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The formal analysis of the most of the comparison coefficients between
two partitions, shows the non intervention of the relational constraint
which results from the partition structure. This constraint must appear
in the standardization of the considered coefficient ; that is to say,
at the level of the coefficient denominator. This standardization has
'formal' or 'statistical' nature. For the first, we show how -by repla-
cing the notion of mathematical formulae by that of recursive algo-
rithm- we resolve a combinatorial optimization problem which has been
considered as yet as very difficult. On the other hand, we study the
asymptotic formal expression of the coefficient obtained by statistical
standardization with respect to an adequate hypothesis of no relation.
This last coefficient takes closely into account the relational constraint.

1. INTRODUCTION

From the beginning of our research, the point of view that we have adopted and
developed consists of considering a descriptive qualitative variable of a set O of
objects as defining a relation on the set O. According to its complexity this relation
can be represented by a subset of O or of OxO or of (0Ox0)x(0x0) [Lerman(l970),
(1973),(1981),(1987)]. A qualitative nominal variable c is a particular case of rela-
tional qualitative variable which induces a partition m={A,/1<ixI} into I non empty
classes. We may represent such partition at the level of the set O(2 =P9(0) of unor-
dered object pairs, namely, by the subset R(w) of the object pairs that 7 joins, more
precisely

R(n):E{A{fL P,(A))/1<ic1}  (set sum)

o
We may also introduce the subset S(m) of object pairs separated by the partition :
S(ﬂ)=E{Ai*Ai,/lii<i's 1}, where A*A, ={{x,y}/x€A,, y€A,}. R(r) and S(m determine a
partition with two classes of A2,

Thus, comparing two partitions m and x can be expressed in terms of the comparison

of subsets of the set O{2J}of unordered distinct object pairs. Indeed we can also as-
sociate to x={Bi/lsjsJ}, the representation set R(x) and S(x).

Most of the coefficients proposed in the literature use the following raw indices :
s=card [R(m) N R(x)], u=card[R(m) {1 R¢(x)], v=card[R(m) N R(x )],

t=card[RS(r) N RC(x)] where R¢(n) [resp. R®(x)] denotes the complementary subset
of R(m) [resp.R(x)] in ol 2}. For example :

Rand(1971): [(s+[t)/(5+u+v]+t)]. (1)
Jaccard(1908): [s/(s+u+v)]. (2)
Fowlkes and Mallows (1983): {s//[(s+u)(s+v)]}. (3)

The coefficient (2) is correctly attributed to Jaccard. But it is not exactly the case
for the two other indices that had been considered a long time before, but in a very
different context. Around 1950 to 1960, several similarity indiceshad been considered
for comparing individuals described by 0-1 logical attributes. If C denotes the featu-



re set individual x can be represented by the subset Cx (Cx < C) of the features

that he has got. Comparing two individuals X and y is then equivalent to comparing
the two associated subsets C, and Cy, of C, from the parameters :s=card(Cy N Cy),
u=card(Cy N\ CC€), v=card(C§ N Cy), t=card(Cg N cC) where Ci (resp. C§) indicates

the complementary subset of C, (resp.Cy) in C.

Then we can realize immediatly that the Rand coefficient is nothing else than that
of Sokal and Michener (1958) which can also be written as {1—E(u+v)/cj} , where
c=card(C)=s+u+v+t. On the other hand Fowlkes and Mallows' coefficient is nothing but
the coefficient of Ochiai (1957). Furthermore, a coefficient of 'Goodman and
Kruskal' type (1954): {[;(s+t)—(u+v)]/(s+t+u+v)} may be written {1-[2(u+v)/c]} and it
corresponds exactly to the Hamann index (1961). Now, if we look at the object x
(resp. y) as represented by a total preorder with two classes C$ and Cy, where
C§<C} (resp. CC€ and C,, where CC<Cy), the Goodman and Kruskal coefficient is

exactly the Yul}ie coefficient E(l9}il),(1912)3: [:(st—uv)/(st+uv)j.

Therefore, if we reduce the comparison of two partitions 1 and %, to the comparison
of the two subsets R(m) and R(x) of the finite set ol2} -without going more deeply

about the nature of the structures to be compared- we may consider each of the si-

milarity indices considered by the taxonomists to compare taxons described by 0-1 lo-
gical attributes. Afterwards, we may explicit a given similarity index with respect to
the contingency table {cij/KisI, Ik j<J} that crosses the two partitions m and x:

cjj=card(Aj ) Bj), aj=card(A;), bj=card(Bj), l<icI, kj<J. In fact we have :

card tO{ 2}:}=(r2‘), where n is the cardinal of O,
card[R(n)J=§{(§i)/1<;s1}, card[R(x)] = Z{(gj)/lqa}
s=card [R(m N R(x)]= J{(51)/1<idl, 1<j<T}
u=card[R(Tr)ﬂS(><)j= Z{cijcij'/ls i<I, Igj<j'<J}
vecard[Sm)NR()]= ]lejjcirj/1ci<i'<l, 1<jc}
t=card [S(m N 8] = [{cjjeirr/1i<i'<l, 1<j<j'<l},
where S(m)=RE(m) [resp.S(x)=R¢(x)].

All these coefficients -that we obtain by analogy with known similarity indices
between subsets of a finite set- do not take completely into account the specific na-
ture of the partition structures to be compared. As a matter of fact, we may consi-
der these indices to compare any two binary relations that we represent by their res-
pective graphs at the level of OxO. But the representation set has particular mea-
ning in comparing partitions, since it consists of element pairs. Though the subsets
R@M and R(X) are closed transitively, the transitivity constraint does not intervene
in the comparison, for the previously mentioned indices. F. Marcotorchino (1984)
showed that several association coefficients between partitions -proposed in the lite-
rature- correspond to comparing two 'linear' codings of the couple set OxO. These
last are not specific of comparing two partitions. Formally they can be considered

to compare any two binary relations, or even two subsets of a finite set.

2. GENERAL DIAGRAM FOR COMPARING TWO RELATIONAL VARIABLES

To compare two relational qualitative variables, we have in our research set up the
following diagram :

@) D . [Re)R@]E a4 x 24

5 s=5(d ,B)=card[R(a) N rRE@ )]

|\

4

- Hypothesis of non link (h.n.l.) (or independence) taking into account -in a strict
or fuzzy ways- the cardinal characteristics of o and B.



—_— S=s(0z*,B*)=cardER(0t*) N R(B*)j
Q(aB)=[s5(5)) v/ [var(s)].

In this diagram ¢ and g8 are the two relations on the set O of objects, respectively
determined by the two variables to be compared. ﬂ(resp.‘b) is the set of all rela-
tions of the "same type" as o (resp.g ). R(a) Eresp. R()] is the set representation
of o (resp. B). R{a) tresp.R(B)j is a subset of O, or of Ox0O, or even of (0Ox0)x(0x0).
Qg (resp.QB) is the set of all possible representation subsets of a relation of the
same type as q (resp. R). s=s(a,8) is called the 'raw' index. ¢* and g* are two inde-
pendent relational random variables, respectively associated to g and B, according to
a hypothesis of no relation (h.n.l.) which takes into account -in a strict of fuzzy
way- the cardinal characteristics of ¢ and 8. S is the "random raw index", the mathe-
matical expectation and variance of which being denoted by’@(S) and var(S). Q(a,B)
is the "standardized index".

We have extensively used this previous diagram in the elaboration of our total or
partial association coefficients between qualitative variables ELerman (1973),(1981),
(19833),(1983b):]. To make this diagram completely clear, let us illustrate it in the
case of concern ; that is to say, the comparison between two partitions.

o and B are two partitions with -without loss of generality- labelled classes. Accor-
ding to above, we will denote then by 7 and x. t(m) [resp.t(x ):[ indicates the 'type'
of the partition n(resp.x) ; that is to say, the ordered sequence of the class cardi-
nals : t(m=(aj/1gicI) Eresp. t(x)=(bj/lgj<J). In these conditions,,a, (resp.q)a) is the set
of labelled partitions on O, whose type is t{r) Eresp.t(x)]. R(m) [:resp.R(x)] is the
set of object pairs, such as the two components are joined in a same class of¥ (resp.
x) (cf. above). Q. (resp.Q, ) may be defined as the subset set of 0{2}, each ele-
ment (subset of O #}) of which, corresponding to the representation of a partition
of type t(m) Eresp.t(x)j. We have yet expressed s=card [R(n) N Rix)] tcf. (4) above].

There are three fundamental forms of the 'h.n.l.' ELerman(l981) Chap.ZJ. We consi-
der here the strict form where w*(resp.x*) is a random partition in the set .. (resp.
) provided by an uniform probability measure. The mean and variance of the ran-

dom raw index S=s(n*,x*) are given by [Lerman(l973),(1981):] :

‘&(S)=)\u and V81’(S)=)\wpg+6€—)\2uz

where

A {ajlag-1)//[2n(n-1)] | lcicI} (1)

o=) {aj(aj-1)(a;-2) /v [n(n-1) (n-2)] | 1< i< }

e={[:z ai(ai"l)]z—Z Zai(ai—l)(Zai-S)}/2/[‘,n(n-1)(n_2)(n_3)]
i

i
and where the expressions of y,0, have respectively got the same forms as \,p0,8 ;

the aj of t(m) being replaced by the bj of t().

We may notice that g can be expressed in terms of A and p. Let us situate two clas-
sical association coefficients with respect to the preceding diagram. The first -of
comparing two logical attributes a and b -is that of K. Pearson (1928) and the
second- of comparing two ranking variables r and s- is that of M.G. Kendall(1970).

In order to obtain K. Pearson's coefficient, we represent a logical attribute a (resp.
b) by the subset O(a) Eresp.O(b)j of the objects which possesse the feature a (resp.
b). Therefore R(a)=0(a) [:resp.R(b)=O(b)J. The 'h.n.l." is strict and it associates to
R(a) [:resp.R(b):], a random subset R(a¥*) Eresp.R(b*)ﬂ in the set -provided by an uni-
form probability measure- of all subsets of O, with the same cardinal n(a) Eresp.
n(b)J. The random variable S is hypergeometric. Q(a,b) can be written as follows :

Q(a,b)=/(n-1) p(a,b) ~v/n p(a,b). (2)



where P(a,b) is a pure coefficient, ranging from -1 to 1, the limit of which -when
n tends to infinity and when En(a)/n] (resp. [n(b)/nj) tends to a limit different
from zero or one- being independent of n.

We may notice that the (a,b) coefficient can be obtained by means of one of the
two following expressions :

(i) P (ab)= L Q(a,b) (3)
’\/n

(if) P (a,b)= ___Q(a,b) (4)
Al Q(a,a)Q(b,b)

Let us now consider how to obtain -in the framework of the diagram- the

M.G. Kendall U coefficient of comparing two ranking variables r and s. Each variable
defines a total and strict order on the object set O. R(r) Eresp.R(s)j is the graph in
OxO of the total order relation defined by r (resp.s) that we denote also by r (resp.
s). r* (resp.s*) is a random total order in the set -provided by an uniform probability
measure- of the n! strict and total orders on O. In these conditions, the M.G.Kendall
1 coefficient can be put in the following form :

(r,s)= {S(T,S)-“&[s(r*,s*):]} (5)
{max [:S(r"sv )j -“&CS(T*,S*U }

where max Es(r',s')J is the maximum possible of the raw index s(r,s), it concerns
n(n-1)/2.

Some researchers like L. Hubert and P. Arabie (1985) consider association coefficient
between two qualitative variables @ and B as necessarily having the same form as (5).
Namely and in the most general case

T(a,8)= I8 (05,8):&5 (a*,B*)]
{ max [:S((I',B')] -%ES(OI*,B*):[}

where max [:S(Ol',B')J is the maximum possible of card ER(oz')ﬂR(B'):] for o' (resp. B')
of the same type as a(resp.R).

On the other hand, they consider that the statistic Q(,8) should be devoted to tes-
ting independence hypothesis between ¢ and 8. But we showed the non relevance of
the tests of independence hypothesis between descriptive variables in Data Analysis

erman(1984)|. Then nothing forbids to consider a coefficient p(a,B) directly dedu-
ced from Q(x,8) in the same way as the p(a,b) K. Pearson coefficient can be dedu-
ced from Q(a,b) ch.(B) and (4)3.

Our goal in the following is to give a brief look on the most recent results that we
have obtained on the possibility and the analysis of formulae such as (3),(4) and spe-
cially (5) in case of comparing two partitions m and x. On the contrary of the coef-
ficients presented at the paragraph I the different types of standardization that we

will consider, take intimately into account the structure constraints of the compari-

son between partitions.

3. LIMIT FORM OF Q{m,x). NORMALIZATION BY STANDARD DEVIATION

The solution that we will present ELerman(l987c)] below concerns the more general
context of comparing two symmetric (resp. antisymmetric) codings of OxO or
weightings on OxO. If {¢(x,y)/(x,y)EXxX} and {y(x,y)/(x,y)EXxX} -where
X={1,2,...,X,...,n} labels O- denote the two codings, we suppose to have :

[V (x,y)€XxX]  [0(x,y)=0(y,x) and b (x,y)= (y,x)]

or



Vix,y)€XxX] [b(x,y)=-¢(y,x) and § (x,y)=-9(y,x)].

On the other hand,
(Vx€EX) l:q) (x,x)=q;(x,x)=1] in case of symmetric coding
r

o]
(YxEX) [¢ (x,x)=w(x,x)=0:[ in case of antisymmetric coding.

The raw index does not take any account of the diagonal terms. It can be put in the
following form :

s6)=Jo vy yextA ) o)
where XE J {(x,y)/1¢x#ygm}.

The random raw 1r1dex can be put in the followmg form

0* )= T {oLo(x),0 ] [r ()1 ()] / (y)ext2) 1 (2
where g and ¢ are two independent random permutations taken in the set Gp of the
n! permutations on X, provided by an uniform probability measure.

The comparison between two partitions 1 and x corresponds to that of two symmetric
codings with 0-1 values and with the common value 1 on the diagonal of XxX. We ha-
ve :

ts)- [:[xg/:[ o ,y]E[XZ’y] R G)

where n[: ]=n(n—1) and Ex,y] c XPJ.

In [:Lerman(1987c) we begin by comparing the variance expression obtained by

N. Mantel (1967) with this one that we have set up completely independently
[Lerman(l976):]. In fact we ignored the Mantel paper and the principle of our combi-
natorial calculation is rather different. It had been considered to make clear
treatment after Lecalvé consideration (1976) highly inspired by an old paper of

H.E. Daniels (1944). In our earliest reference we develop two new and elegant ex-
pressions of var(S). One of them enables us to determine very precisely the tendency
of var(S) when n tends to infinity and when regular asymptotic conditions hold. The-
refore, we may determine the limit form of Q,)) that we present below. Let us in-
troduce the following absolute moments

P, - __2L T{o(x,y)/ (x,y)€ XxX},

n
P, = L J{¢# (x¥)/ (x.y)E XxX}, (4)
1'12
t = 1 Z{q)(x,y)q) X,2)/(x,y,2) € XxXxX},
3

on the other hand, respectively, q;» 4 and u associated to y in the same way as Pys
Ps and t are associated to ¢. Let us leo consider

w o= - Loy (xy)/ (x,y)€ XxX) (5).

n
In the following theorem, we assume n tending to infinity, PPy ,L (resp. {4549, ,u) and
w tending to finite limits.

Theorem 1. The limit form of the standardized coefficient Q{¢,p) is :

V (t-p%) (u-qf a ,—)i [(p2- p?‘) 2(t- pz)] [@-a})-2(u-691] (5)




In general (t—p%)(u—qz) is positive and different from zéro. In this general case, the
expression of o} ]\I)) becomes for n "rather large" :

___._/; (w—plq1 )
Qo) = 2 (6)
Y(t-p]) (u-g%)

It is of importance to notice that -as in the case of the construction of K.Pearson's
coefficient- Q(¢,¥) is to the multiplicative factor v'n, a pure coefficient whose limit
being independent of n.

Let us give now the limit form of the expression of Q(m,x) in case of comparison of
two partition relations. In this case ¢ and Y are symmetric with 0-1 values :

¢ (x,y)=1 |resp. ¢ (x,y)=1] if x and y are joined by the partition m(resp.x) and
¢(x,y)=0 |resp. ¥ (x,y)=0] if x and y are disjoined by the partition m(resp.x). Reconsi-
dering the notations introduced in paragraph II, let us set :

a. b. C. .
m=_1  x=_J ety. = _1] for every (i,j), kigl, I<j<].
L p I n 1) n
Then we have 5 5
Py =Py =P =)myt =),
i i
2 3
q1=q2=q=2x.,u=2x, (7)
j ] j )

Theorem 2. (corollary of the theorem 1). The limit form of the standardized coeffi-
cient Q(m,x) is :

@ (w-pq)
Q(T,x)e 2

(8)

Ceph e L fe-ph-200%)] flaah)-2 (-0

(t~p2) Eresp.(u—qz):] is in general strictly positive and exceptionally null ; the nullity
occurs if the 7. (resp.x.) are equal Bi.e. Tri=1/1 for every i=1,2,...,1 (resp. x.=1/J for
every j=1,2,...,J7)|. In -this last particular case the magnitude order of the) denomina-
tor changes and we have the impression of breaking in the behavior of the index

Q@ ,x). But we must keep in mind that the magnitude order of the numerator chan-
ges equally : the raw index s(m,x) falls in an abrupt way if one of the two parti-
tions has their classes with the same cardinal, with respect to the situation where
each of the two partitions has its cardinal classes very different mutually.

Now, let us come back to the most general case concerning the coefficient Q(¢,¢).
We have considered the possibility to define a coefficient with the following form :

R($,0)= Qe,¥) (9)
Q6 ,0)QW,)

If n is not large enough, in order to keep some influence to the second term under
the square root sign (v— ) of (8) ; then we have clearly got a new coefficient. If
not, the index that we obtain by this way corresponds exactly to the correlation
coefficient between the two weightings ¢ and Y, formally equivalent -but at the le-
vel of OxO- to K. Pearson's coefficient.



4. NORMALIZATION BY THE MAXIMUM

Our purpose is the elaboration of a coefficient consistent with 1 (¢,8) ch. expression
(6) §2]. Relative to the comparison of two relational variables ¢ and Y- correspondi

to two codings of O ]- the problem of the maximization of Z{q)(x,y)tp(x,y)/(x,y)GXt%ﬁ}
on the set {){[o(x),0{y)]v (x,y)/(x,y)GXEZJ}/GGGrH -where Gy, is the whole set of n!
permutations on X- is recognized as a very difficult problem, whatever the types of
‘E?SBZt)ﬁuctures to be compared EHubert(l983), Hubert & Arabie(1985), Marcotorchino

We have been able to propose an exact solution to this problem in two situations. The
first -which is of concern here- is of comparing two partitions 7 and x [:Lerman and
Peter(1986):]. The second is of comparing two total preorders [:Lerman(1987a)]. The
first situation is the more difficult to solve. We are going to give a brief look on the
s%lution, the interested reader will refer to the detailed research report mentioned
above.

According to the previous notations (cf.§1), it is in question to resolve in integer
numbers :

Max }f{cfj/kisi, 1<j<I} (1)

under the following constraints

H

iy = & for all i, 1gigl
ks

Cii b, for all j, lgj<d
Igigl J }
The first very important idea is to replace the notion of 'mathematical formulae’
-tried till now- by the one, much more general of 'recursive algorithm'. The second
idea-linked to the first- consists of working at the level of the contingency table

(I rows and J columns). We start by filling up the margins {aj/1<icI} and {bj/1<j<J}
that we have to distribute in the inside of the contingency table, in a compatible way
and in order to maximize Z{c?./k igl, 1&j<J}. Moreover, we will define by this way

an optimal configuration of thé contingency table.

We may denote -without ambiguity- by w(resp.x) the indicator function of Rf(m) Eresp.
R (x ):] in p=ol2} (cf. notations of the paragraph I). We establish (cf. above men-

tion ed reference) that among the classical bounds majoring (1) by the means of ma-
thematical expression, symmetric with respect m and x, the best one (i.e. the lowest)
is obtained by application of the Shwartz inequality conceived in a logical framework:

T fro-d k-] fre-A ) koe-vhr @)
p@P[ ] (x-] p@PE ] pGPt )
where U= Z ai(ai—l)/n(n—l) and\)=z bj(bj—l)/n(n-l). (4)

1 J
Nevertheless, we show this 'analytical' bound for Z{C‘%i/K i<l, 1<j<J} to be too large

with respect to the non symmetric one defined by min '(z aiZ,E bJZ). This last becomes

1 J
the exact bound if one of the two partitions {ai/1<i<1}, {b./1<j<J} is finer than the
other one. :

The recursive solution is based on the fact that facing to an optimal configuration,
if we delete a row (resp. column) and we consequently fit the margins, we also

obtain an optimal configuration.

Relative to the contingency table, empty in its inside, but having full margins, we
will be led -at each step- to fit up the content of a row margin (resp. or a column



margin), that we denote by @; (resp.B;), in a column j (resp. row i) such that Biza;
(resp.a;j>B;) ; we will say that we 'resolve' the couple (i,j). Such 'resolution' -consi-
dered in "the framework of the optimal configuration- decreases the problem size by
decreasing by one unity or even by two (if the two components of the resolved cou-
ple are identical) the cardinal defined by (number of rows + number of columns).

We begin by showing that the greatest integer Cigjo of the optimal configuration T,
of the contingency table T, corresponds necessarily to the resolution of the couple
(igsig). On the other hand, we show that if the same integer is in row margin and in
column margin (ail=bjl), the optimal configuration T, includes necessarily the resolu-
tion of (iy,j1).

A deep experimental analysis led us to introduce on the set of the couples
{(ai,bj)/léisl, 1I<j<J}, a relation of partial preorder, resulting from the intersection of
two total preorders wq and wg, where wq is consistent with a decreasing 'difference'
|aj-bj| and where W is consistent with an increasing sum (aj+*bj). More precisely,

o[ @),050)3, (arbj<(apby) (forw ) <= |aj-bj|<[ajr-bjr| ~ (5)
and
{V[:(id'),(i'aj')j}, (ajr,bjr)<(ag,by) (for wg) <= (aj+bj)3(ajr+bjr).  (6)

The algorithm that we propose is based on the following simple property : "An opti-
mal configuration of the table T can be obtained by starting with the resolution of
an extremal couple (ai’bj)’ with respect to W=, N ws".
The major result that we have been able to establish |[Lerman & Peter(1986)3 consists
of the complete demonstration of this property, in caseé where it exists only one ex-
tremal couple. On the other hand we have realized in different mathematical situa-
tions where it exists more than one extremal couple, that the optimal solution goes
necessarily through resolution of an extremal couple. A counter example to this pro-
perty would be highly unliked ; it would express that none of the resolved couples at
the level of an optimal configuration, correspond to an extremal couple. But, on the
one hand, the resolution of an extremal couple corresponds to empty a margin in or-
der to fill up for the best the inside of the table. On the other hand, we know that
-at each step- the greatest entry of an optimal configuration (reduced step by step)
corresponds to a resolution of a couple.

The process of recursive research involves the determination -after each resolution-
of the set of the extremal couples. The following important property bounds extensi-
vely the stacking :

If (aj_,b; ) is the extremal couple for which |aj-bj| is minimal, the unloading of aj

b
. Tlgldd AT
in jg it %iog bjo) Eresp. of bjo in i, (if aj > bjo)J preserves the extremal character

of any other couple (ail’bjl) with 114, j1#o-

Thus to obtain the coefficient t(m,x) according to the formulae (6) of paragraph 2,
we do not have to use a mathematical formulae which -in any case- would give a
poor bound. But we may use the algorithm that we have presented above and which
is detailed in ELerman and Peter(1986)J.

5. STATISTICAL ASPECTS

We have emphasized the non relevance of testing statistical independence hypothesis
between qualitative variables in data analysis. What is more in question is the mutual
organization of a variable family according to their respective mutual relations. Our
hierarchical classification method based on the likelihood of the maximal association
(or link) Lerman(l970a),(1981):] provides a solution to this problem. In the frame-
work of this paper let us consider the case where the data is a family {m /1<I<L}
of partitions. Suppose {Q(m ,m)/1<2<m<L} or {R(m ;,)/1<l<m<L} the association
coefficient matrix established according to the diagram and expressions (1) (§2), or



respectively to (9) (83). Letting {S(m ,ﬂm)/1<Z<m<L} denote one of the two prece-
ding tables. The passage from this last to the table {P(m;,r)/1<Z<m<L}, vhere
P(m, Jm) concerns probability scale defined by the likelihood of the link, is done by
means of the formulae :

P(T7 )= @ES<“Z*“m"”‘°y€(S)] . 1ekmel, (1)
————
varg(S)
where ®¢is the cumulative function of the normal N(O,I)J distribution and where
moye(S) and varg(S) are respectively the mean and variance of the table of values
{S(mygmy)/1cl<m<L L

Although the reference (1) to the normal distribution is always algorithmically possi-
ble, a better justification requires normal tendency of the random index Q(m*, x*),
However, P.W. Mielke (1979) showed non normal tendency in case of partitions ha-
ving classes with common cardinal. But partitions having equal size classes corres-
pond to a pure human construction, they cannot be found in natural data.
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