to mention is that
called “ the confidence index” [1]. It is defined by the conditional propor-
tion p(b|a) = p(a∧b)

p(a) . It varies from 0 to 1. The 0 value is associated with
disjunction between O(a) and O(b), when the 1 value is reached in case of
inclusion of O(a) into O(b). An interesting comparison analysis of this basic
index with different indices proposed in the literature is developed in [14]. The
Loevinger index [24] is also a very classical and very known one. Respective to
the introduced notations [cf. (18)] it can be defined by the following equation :

H(a, b) = 1− d(a,¬b) (38)

Let us now suppose the two “natural” inequalities p(a) ≤ p(b) and
p(a) ≤ p(¬b). Under these conditions, the index value varies from 1 in case
of complete inclusion O(a) ⊂ O(b), goes through the 0 value for the sta-
tistical independence and reachs the negative value −[ p(b)

p(¬b) ] in case where
O(a) ⊂ O(¬b); that is to say, where the opposite implication a→ ¬b holds.

The Lœvinger index can also be written :

H(a, b) =
p(a ∧ b)− p(a) ∗ p(b)

p(a) ∗ p(¬b) (39)

Then, it corresponds to an asymmetrical reduction with respect to (a, b)
of the first index proposed by G. Piatetsky-Shapiro [26].
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One can also clearly situate the H(a, b) index with respect to γ3(a,¬b).
H(a, b) is obtained by reducing the centred index [p(a ∧ ¬b) − p(a) ∗ p(¬b)]
by means of p(a) ∗ p(¬b) when the reduction is performed with

√
p(a) ∗ p(¬b)

in the −γ3(a,¬b) index. Consequently, −γ3(a,¬b) defines a new implicative
index only depending on [p(a ∧ b), p(a), p(b)]. Obviously the 0 value charac-
tarizes statistical independence. On the other hand, the logical implication
a→ b is obtained for the value

√
p(a) ∗ p(¬b). Otherwise, the index value can

decrease till the value −p(b) ∗
√

p(a)
p(¬b) .

Therefore and clearly, one can propose the following discriminant “free
context” index :

−γ3(a,¬b) =
−p(a ∧ ¬b) + p(a) ∗ p(¬b)√

p(a) ∗ p(¬b) (40)

This index is exactly the opposite of the direct contribution of the entry
(a,¬b) to the χ2/n coefficient. The index −γ3(a,¬b) appears coherent with
the “in the context” construction process of the likelihood of the link proba-
bilistic index (see the above section 3). It can be seen that the two extreme
value limits are included in the interval [−1,+1] when the lowest negative
boundary of H(a, b) can potentially reach any negative value. More precisely
and under the inequalities (p(a) ≤ p(b) and p(a) ≤ p(¬b)), we establish that
the two boundaries are comprised in the interval [−p(b), p(¬b)].

Now, by considering the coherence condition p(a) ≤ p(b) which enables the
complete inclusion O(a) ⊂ O(b) and, as said in the introduction, by assuming
the significant conditions p(a) ≤ p(¬a) and p(b) ≤ p(¬b) one can establish
that the minimal and maximal values of γ3(a,¬b) are −0.5 and +0.5, respec-
tively. The above limit p(¬b) is then reduced. Consequently and under the
mentioned coherence conditions, we can obtain an index whose value ranges
from 0 to 1 by setting :

η3(a, b) = 0.5− γ3(a,¬b) (41)

Otherwise and under the above coherent conditions, the minimal bound-
ary for the index H(a, b) is greater or equal to −1. Then an index denoted by
K(a, b), deduced from H(a, b) and comprised between 0 and 1 can be put in
the following form :

K(a, b) =
1
2
(H(a, b) + 1) (42)

Notice that the two new indices have the common value 1
2 in case of sta-

tistical independence.
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It has been shown that the presented above indices can be expressed in
terms of the different components of the χ2 statistic associated with the 2× 2
contingency table defined by the crossing {a,¬a}×{b,¬b}. We are now going
to present two indices which employ the mutual information statistic associ-
ated with this contingency table. Three formal versions can be considered for
this statistic :

E = p(a ∧ b) log2(d(a, b)) + p(a ∧ ¬b) log2(d(a,¬b))
+ p(¬a ∧ b) log2(d(¬a, b)) + p(¬a ∧ ¬b) log2(d(¬a,¬b)) (43)
= E(a)− p(b)E(a|b)− p(¬b)E(a|¬b) (44)
= E(b)− p(a)E(b|a)− p(¬a)E(b|¬a) (45)

where E(x) denotes the entropy of the binary distribution (p(x), p(¬x))
and where E(x|y) denotes that of the conditional distribution (p(x|y), p(¬x|y)),
x and y, indicating two boolean attributes.

Precisely, the Goodman & Smith [8] J-measure corresponds to the sum
of the first two terms of the previous first equation (43). In these, the boolean
attribute a is taken positively, when the negated attribute ¬a is considered in
the sum of the last two terms of (43). A second index proposed by R. Gras
[10] has fundamentally an entropic conception. It is called “inclusion” index
and it takes the following form :

τ(a, b) =
√
G(b|a) ∗G(¬a|¬b) (46)

where G(x|y) is defined by the square root of

G2(x|y) =
{

1− E2(x|y) if p(¬x ∧ y) ≤ 1
2 ∗ p(y)

0 if not (47)

This index employs the conditional entropies E(b|a) and E(¬a|¬b) which
are associated with the binary distributions (p(b|a), p(¬b|a)) and (p(¬a|¬b), p(a|¬b)),
respectively. The former entropy can be obtained as a constitutive component
of the equation (45) expressing the mutual information E , when the latter
entropy is defined as a component element of the preceding equation (44).

Notice that a high value of the index 1 − E2(b|a) expresses two oppo-
site inclusion tendencies. The first one consists of O(a) ⊂ O(b) and the other
logical opposite O(a) ⊂ O(¬b) (E(b|a) = E(¬b|a)). Similarly, a high value
of 1−E2(¬a|¬b), reflects two opposite inclusion tendencies corresponding to
O(¬b) ⊂ O(¬a) and O(¬b) ⊂ O(a) (E(¬a|¬b) = E(a|¬b)). However, tak-
ing into account the condition included in equation (47), a strictly positive
value of τ(a, b) is constrained by p(b|a) > p(¬b|a). Consequently, a strictly



A New Probabilistic Measure for Association Rules 19

positive value of the inclusion index cannot occur if one of both conditional
probabilities is lower than 0.5. Now, there may be situations where p(b|a) is
high enough (clearly greater than 0.5) and where p(¬a|¬b) is low enough (no-
tably lower than 0.5). And in these, there is no reason to reject a priori an
implicative tendency value for a → b. This weakness of the inclusion index
is somewhat balanced by its quality consisting of taking into account both
implicative evaluations : a→ b and ¬b→ ¬a.

4.2 Comparing local implicative of the link likelihood and entropic
intensity indices

Conceptually, for associating symmetrically two boolean attributes a and b,
the likelihood of the link probabilistic approach evaluates under a random
model of no relation how much unlikely is in probability terms the relative
bigness of n(a ∧ b). The respective influences of the n(a) and n(b) sizes are
neutralized in this model. This idea has been extensively developed in the
framework of the LLA ascendant hierarchical classification of descriptive at-
tributes [20]. It has been adapted by R. Gras [9], [23] in the asymmetrical
implicative case. In the latter, one has to evaluate how much is unlikely the
smallnes of n(a∧¬b) with respect to a random no relation model N , neutral-
izing the respective influences of n(a) and n(b). The index can be written :

I(a, b) = 1− Pr{n(a∗ ∧ ¬b∗) < n(a ∧ ¬b)|N}
= Pr{n(a∗ ∧ ¬b∗) ≥ n(a ∧ ¬b)|N} (48)

where (a∗, b∗) denotes the random ordered attribute pair associated with (a, b)
under a random model N defining an independence hypothesis.

Let us designate by u the index n(a ∧ ¬b) and by u∗, the random as-
sociated index n(a∗ ∧ ¬b∗) under the hypothesis of no relation N . Then, the
standardized index (by centring and reducing u) takes the following form :

q(a,¬b) =
u− E(u∗)√
var(u∗)

(49)

where E(u∗) and var(u∗) denote the mathematical expectation and the vari-
ance of u∗, respectively.

As expressed above three versions of the random model N have been set
up : N1, N2 and N3. These lead for the random index u∗, to hypergeometric,
binomial and of Poisson probability laws, respectively.N1 andN3 are the most
differentiated models [23]. By designating qi(a,¬b), the index u standardized
with respect Ni, we have :

q1(a,¬b) = q1(¬a, b) = −q1(a, b) = −q1(¬a,¬b) (50)
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Remark that for the random model N1, the implicative form of the index is
exactly equivalent to the symmetrical case. ForN3, we have with the condition
p(a) < p(b) :

|q3(a,¬b)| > |q3(b,¬a)| (51)

A natural condition in order to consider the evaluation of the association
rule a → b can be defined by a negative value of n(a ∧ ¬b) − (n(a)∗n(¬b)

n ).
This expression represents the numerator of q3(a,¬b). It is identical to that
of n(b ∧ ¬a) − (n(b)∗n(¬a)

n ) associated with the index q3(b,¬a) corresponding
to the opposite implication b → a. However, since n(b) > n(a), the latter is
more difficult to accept. The inequality (51) consists of a coherent statement
since, for the local likelihood of the link index associated with N3, we have
(see (48)) :

J3(a, b) > J3(b, a) (52)

To be convinced of this property, consider the excellent normal approxi-
mation for n enough large, of the probability Poisson law of n(a∗ ∧ ¬b∗) and
n(b∗ ∧ ¬a∗), respectively, under the N3 model :

J3(a, b) = 1− Φ(q3(a,¬b)) (53)

and

J3(b, a) = 1− Φ(q3(b,¬a)) (54)

where Φ is the cumulative distribution function of the standardized normal
law.

Moreover, the necessary and sufficient condition to have (52) is n(a) <
n(b). Mostly we have p(a) < p(b) < 1

2 . With this condition one obtains the
following inequalities which comprise that (52) :

I3(¬a,¬b) < J3(b, a) < J3(a, b) < I3(a, b) (55)

where I3 indicates the local likelihood of the link probabilistic index defined
in (22).

Now, consider two situations that we denote by I and II where O(a) and
O(b) have the same relative position. We mean that the proportional frequen-
cies induced by n(a ∧ b), n(a ∧ ¬b) and n(¬a ∧ b) remain constant. But we
suppose variation for the relative frequency induced by n(¬a ∧ ¬b) between
I and II. Notice that every similarity index symmetrical or asymmetrical
based on relative proportions defined into O(a ∨ b) cannot distinguish I and
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II, see for example the famous Jaccard index [13] or the confidence index
(a→ b) = n(a∧b)

n(a) . This statement becomes false in case of an association rule
whose conception depends logically on O(¬a ∧ ¬b). In order to illustrate this
point and to explain the behaviour of the local probabilistic index which is
directly related to q3(a,¬b), consider for n = 4000 the two following situations
I and II. The situation I is described by n(a∧ b) = 200, n(a∧¬b) = 400 and
n(¬a∧ b) = 600; when, the situation II relative to the attribute ordered pair
that we denote by (a′, b′), is characterized by n(a′∧b′) = 400, n(a′∧¬b′) = 800
and n(¬a′∧b′) = 1200. Thus, n(a′∧b′), n(a′∧¬b′) and n(¬a′∧¬b′) are obtained
as twice n(a∧ b), n(a ∧¬b) and n(¬a ∧¬b), respectively. In these conditions,
it is not surprising to observe that the situation I corresponds to a strong
implication a→ b according to the q3 value, q3(a,¬b) = −3.65; when, for the
situation II, the implication a′ → b′ vanishes, (q3(a′,¬b′) = 2.98). In fact, by
comparing the respective sizes of O(a) and O(b) for one hand and, O(a′) and
O(b′) for the other hand, we can realize that the inclusion degree of O(a) into
O(b) is much more exceptional than that ofO(a′) intoO(b′). This latter should
reach the value 578 for n(a′ ∧ b′) to have q3(a′,¬b′) = q3(a,¬b) = −3.65. This
phenomenon is amplified when we multiply all the cardinalities by a same
coefficient greater than 1. Thus, with a multiplicative factor 10 one obtains
q3(a,¬b) = −11.55 et q3(a′,¬b′) = 9.43. Moreover, with a multiplicative fac-
tor equal to 100 one obtains q3(a,¬b) = −36.51 and q3(a′,¬b′) = 29.81.

Consequently, for n enough large the local probabilistic index J3(a, b)
looses its discriminant power for pairwise comparing many implication rules.
The solution proposed by [10] consists of combining a geometric mean the
initial index J3(a, b) (denoted by ϕ) with the inclusion index τ(a, b) [cf. (46)],
in order to obtain the index called by R. Gras “ entropic intensity :

Ψ(a, b) =
√
ϕ(a, b) ∗ τ(a, b) (56)

But indices ϕ(a, b) and τ(a, b) mixed into a unique one, are very different
in their conceptions though they are related in an implicit way logically and
statistically. This relation is difficult to analyze in spite of an established for-
mal link between the χ2 and the mutual information statistics [3]. In these
conditions and if n is not too large in order to allow significant contributions
of the two components of the entropic intensity, we cannot control the respec-
tive parts of these components in the index value Ψ(a, b). Now, for n large
enough and increasing, ϕ(a, b) becomes closer and closer of 0 or 1 and then
the index Ψ(a, b) tends quickly to 0 or to

√
τ(a, b). Deeper formal and statis-

tical analysis would be interesting to be concretely provided for this combined
index in the framework of interesting experimental results.

The next subsection is devoted to our approach in which a pure prob-
abilistic framework is maintained.
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4.3 Implicative contextual similarity of the likelihood of the link

To build an implicative probabilistic index which remains discriminant what-
ever the value of n we proceed to a global reduction of the implicative similari-
ties of the form q3(a,¬b), with respect to an interesting set of ordered attribute
pairs. This solution has been previously proposed, but with less consistency
in [23]. More precisely, this normalization has to be performed in the context
of a data base comprising attribute couples of which the corresponding asso-
ciation rules have to be compared mutually and in a relative manner. Under
these conditions, we are placed into a dependency statistical structure and
that could be more or less strong.

This method consists simply in transposing to the asymmetrical case the
normalization adopted for the symmetrical one [cf. section 3]. Excellent exper-
imental resuts have been obtained in practicing ascendant hierarchical classi-
fication according to the LLA likelihood of the link method [20, 18, 21].

A significant problem concerns choosing the set of attribute ordered pairs
as a basis for normalization. In the following experimental scheme this basis
is defined by all the distinct attribute couples of A [cf. 23]. We will denote
the latter by its graph :

G0 = {(j, k)|1 ≤ j 6= k ≤ p} (57)

In [23] a selective choice have been recommended where the reference graph
is

G1 = {(j, k)|(1 ≤ j 6= k ≤ p) ∧ (n(aj) < n(ak))} (58)

so the full absorption of O(aj) by O(ak) can be achieved.

In the data mining community, an implication as a → b is taken into ac-
count only if indices such like support(a → b) = n(a∧b)

n and confidence(a →
b) = n(a∧b)

n(a) are respectively higher than thresholds s0 and c0 defined by an
expert [1, 12]. In this context, we will focus on the data base defined by the
graph:

G2 = {(j, k)|(1 ≤ j 6= k ≤ p) ∧ (n(aj) < n(ak))
∧ (support(aj → ak) > s0)
∧ (confidence(aj → ak) > c0)} (59)

Now and with respect to a given graph Gi (i = 0, 1 or 2), global normal-
ization leads us to replace the “local” index q3(aj , ak), by the “global” index
qg
3(aj , ak) defined as follows :



A New Probabilistic Measure for Association Rules 23

qg
3(aj , ak) =

q3(aj , ak)−meane{q3|Gi}√
vare{q3|Gi}

(60)

where meane{q3|Gi} and vare{q3|Gi} represent the empirical mean and vari-
ance of q3 on Gi, respectively.

The no relation or independence random model considered is that N3 (see
above). But here this model has to be interpreted globally by associating with
the whole attribute set A a set A∗ of independent random attributes [cf. (32)].
In these conditions, qg

3(aj∗, ak∗) follows a standardized normal law whose cu-
mulative distribution function is, as above, denoted by Φ. Thus, in order to
evaluate an association rule (aj → ak) taking its place in Gi, the likelihood of
the link probabilistic discriminant index is defined by the equation :

Jn(aj , ak) = 1− Φ [
qg
3(aj , ak)

]
(61)

5 Experimental results

5.1 Experimental scheme

Two kinds of experiments have been performed using the “mushrooms”
database [5]. This database contains 8124 individuals described by 22 at-
tributes and additionally an attribute class. The latter has been considered
at the same level as the others attributes and all of them have been trans-
formed into boolean attributes. By this way, the database is made of 125
attributes describing 8124 individuals. Our choice of this data base is moti-
vated by studying the behaviour of the tested indices on real data and not on
artificial ones.

The experimental process can be described as follows :

1. Compute all the couples (a, b) such that n(a) < n(b)
2. For each couple, compute q3(a,¬b) and J (a, b) [cf. (48)]
3. Then compute q3 mean and standard deviation for all the couples (a, b)

and normalize the q3 index before using the normal law.

In the first experiments, selection of couples (a, b) is only controlled by the
following condition: n(a) 6= 0, n(b) 6= 0 and n(a ∧ b) 6= 0.
In the second experiments, some support and confidence constraints are used
to control the selected couples. Remind that the support and the confidence of
a couple (a, b) are equal to Pr(a ∧ b) and Pr(b|a) = Pr(a∧b)

Pr(a) , respectively. All
the selected couples in the second experiments, are such that support(a, b) >
s0 and confidence(a, b) > c0.

These second experiments allow us to analyze the behaviour of several
indices. The main goal of all these experiments is to observe the behaviour
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of the built indices when the size of O increases without any modification of
the cardinalities of O(a), O(b) and O(a)∪O(b). In order to do that, a couple
(a, b) is selected according to the constraints of the experimental scheme.
Then, the value of n is increased without modifying the values of n(a), n(b)
and n(a∧ b). This technique can be compared to adding occurences for which
all the concerned attributes have a false value.

We used the following algorithm to realize our experiments:

(1) Select all the couples (a, b) verifying the experimental scheme constraints
(2) For each couple, compute q3(a,¬b)
(3) Compute mean and standard-deviation of all the q3 values
(4) For each couple, compute the local likelihood of the link probabilistic

index and the globally normalized one
(5) Increase n : n← n+ constant
(6) Repeat (2-5) until n < threshold

5.2 Detailed results

The first set of experiments (no constraints on the couples (a, b)) allow us to
show many relevant properties for our normalized index.

• this index is discriminant whatever is the n value
• moreover, results show that the behaviour of our index is more ignificant

for rules a→ b when n(a) < n(b)

Figures 1 and 2 show that the normalized index has a discriminant be-
haviour unlike the local index (always equal to 1), for attributes a and b
considered.
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Fig. 1. n(a) = 192, n(b) = 1202, n(a ∧ b) = 96, s0 = 0, c0 = 0
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Fig. 2. n(a) = 192, n(b) = 828, n(a ∧ b) = 64, s0 = 0, c0 = 0

We can also show, on Figure 3, that the normalized index reachs low values,
even though the local index tends to unity and this, when n(a ∧ b) is small
compared to n(a) (see Figure 4 and 3).
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Fig. 3. n(a) = 452, n(b) = 2320, n(a ∧ b) = 52, s0 = 0, c0 = 0

5.3 Robust version of the normalized probabilistic index on a
selected attribute couples

In the second series of experiments we focus on couples (a, b) whose support
and confidence values are higher than thresholds defined by the user. For all
of our experiments, we have used the thresholds s0 = 0.1 and c0 = 0.9. Then,
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a

b

Fig. 4. n(a) = 452, n(b) = 2320, n(a ∧ b) = 52

the couples (a, b) under study will be such that support(a → b) > 0.1 and
confidence(a → b) > 0.9. In fact these, thresholds are usually considered in
rule extraction context [15, 2]. Furthermore, similar values have been used
with the mushrooms database.

Achieved results show that, for this reduced set of attribute couples (a, b),
our normalized index is always more discriminant than the local one. More-
over, as we can see on Figure 7, the normalized index is more discriminant
in this experimental conditions than in the previous ones (see Figure 6). The
shown curves are associated with the configuration presented in Figure 5.

In the second series of experiments, strong relationships characterize all
the studied couples. In this case, with n increasing the relationship presented
in Figure 5 becomes less and less significant relative to all the other relations
with the same conditions. Therefore, the filtering step based on thresholds s0
and c0 allows us to only retain a set of relations having high values for all the
considered indices.

b

a

Fig. 5. n(a) = 1296, n(b) = 2304, n(a ∧ b) = 1296

Let us now consider the above situation (see Figure 5) where O(a) ⊂ O(b).
In this case, n(a) = 1296, n(b) = 2304 and n(a ∧ b) = 1296. Figure 6 shows
the evolution of the normalized index when the number of objects increases
from n = 8124 by adding fictive objects where all the attributes are false. The
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Fig. 6. n(a) = 1296, n(b) = 2304, n(a ∧ b) = 1296, s0 = 0, c0 = 0
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Fig. 7. n(a) = 1296, n(b) = 2304, n(a ∧ b) = 1296, s0 = 0.1, c0 = 0.9

index value remains strong, higher than 0.98 as n reaching 80000 and start-
ing from n = 8124. Nevertheless, this value decreases reaching a stable level
when n increases. The reason is that when n increases the above implication
becomes less and less distinctive with respect to the other implications. Such
situation must concern cases where n(a) and n(b) are high and near each other.

Consider now the last series of experiments (Figure 7), it is not surpris-
ing to observe such small values for our normalized index when n increases.
Indeed, this situation, described by the graph G2 (see 59) concerns attribute
couples (aj , ak) where the implication relation is very strong. Thus for exam-
ple by taking n = 80000, we have for every selected (aj , ak), n(aj∧ak) ≥ 8000
and n(aj∧ak)

n(aj)
≥ 0.9. But the indices are computed on the basis of the initial
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object set whose size is n = 8214. These indices must correspond to nearly
inclusions of a very “big” O(aj) into a slightly bigger O(ak).
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Fig. 8. n(a) = 1296, n(b) = 2304, n(a ∧ b) = 1296, s0 = 0.1, c0 = 0.5

When the minimal confidence threshold decreases to 0.5, we observe, on
Figure 8, that the relation considered becomes more significant with respect to
the other relations. This behaviour is not surprising and can be explained by
the fact that the set of studied relations includes relations with lower degree
of confidence than in the case presented in Figure 7. As a consequence of all
our analysis one can say that the new probabilistic normalized index by global
reduction is discriminant and reflects in some way the statistical surprise of a
rule in the context of other rules.

6 Conclusion

In order to evaluate an association rule a → b, many indices have been pro-
posed in data mining literature. Most of them have an absolute meaning and
only depend on the concerned ordered pair (a, b) of attributes. This depen-
dence is expressed in terms of proportional frequencies defined by the crossing
between the two attributes on a learning set, p(a), p(b) and p(a∧ b). The for-
mal aspects of these indices are analyzed and mutually compared. In their
construction, the importance of empirical statistical independence is set up.
Mainly, these indices are compared with our approach in defining probabilis-
tic similarity measure associated with a notion of likelihood of the link with
respect to independence hypothesis. Indeed, this notion is expected to capture
that of “interestingness measure” setting up surprising rules. This similarity
can be symmetrical translating equivalence relation degree or asymmetrical,
reflecting asymmetrical implicative relation.
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The first conception of the likelihood of the link similarity measure is local,
i.e. only depends on the attribute pair to be compared. Unfortunately, this
local version looses its discriminant power when the data size becomes large
enough. And one of the major objectives of this paper consists in building a
likelihood of the link probabilistic index associated in a specific relative man-
ner with the preceding one and finely discriminant for large data bases. It is
globally built by normalization with respect to an interesting set of association
rules. Then the new index is contextual. The resulting increase of the com-
puting complexity remains linear with respect to the size of the latter rule set.

This conceptual construction has been extremely extended in order to
compare mutually in a symmetric way a set of complex attributes observed
on a training object set. For this purpose, a given descriptive attribute is
interpreted in terms of a discrete or weighted binary relation on the object
set O (see [22] and the associated references). Qualitative attributes of any
sort are included in this generalization. This takes an essential part in the
development of the LLA hierarchical classification method, when the latter
adresses the problem of the classification of the attribute set [20].

Otherwise, in the building process of the local likelihood link implicative
measure, we have obtained in a coherent way a new absolute measure η3(a, b).
This coherence consideration is also situated in the framework of the χ2 the-
ory. For a given data base observe that the contextual probabilistic indices
Jn(aj , ak) [cf. (61)] can be obtained from the indices η3(ai, ak) by means of
an increasing function.

However the specificity of the numerical values of Jn with respect to those
of η3 enables precisely to better distinguish between different association rules
according to the unlikelihood principle. Note that this principle constitutes
a basis of the information theory philosophy. Moreover, Jn enables easily to
compare (relatively) a given association rule a → b in the contexts of two
different sets of rules. Finally and mathematically, several indices conceived
locally lead to the unique probabilistic index Jn by the global likelihood of
the link construction (cf 4.1).

The experimental validation includes different interesting aspects. Our
main goal was to compare the respective behaviours of the local and the
global probabilistic indices. In this, we have clearly shown the discriminant
ability of the global normalized index. For this purpose the classical “mush-
rooms” data base has been employed. It would be interesting next to try
other data bases as car, votes, monks and other adata bases available on
http://www.ics.uci.edu/∼mlearn/.

More importantly, it is interesting in the future to continue the experimen-
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tal analysis by studying with the same experimental scheme the behaviour of
other indices such that those listed in [27], ψ(a, b), called “entropic intensity”
or η3(a, b), mentionned above.

Finally, when using Jn in order to evaluate the interest of a given rule
in the context of a data base, boundaries could be defined by the expert
knowledge. For this purpose one can for example consider inclusion situations
such as the one provided in Figure 5.
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variables observées. Publications de l’Institut de Statistique des Universités de
Paris, 29:27–57

18. I. C. Lerman (1991) Foundations of the likelihood linkage analysis (lla) classi-
fication method. Applied Stochastic Models and Data Analysis, 7:63–76

19. I.C. Lerman (1970) Sur l’analyse des données préalable à une classification
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