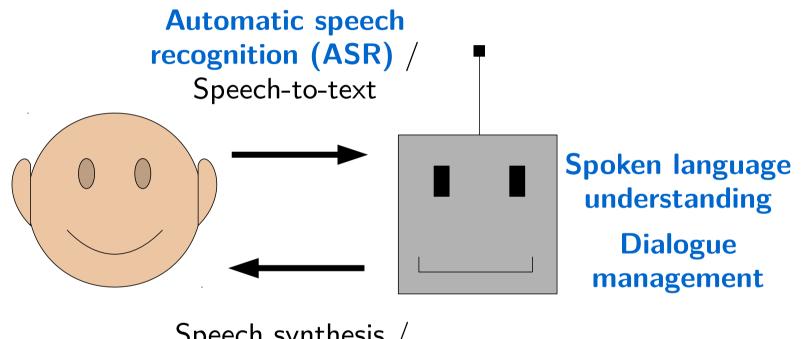
Automatic speech recognition

Gwénolé Lecorvé – gwenole.lecorve@irisa.fr

Research in Computer Science (SIF) master

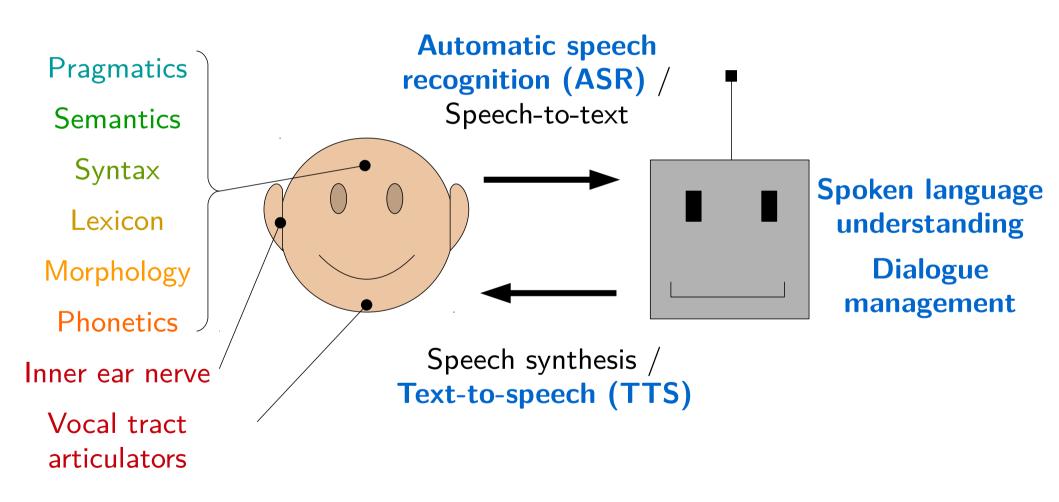
Institut de Recherche en Informatique et Systèmes Aléatoires

Spoken interaction

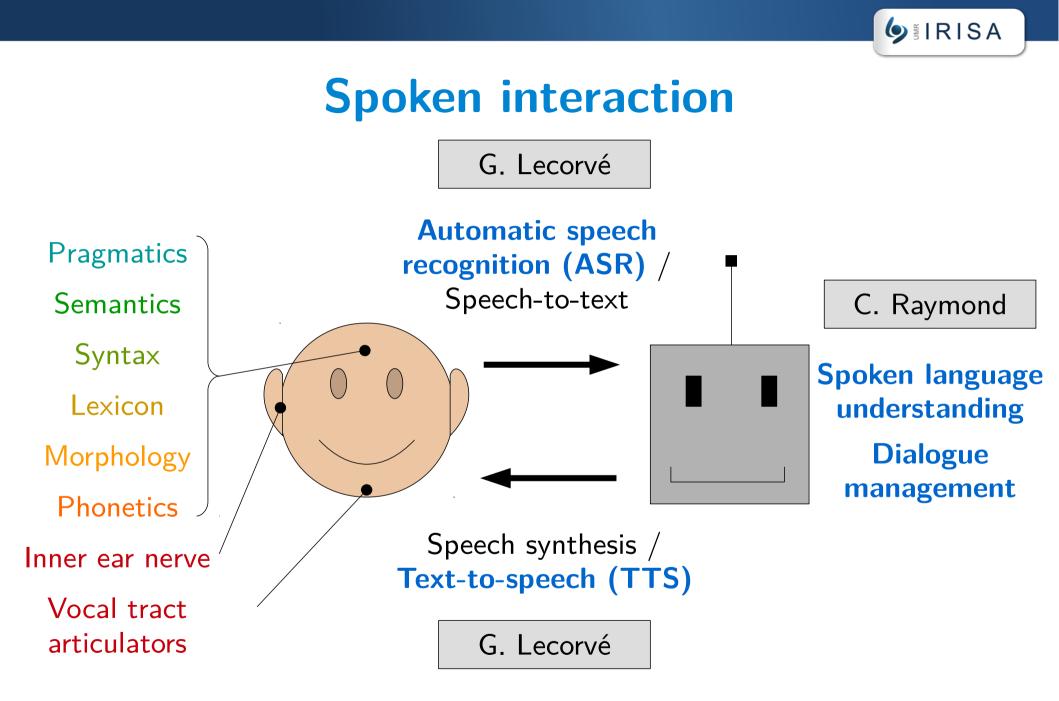


Speech synthesis / Text-to-speech (TTS) **∮ SIRISA**

Spoken interaction



∮ SIRISA



Outline

- 1) Introduction and definitions
- 2) Statistical approach
- 3) Speech analysis
- 4) Acoustic modeling
- 5) Lexicon and pronunciation modeling
- 6) Language modeling
- 7) Decoding
- 8) End-to-end approach

M2 SIF

Introduction and definitions

Reading:

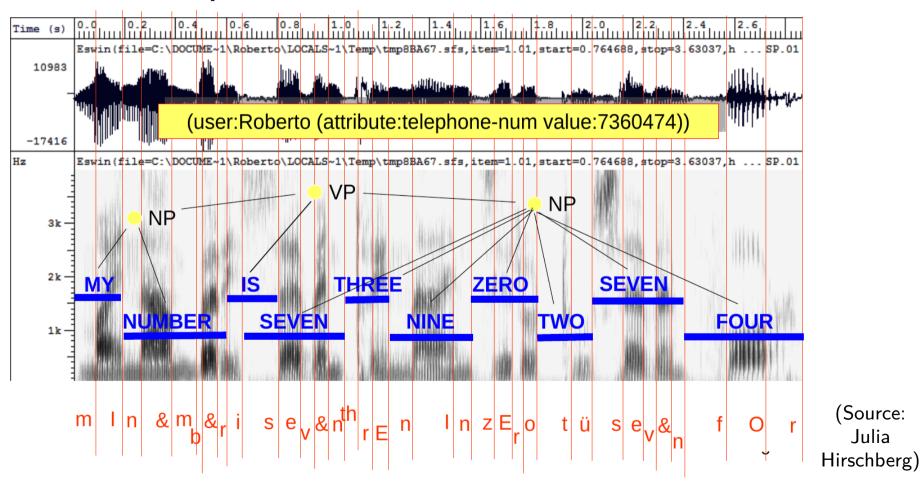
 Jurafsky and Martin (2008). Speech and Language Processing (2nd ed.)

What is speech recognition?

- Transform raw audio into a sequence of words
 - No meaning
 - \rightarrow "Recognize speech" \sim "Wreck a nice beach"
 - → "Barack Obama" ~ "Barraque aux Bahamas"
- Related tasks
 - Speaker diarization/recognition: Who spoke when?
 - Spoken langage understanding: What's the meaning?
 - Sentiment analysis, opinion mining: How does the speaker feel/think?

Difficulties

Hierarchical problem?

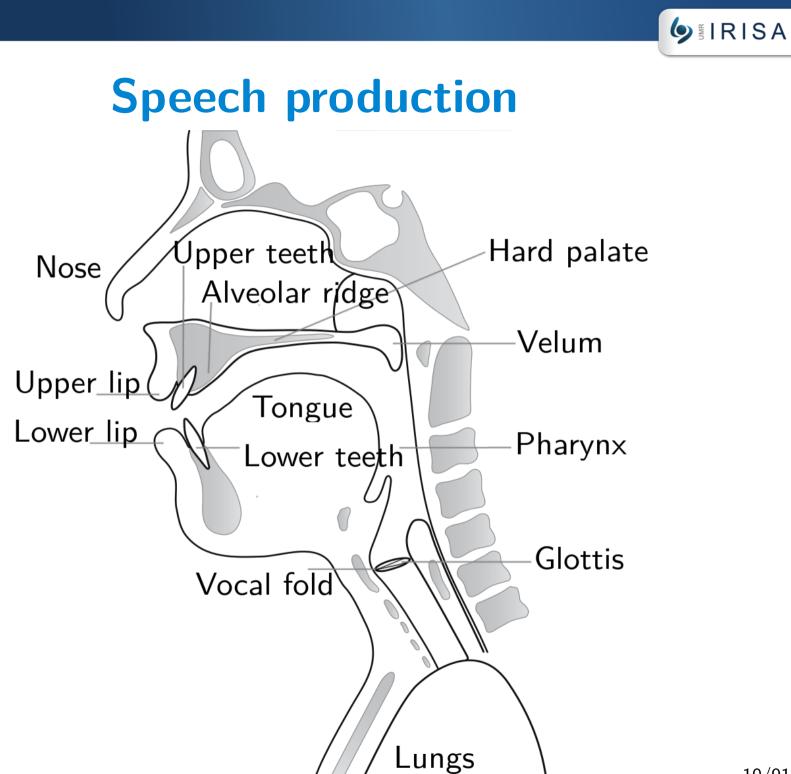


Vocal and Acoustic Interactions - Automatic Speech Recognition

Difficulties

- Not that simple because lots of variability
 - Acoustics
 - Intra-speaker variability, inter-speaker variability
 - Noise, reverberation, etc.
 - Phonetics
 - Co-articulation, elisions, etc.
 - Word confusability
 - Linguistics
 - Word variations
 - Vocabulary size
 - Polysemy
 - Elipses, anaphore, etc.

∮ SIRISA



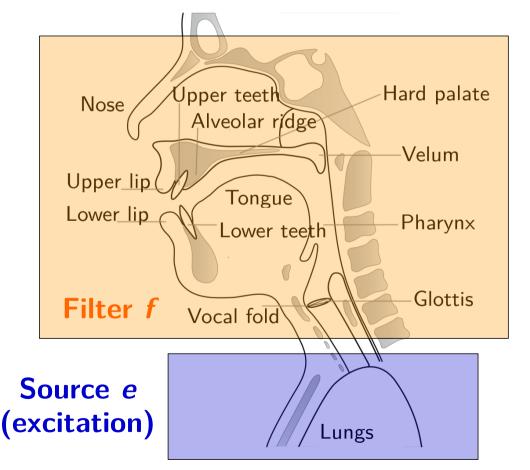
J

Speech production

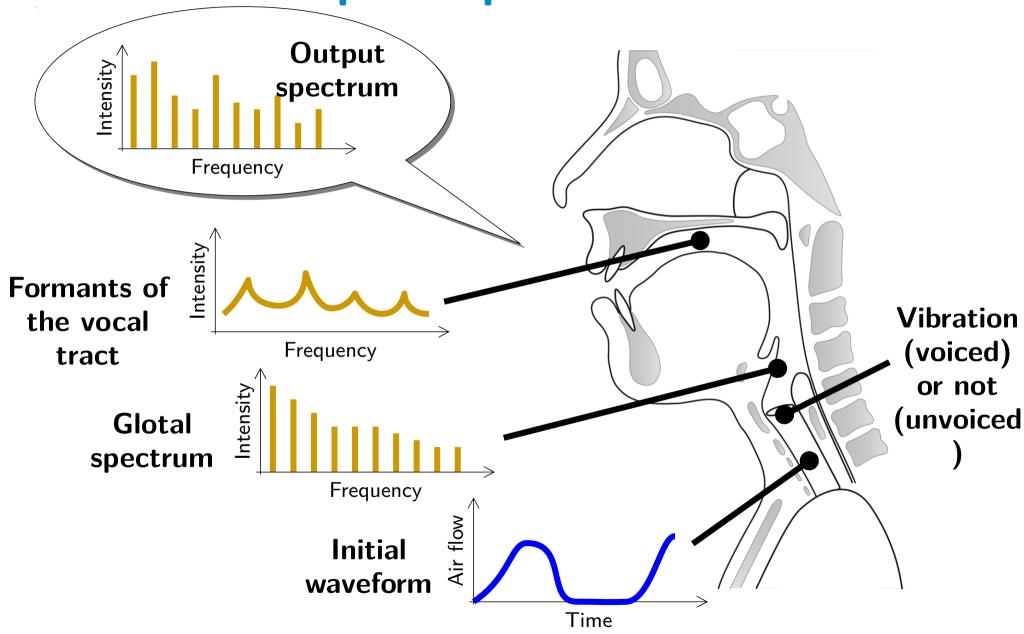
- Source filter model (Fant, 1960)
- Signal s = f * e

$$\mathsf{s}(\mathsf{t}) = \int_{-\infty}^{+\infty} \mathsf{e}(\mathsf{t})\mathsf{f}(\mathsf{t}-\tau)\mathsf{d}\tau$$

(assuming *f* is linear and time-independent)

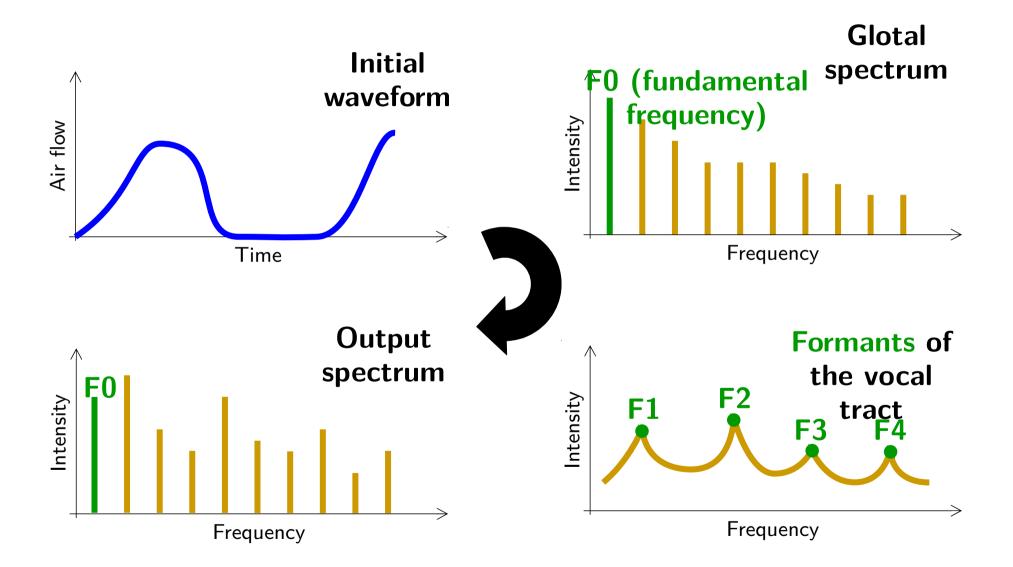


Speech production



Vocal and Acoustic Interactions - Automatic Speech Recognition

Speech production



∮ sirisa

Spoken words are made of phonemes/phones

- "French" \rightarrow / f J E n t \int /
- "français" $\rightarrow~/$ f & \tilde{a} s $\epsilon~/$
- Acoustic view
 - Phone
 - Realized
- Phonological view
 - Phoneme
 - Symbolic

fo攻n]

foʊnim/

I phoneme = voiceness/unvoiceness + position of articulators

All phonemes = set of elementary sounds in a langage

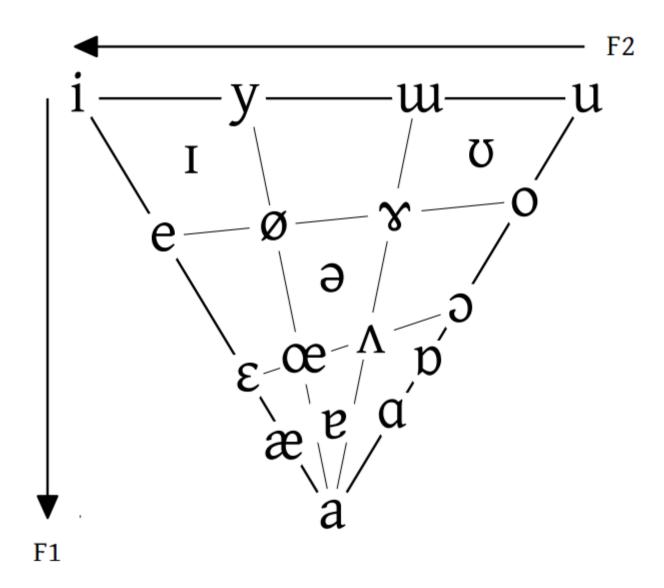
- Language-dependent ($J \neq B$)
- Elementary : principle of minimal pairs
 - "kill" versus "kiss"
 - "pat" versus "bat"
- Allophones = free variants of a phonemes
 - No minimal pair
 - "père" \rightarrow [pEr], [pER] or [pEB]

Consonant phonemes of French

		Labial	Dental/ Alveolar	Palatal	Velar	Uvular
Nasa	1	m	n	ŋ	(ŋ)	
Stop	voiceless	р	t		k	
Stop	voiced	b	d		g	
Fricative	voiceless	f	S	ſ	(x)	
ricative	voiced	v	Z	3		
Approviment	plain		1	j		R
Approximant	labial			ч	w	

Vowel phonemes in Standard French

		Froi	Central	Back	
		unrounded	rounded	Central	Dack
Close		i	у		u
Close-mid	oral	е	ø	0	0
Onon mid		ε (ε:)	œ	Ð	С
Open-mid	nasal	ĩ	(œ̃)		õ
Onen	nasal				ã
Open	oral	(a)		a	(α)



Linguistics

- Word
 - Sequence of graphemes (symbolic view)
 - Morphemes: "recognition" = "re" + "cogni" + "tion"
 - Morpho-syntax: Part Of Speech (POS)
 - Grammatical class : Noun, verb, etc.
 - Flexional information : Singular/plural, gender, etc.
 - Syntax
 - Function : subject, object, etc.
 - Shallow, deep parsing (compound structures)
 - Meaning
 - \rightarrow Representation?

M2 SIF

Vocal and Acoustic Interactions - Automatic Speech Recognition

∮ SIRISA

Linguistics

Vocabulary = set of words in a

- Task
- Language
- Several languages
- Syntax
 - None: isolated words
 - Grammar
 - Free

Continuous speech recognition Large vocabulary continuous speech recognition (LVCSR)

Evaluation: Word Error Rate (WER)

- Reference: manual transcript the lazy dog jumps Hypothesis: ASR output amazing dog jumps lazy dog jumps the Alignment amazing dog jumps *** Editings Sub Del $N_{Ins} + N_{Del} + N_{Sub}$ Edit distance ► Score: WER Reference - Perfect = 0%
 - can be > 100% (many insertions) (0+1+1)/4 = 50%

Evaluation: Word Error Rate (WER)

- Word alignment: Wagner-Fischer algorithm (dynamic programming)
 - 3 costs: insertion, deletion, substitution

jumps	4	4	3	2 (之)
dog	3	3	2 (之)	3
lazy	2	2 (之)	2	3
the	1 (↓)	1	2	3
<s></s>	0	1	2	3
	<s></s>	amazing	dog	jumps

 \rightarrow All errors may not harm the same (w.r.t. task)

Statistical (historical) approach

Reading:

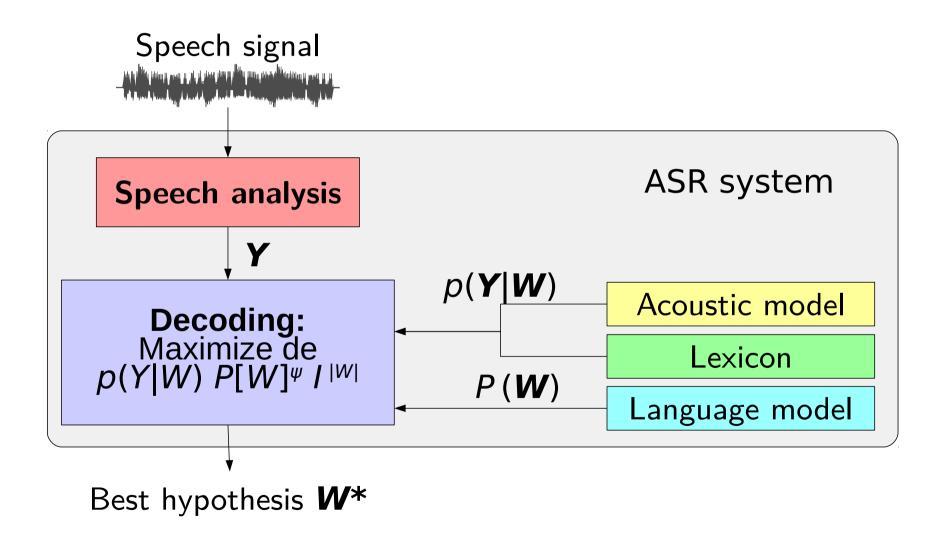
- Jurafsky and Martin (2008). Speech and Language Processing (2nd ed.)
- · Jelinek (1998). Statistical Methods for Speech Recognition

Formalisation statistique

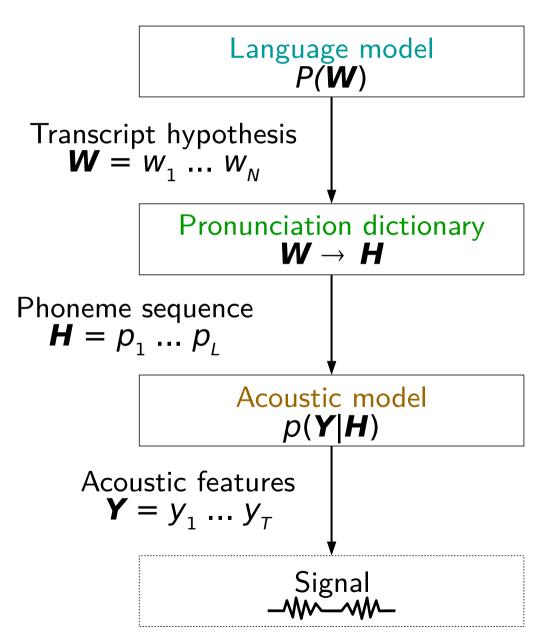
- ► Y : sequence of acoustif features
- **W** : sequence of words (of the voabulary)

 $W^* = \arg \max_{W} P(W|Y)$ = $\arg \max_{W} \frac{p(Y|W) P(W)}{p(Y)}$ = $\arg \max_{W} p(Y|W) P(W)$ Search space Acoustic Language = f(Vocabulary) model model

Steps and components



Generative view



Vocal and Acoustic Interactions - Automatic Speech Recognition

Speech analysis

Reading:

- Han et al. (2006). An efficient MFCC extraction method in speech recognition. IEEE International Symposium.
- Hermansky et al. (1992). RASTA-PLP speech analysis technique. In Proc. ICASSP.
- Hermansky et al. (2000). Tandem connectionist feature extraction for conventional HMM systems. In Proc. ICASSP

Sampling and quantization

Sampling

Usual resolution $f_s = 8$ kHz-16kHz

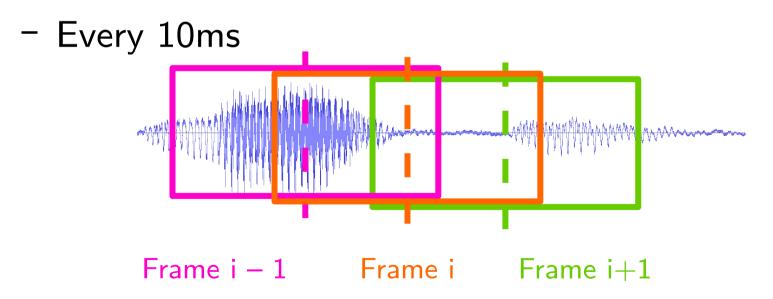
Quantization

8 bits / sample

Time

Windowing, frames

- ▶ 1 frame = window of samples
- Overlap across frames
 - 32ms span (256 samples for $f_s = 8 \text{kHz}$)

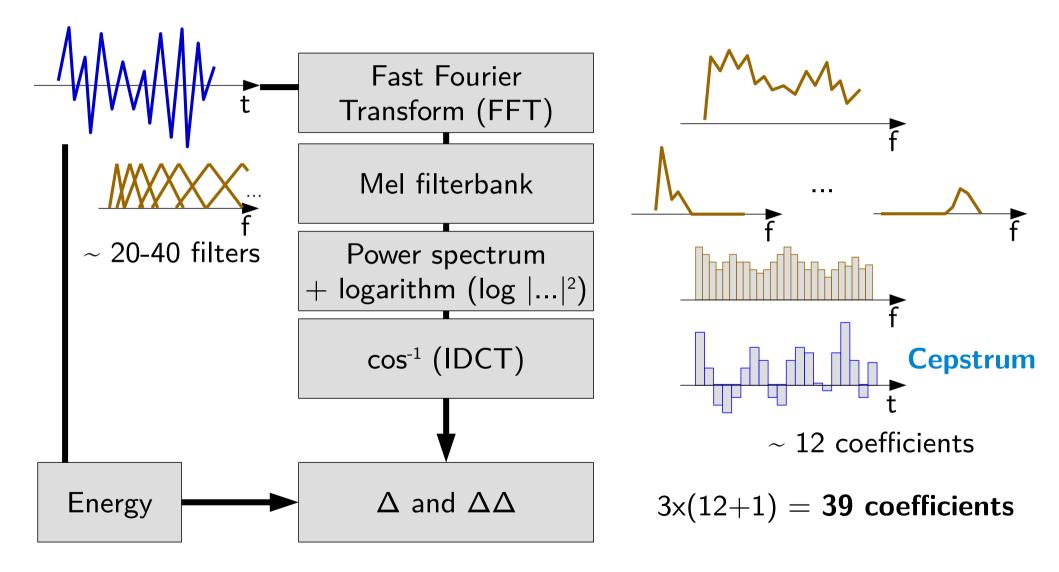


∮ SIRISA

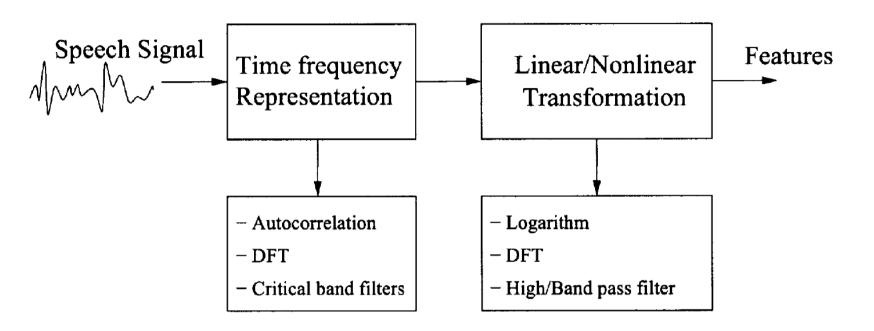
Feature extraction

- Features = Energy + frequencies
- Desirable properties
 - Robust to F0 changes (and F0 harmonics)
 - Robust across speakers
 - Robust against noise and channel distorsion
 - Lowest dimension as possible at equal accurary
 - Non redondancy among features

Mel-Frequency Cepstral Coefficients (MFCC)



Feature extraction (cont.)



Other features

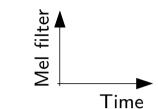
- Perceptual Linear Prediction (PLP)
 - Autoregressive
- Tandem
 - Discriminative

- Normalization : avoid mismatches across samples
 - Mean/variance normalization

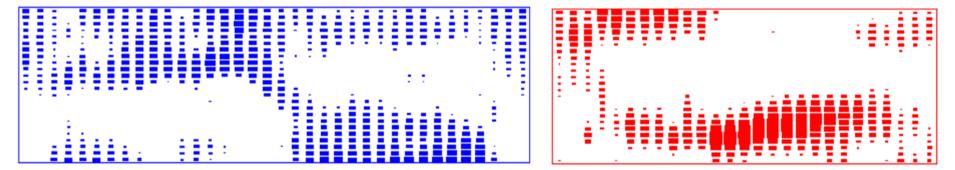
∮ SIRISA

Examples

"zéro" (0 in French)



											ļ			•	1	•	1	ŧ.				-	-	i											
:				÷	:	•	-	-											:		-			i			i	i	1	ļ					



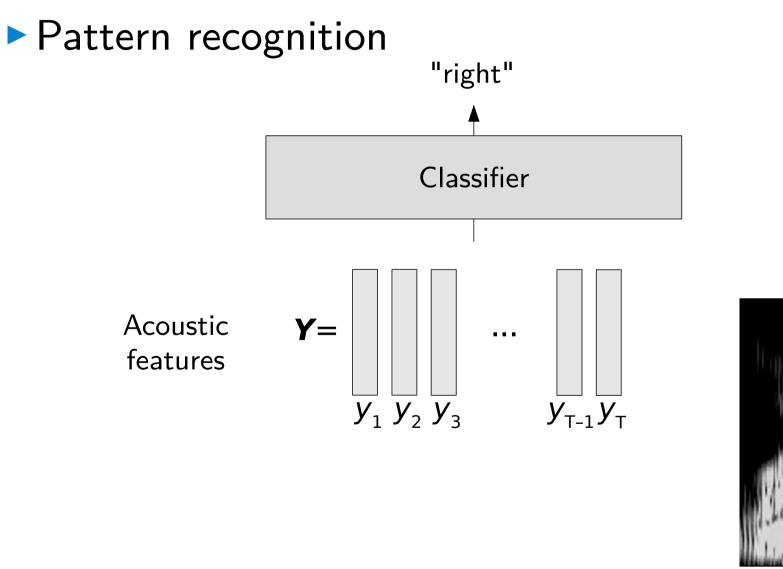
"trois" (3 in French)

Acoustic modeling

Reading:

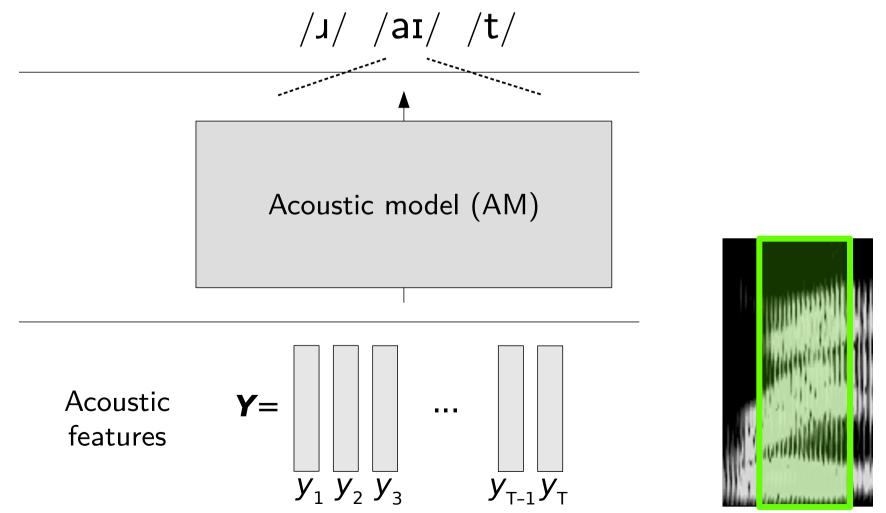
- Gales and Young (2007). "The Application of Hidden Markov Models in Speech Recognition", Foundations and Trends in Signal Processing, 1 (3), 195–304.
- Rabiner and Juang (1989). "An introduction to hidden Markov models", IEEE ASSP Magazine
- Hinton et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82-97.
 - · Palaz, D. (2016). Towards End-to-End Speech Recognition

Isolated words



Overview

Decomposition into phonemes

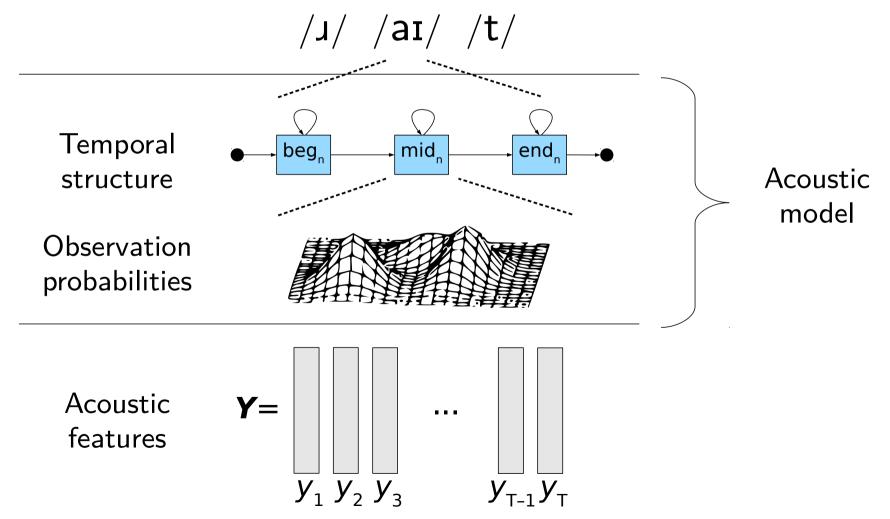


Vocal and Acoustic Interactions - Automatic Speech Recognition

∮ sirisa

Hidden Markov Models (HMM)

Overview

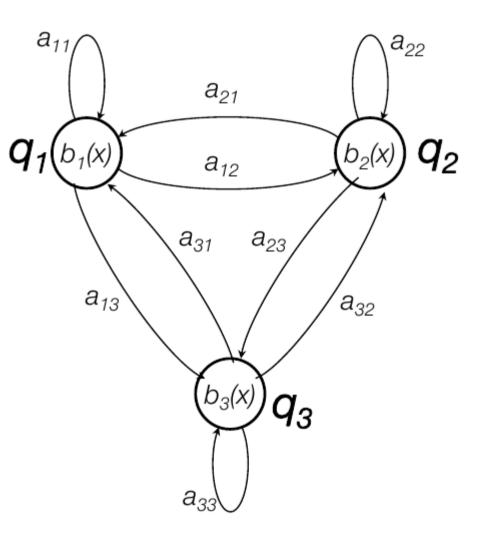


Vocal and Acoustic Interactions - Automatic Speech Recognition

HMMs

Probabilistic automaton

- States q_i
 - State at step t: s_t
 - Inititial probability $\pi_i = Pr(s_0 = q_i)$
 - Transition probabilities $a_{ij} = \mathsf{Pr}(s_{t+1} = \mathsf{q}_j \mid s_t = \mathsf{q}_i)$
- Outputs
 - Observation at step t: o_t
 - Alphabet of symbols $\mathcal{X} = (\mathsf{x}_{\mathsf{k}})$
 - Emission probability $b_i(x) = Pr(o_t = x \mid s_t = q_i)$



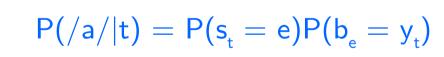
HMM

1 phoneme

- 3 (or 5-)-state linear HMM : beginning, middle, end

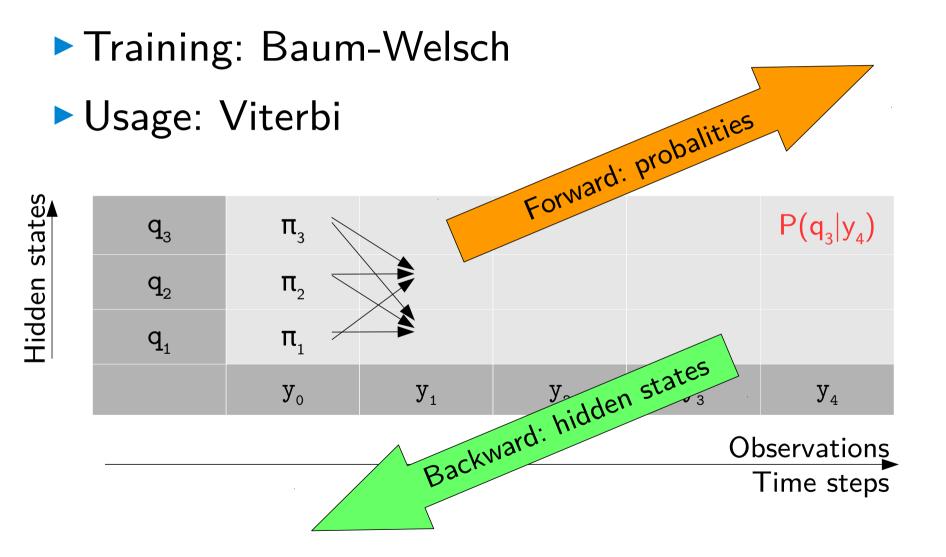
е

- Observation independence
 - $Pr(o_t = x | s_t = q_i, s_{t-1} = q_{i'}, ..., s_0 = q_{i''})$ = $Pr(o_t = x | s_t = q_i)$
- Probability to reach the end state e at frame y_t



- Context-dependent phoneme = triphones
 - Same linear HMMs
 - E.g., /bab/, /bal/, /bap/, etc.
 - State-tying: gather similar HMM state to overcome data sparsity

HMMs



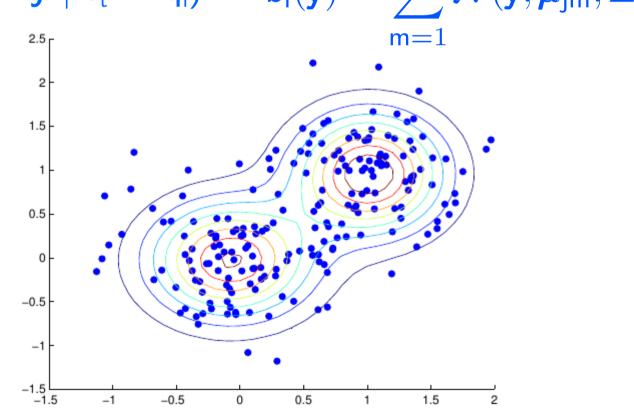
HMM

- ► Usage:
 - Not finding the hidden state sequence
 - Give probability of each end of phoneme at time t
 - \Rightarrow All (context-dependent) phonemes HMMs in parallel
- AM performance
 - Accuracy to recognize the proper phonemes

GMM/HMM

Gaussian Mixture Model (GMM)

- M components
- $Pr(o_t = \mathbf{y} \mid s_t = q_i) = b_i(\mathbf{y}) = \sum \mathcal{N}(\mathbf{y}, \boldsymbol{\mu}_{jm}, \boldsymbol{\Sigma}_{jm})$



Μ

Vocal and Acoustic Interactions - Automatic Speech Recognition

GMM/HMM

(4,13) GMM training 10 (2.9) - M components: (7,8) K-means 5 (4,5) (10,5)(5,4) PDF estimation (5,2) • $(M+M^2) \times dim(Y)$ parameters (3,1) (10,0)0 — 10 • EM algorithm $\mathsf{P}(\mathsf{m}|\mathbf{y}) = \frac{\mathsf{p}(\mathbf{y}|\mathsf{m})\mathsf{P}(\mathsf{m})}{\mathsf{p}(\mathbf{y})} = \frac{\mathsf{p}(\mathbf{y}|\mathsf{m})\mathsf{P}(\mathsf{m})}{\sum_{m'=1}^{\mathsf{M}}\mathsf{p}(\mathbf{y}|\mathsf{m'})\mathsf{P}(\mathsf{m'})}$ • Maximize Μ • Constraint $\sum \mathsf{P}(\mathsf{m}|\mathbf{y}) = 1$ m=1

 \rightarrow See ADM course

DNN/HMM

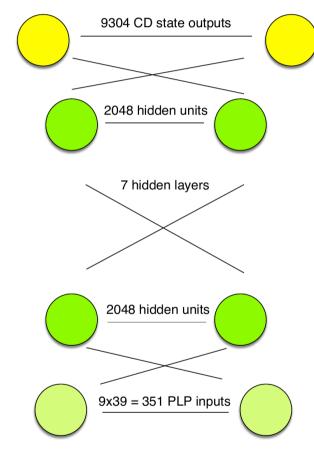
DNN (DNN/HMM)

- Train an GMM/HMM, label sequence elements
- Train DNN (supervised learning) $\mathcal{X} \times \mathbb{Q} \rightarrow [0, 1]$

$$x$$
 , q $ightarrow \mathsf{Pr}(\mathsf{o}_{\mathsf{t}}=\mathsf{x}\mid\mathsf{s}_{\mathsf{t}}=\mathsf{q})$

Feedforward NNs, convolutional NNs

- Features of step t $\mathbf{y}_t \rightarrow Phoneme \ class \ p$
- With neighbours $(\mathbf{y}_{t-1}, \, \mathbf{y}_{t}, \, \mathbf{y}_{t+1})
 ightarrow \mathsf{p}$



∮ SIRISA

(source: Hinton et al., 2012)

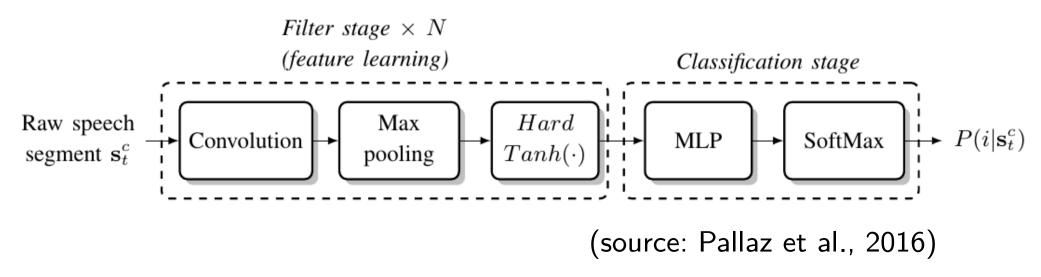
Recurrent NNs, end-to-end models

Recurrent NNs, LTSMs, etc.

- (Segment of) Sequence $Y_t^c = (y_i)_{t-C..t} \rightarrow$ sequence of $p_i \rightarrow$ last phoneme p_t

End-to-end

- Combine feature extraction and phoneme prediction



Vocal and Acoustic Interactions - Automatic Speech Recognition 45/91

Pronunciation

Reading:

Jurafsky and Martin (2008). Speech and Language Processing (2nd ed.)

- Rasipuram (2014). Grapheme-based automatic speech recognition using probabilistic lexical modeling.
- Collobert et al. (2016). Wav2Letter: an End-to-End ConvNetbased Speech Recognition System. ArXiv.

Back to ASR

$$\mathbf{W^*} = \arg \max_{\mathbf{W}} p(\mathbf{Y}|\mathbf{W}) \ P(\mathbf{W})$$

► Words are sequences of states **Q**

$$W^* = \arg \max_{W} p(Y|Q, W) P(Q, W)$$

$$\approx \arg \max_{W} P(Y|Q) \sum_{Q} P(Q|W) P(W)$$

$$\approx \arg \max_{W} \max_{Q} P(Y|Q) P(Q|W) P(W)$$

Pronunciation model

Pronunciation dictionary / Lexicon

- Most basic way
- $\blacktriangleright \mathsf{Word} \rightarrow \mathsf{phoneme} \ \mathsf{sequence}$
- No probabilities
- Written by human experts
 - \rightarrow Key aspect in ASR accuracy
- Coverage
 - AM training set: all words to train HMMs (or whatever)
 - Maximize coverage over some representative texts

M2 SIF

N-M relation

English

- "hello" \rightarrow /hɛloʊ/
- "hello" ightarrow /həloʊ/
- "there" \rightarrow $/\delta\epsilon J/$
- "their" ightarrow /ðɛɹ/

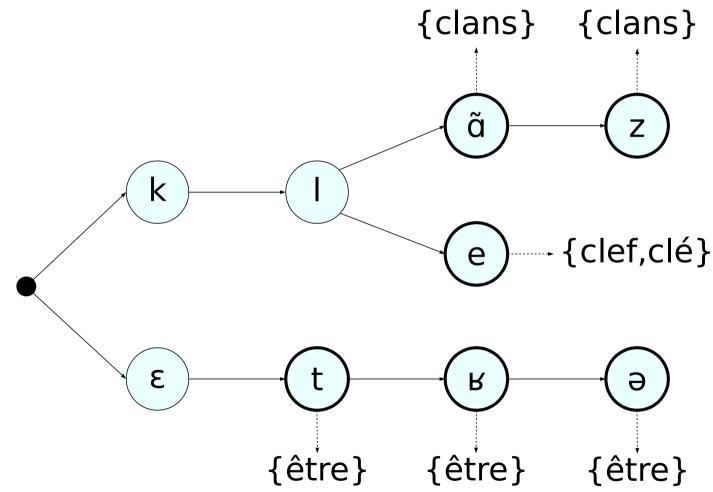
Français

- "les" \rightarrow /l ϵ /
- "les" \rightarrow /le/
- "les" \rightarrow /l\epsilonz/
- "les" \rightarrow /lez/
- "clans" $\rightarrow /kl\tilde{a}/$
- "clans" \rightarrow /klãz/

- "clé" \rightarrow /kle/ - "clef" \rightarrow /kle/ - "être" \rightarrow /ɛtʁə/ - "être" \rightarrow /ɛtʁ/ - "être" \rightarrow /ɛt/

Lexical tree

Prefix factorization



Vocal and Acoustic Interactions - Automatic Speech Recognition

Out Of Vocabulary (OOV) words

Constructing a dictionary involves

- 1 Selection of the words in the dictionary—want to ensure high coverage of words in test data
- 2 Representation of the pronunciation(s) of each word
- OOV rate: percent of word tokens in test data that are **not** in the ASR system dictionary
- ► OOV rate increase => WER increase
 - 1,5-2 errors per OOV word (> 1 because loss of context)

Vocabulary content

- Words
- Multi-words: frequent sequences of words
 - "want to" \rightarrow "want_to"
 - "je suis" \rightarrow "je_suis"
 - \rightarrow Handling of pronunciation variants
- Subword units (morphemes, characters, etc.)
 - OOV words
 - Character-based languages
 - Agglutinatives languages

Word normalization

Many variants

- Hong-Kong, Hong Kong
- U.N., UN, U. N.
- Trinity College, new college
- 2, two
- Mr, Mister
- 100m, 100 meters
- Automatic learning/discovery based on knowledge resources (Wikipedia, Wiktionary, WordNet, etc.)

Current topics

- Pronunciation variants or alternative pronunciations
 - Grapheme-to-phoneme (G2P) models: automatic learning of pronunciations of new words
 - Probability distribution over possible pronunciations
- Cobebook learning : joint learning of the inventory of subword units and the pronunciation lexicon

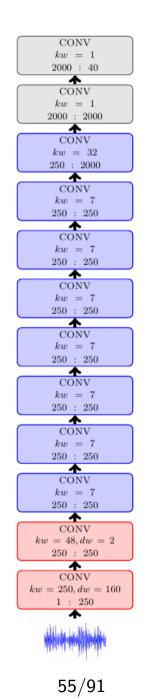
 \rightarrow Minimum description length (MDL)

Sub-phonetic / articulatory feature model

∮§IRISA

Current topics

- Grapheme-based acoustic modelling (Rasipuram, 2014)
 - Character level
 - No more pronunciation modelling entirely
- Grapheme-based speech recognition: wav2letter (Collovert et al., 2016)
 - End-to-end approach



Reading:

 Jurafsky and Martin (2008). Speech and Language Processing (2nd ed.)

- Bengio et al. (2006), "Neural probabilistic language models" (sections 6.1, 6.2, 6.3, 6.6, 6.7, 6.8), Studies in Fuzziness and Soft Computing Volume 194, Springer, chapter 6.
- Mikolov et al (2011), "Extensions of recurrent neural network language model", Proc. of ICASSP.
- R Jozefowicz et al (2016), "Exploring the Limits of Language Modeling". ArXiv.

Constraints

$$\mathbf{W^*} = \arg \max_{\mathbf{W}} p(\mathbf{Y}|\mathbf{W}) \ P(\mathbf{W})$$

- What the speaker is allowed to say
- Constrained grammar
- Binary decision
- Task-oriented
- + More precise
- Less flexible

- What the speaker may say
- Free grammar
 - Given the vocabulary
- Probabilities over possible sequences
 - A priori: trained on some text

Regular/Context-free grammar

<Root> = <Date>

 $<\!\!\mathsf{Date}\!\!> = <\!\!\mathsf{Day}\!\!> \texttt{"the"} <\!\!\mathsf{Ith}\!\!> \texttt{"of"} <\!\!\mathsf{Month}\!\!>$

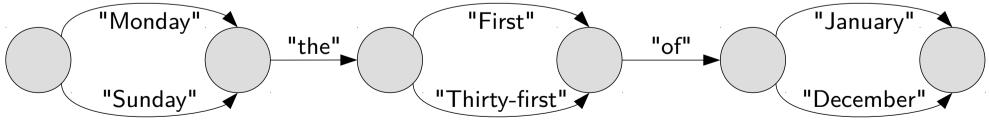
 $<\!\mathsf{Day}\!>= \texttt{"Monday"} \mid \texttt{"Tuesday"} \mid ... \mid \texttt{"Sunday"}$

 $\langle \mathsf{Ith} \rangle = \mathsf{"first"} \mid \mathsf{"second"} \mid ... \mid \mathsf{"thirty-first"}$

<Month> = "January" | ... | "December"

No training data to be collected

Finite state automaton/Pushdown automaton



Grammar can be made probabilistic

Statical language modeling

Idea

- Cover all possible sequence ($V^* = V \times V \times V \times ...$)
- Disambiguate acoustically ambiguous sequences
 "recognize speech", "wreck a nice beach"

Smoothing and Backoff

What if never observed during training?

 \rightarrow The longer sequence, the more zero-counts

- History of words
 - $\mathsf{P}(\mathsf{w}_1,\mathsf{w}_2,...\mathsf{w}_{\mathsf{N}}) \approx \mathsf{P}(\mathsf{w}_1) \times \prod \mathsf{P}(\mathsf{w}_i | \Phi(\mathsf{w}_1...\mathsf{w}_{i-1})$

Smoothing

 Redistribute probability mass from observed to unobserved events : change counts and renormalize

i=2

- Absolute discouting, Kneser-Ney smoothing
- Backoff
 - Link unseen events to the most related seen events

M2 SIF

Vocal and Acoustic Interactions - Automatic Speech Recognition

∮≋IRISA

n-gram model

Truncate the word history

 $\mathsf{P}(w_i|h) = \mathsf{P}(w_i|w_{\mathbf{i-n+1}}...w_{i-1})$

with n usually 2..5

 \blacktriangleright n = 1 \rightarrow "unigram", n = 2 \rightarrow "bigram", n = 3 \rightarrow "trigram"

Backoff

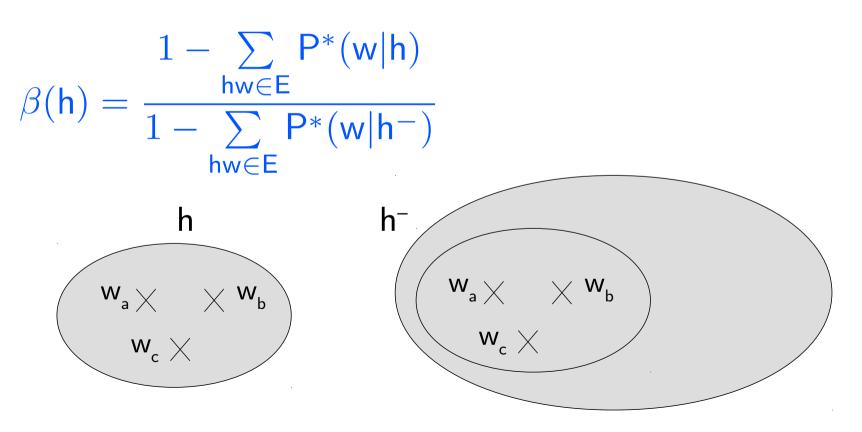
– Unseen $w_a w_b w_c \rightarrow fallback$ to $w_b w_c$

$$- P(w_c|w_aw_b) = P(w_c|w_b) \beta(w_aw_b)$$

$$h^-$$

n-gram model

 $\mathsf{P}(\mathsf{w}|\mathsf{h}) = \begin{cases} \mathsf{P}^*(\mathsf{w}|\mathsf{h}) & \text{if } \mathsf{hw} \in \mathsf{E} \text{ (observed events)} \\ \beta(\mathsf{h}) \times \mathsf{P}(\mathsf{w}|\mathsf{h}^-) & \text{otherwise} \end{cases}$



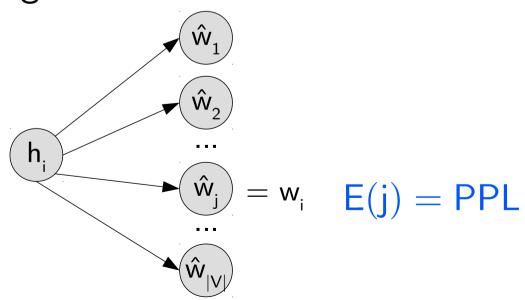
Vocal and Acoustic Interactions - Automatic Speech Recognition

Perplexity

- How well a text T is predicted by a model M?
- Definition 1
 - Cross-entropy $H(P_T, P_M) = \sum_{w_i \in T} P_T(w_i) \log_2 P_M(w_i|h_i)$
 - Perplexity $PPL_{M}(T) = 2^{-H(P_{T},P_{M})}$
- Definition 2
 - Average log-likelihood $L(T|M) = \frac{1}{n} \times \sum_{w_i \in T} \log_2 P_M(w_i|h_i)$ of M over T (n words)
 - Perplexity $PPL_{M}(T) = 2^{-L(T|M)}$

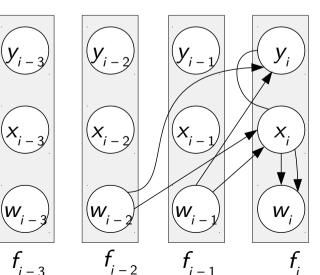
Perplexity

- ► The lower, the better
- Best theoretical perplexity = 1
- Intepretation
 - Branching factor



Advanced n-gram models

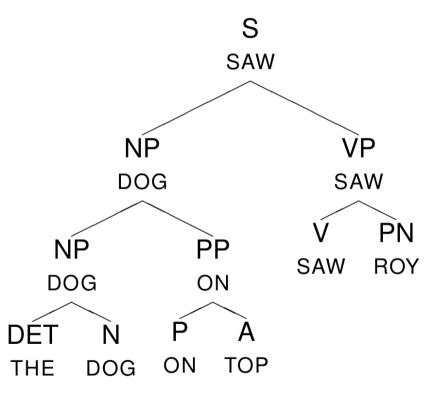
- Factored language models
 - 1 word $w_i \rightarrow 1$ feature vector $\mathbf{f}_i = (w_i, x_i, y_i, ...)$
 $$\begin{split} \mathsf{P}(w_i | w_{i-n+1} ... w_{i-1}) &= \mathsf{P}(\mathbf{f}_i | \mathbf{f}_1 \cdots \mathbf{f}_{i-1}) \end{split}$$
 - Data sparsity => feature dependencies $P(w_{i}|x_{i}, y_{i})$ $\times P(x_{i}|w_{i-2}, w_{i-1})$ $\times P(y_{i}|w_{i-2}, w_{i-1})$
 - Backoff scheme



Vocal and Acoustic Interactions - Automatic Speech Recognition

Advanced n-gram models

- Structured language models (LMs)
- Long-span/distant dependencies
- Syntax parsing
 → Grammatical function
 + headword
- Idea: condition words on parent's information
- Difficulty: online parsing



M2 SIF

Cache/trigger/topic models

- Cache assumption: words said once may be said again
- Trigger assumption: some words may increase the probability of other words later on
- Extension to topic models
- Additional models

Exponential (MaxEnt) models

Decompose (h, w) into features functions f_j(h, w)

$$\mathsf{P}(\mathsf{w}_i | \mathsf{w}_1 ... \mathsf{w}_{i-1}) = \frac{1}{\mathsf{Z}(\mathsf{h})} \exp\left(\sum_j \lambda_j \times \mathsf{f}_j(\mathsf{h}, \mathsf{w}_i)\right)$$

- With Z(h), normalization factor
- $\lambda_{j}\text{,}$ parameters to be optimized
- Feature function denote a characteristic
 - Have been observed together
 - Is syntactically correct
 - Is thematically correct
 - Etc.
 - \rightarrow Binary value

M2 SIF

Exponential (MaxEnt) models

Training

- Maximum entropy of the model
- Under constraints for each feature function f_j

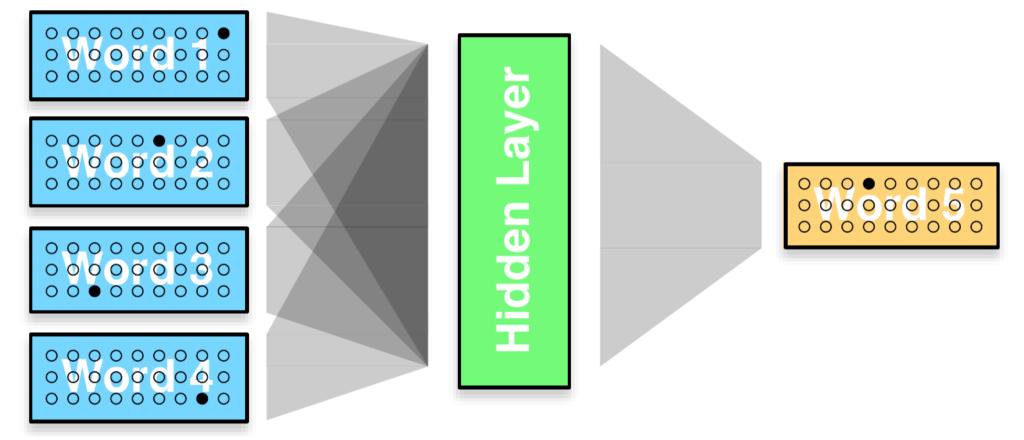
$$\sum_{h,w} \mathsf{P}[h,w] \times f_j(h,w) = \mathsf{K}_j$$

with K_j , probability mass (usually observed in training data)

- Iterative algorithms
 - Long
 - No smoothing
 - Not always better than n-gram MLE

Neural network LMs

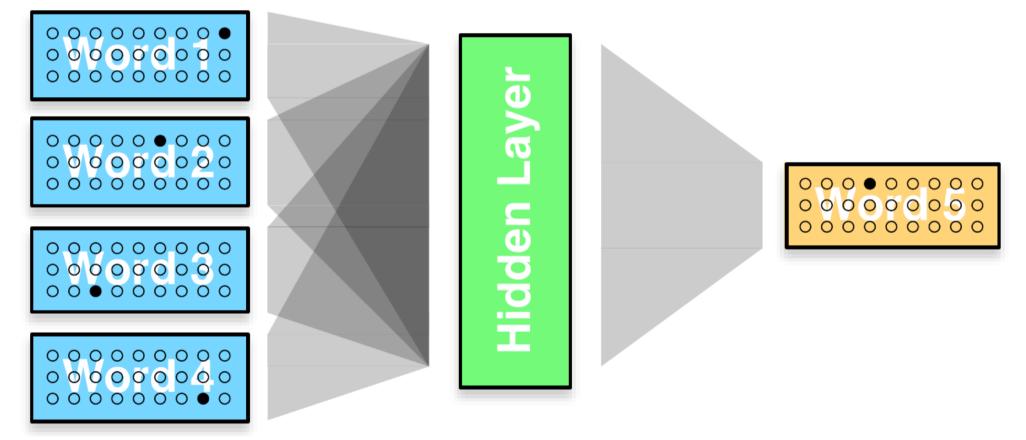
Feed-forward approach



(source: Koehn, 2016)

Neural network LMs

Feed-forward approach

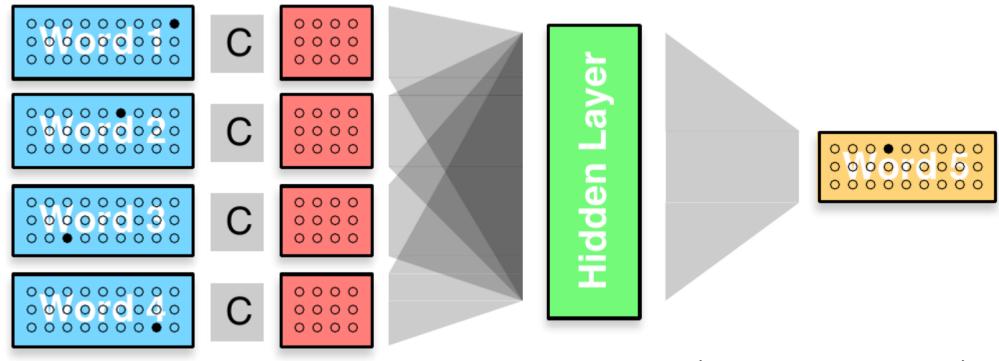


(source: Koehn, 2016)

Neural network LMs

Word embedding

Shared weights C

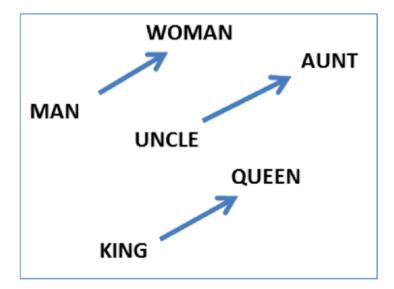


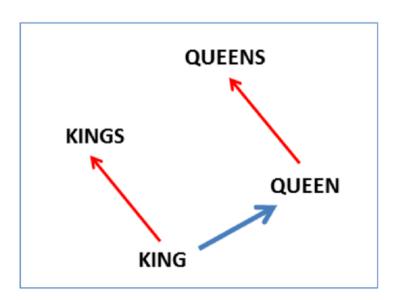
(source: Koehn, 2016)

(Word embeddings)

- ▶ Projection into a continuous space \mathbb{R}^d
- Topological properties
 - Semantics

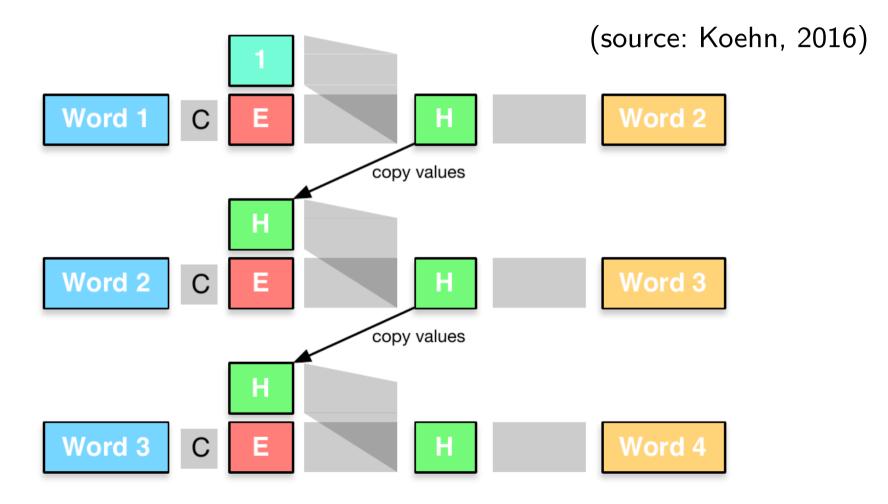






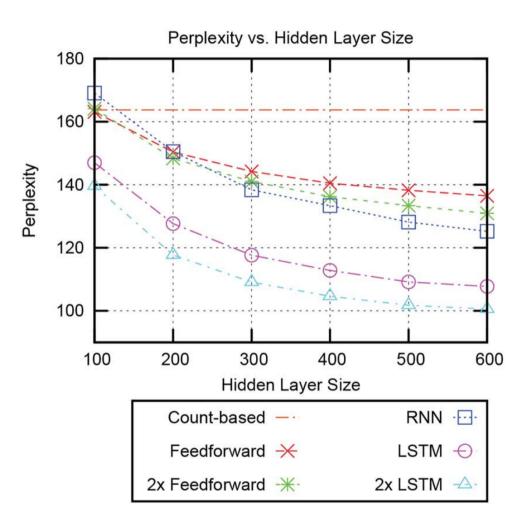
Recurrent neural network LMs

Build embeddings of word histories



Long short term memories (LSTM)

- Recurrent neural networks with forgetting mechanisms
 - ⇒ Important information is remembered longer



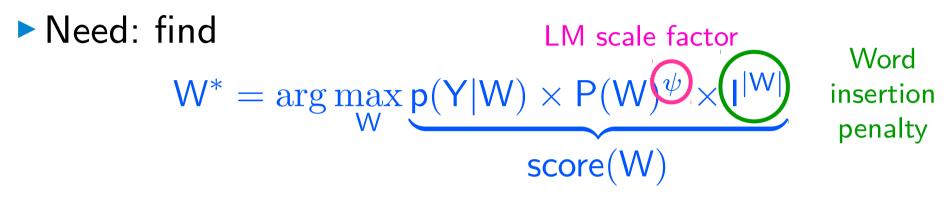
(source: Sundermeyer et al., 2015)

Decoding

Reading:

- Ney and Ortmanns (1999). Dynamic programming search for continuous speech recognition. IEEE Signal Processing Magazine, 16(5), 64-83.
- Mohri et al. (2008). "Speech recognition with weighted finite-state transducers." In Springer Handbook of Speech Processing, pp. 559-584.
 - Mangu et al. (2000). Finding consensus in speech recognition: word error minimization and other applications of confusion networks. Computer Speech & Language, 14(4), 373-400.

Beam search decoding



while not exploring the whole search space

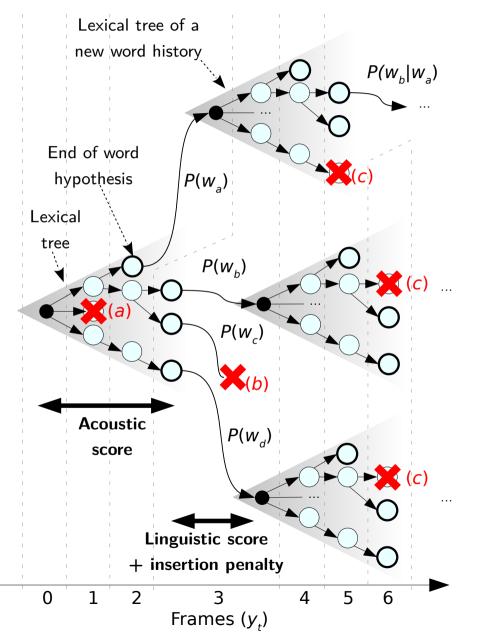
- Solution: beam search
 - Frame-synchronous (start at t = 0)
 - Idea: Parallel explorations limited a maximum of K active states
 - Advantage: memory and time efficient due to pruning of low interst partial hypotheses

M2 SIF

Vocal and Acoustic Interactions - Automatic Speech Recognition

Beam search decoding

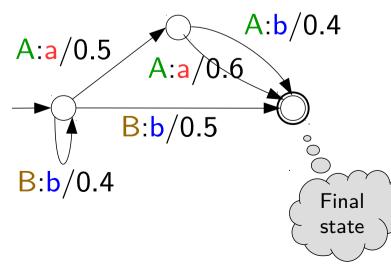
- Until end of word
 - Aggregate acoustics
- At end of word
 - Add LM score and insertion penalty
- At each step
 - Check the number of active states
 - \rightarrow Pruning (a, b, c)



WFST-based decoding

- Weighted Finite State Transducer (WFST)
 - Finite state automaton
 - Weighted edged
 - Output symbol (in addition to input symbol)

String conversion



Input sequence: BBB \rightarrow Ouput sequence: bbb Probability: 0.4×0.4×0.5=0.08

Input sequence: AA

- \rightarrow Best ouput sequence: aa Probability: 0.5×0.6=0.3
- $\rightarrow 2^{nd}$ best output sequence: ab Probability: 0.5×0.4=0.2

WFST-based decoding

All models can be written as WFSTs

	transducer	input sequence	output sequence
G	word-level grammar	words	words
L	pronunciation lexicon	phones	words
С	context-dependency	CD phones	phones
Н	HMM	HMM states	CD phones

- WFST composition
 - H o C o L o G (+ determinization + minimization) maps HMM states to words
- Fast but requires memory
- Kaldi toolkit

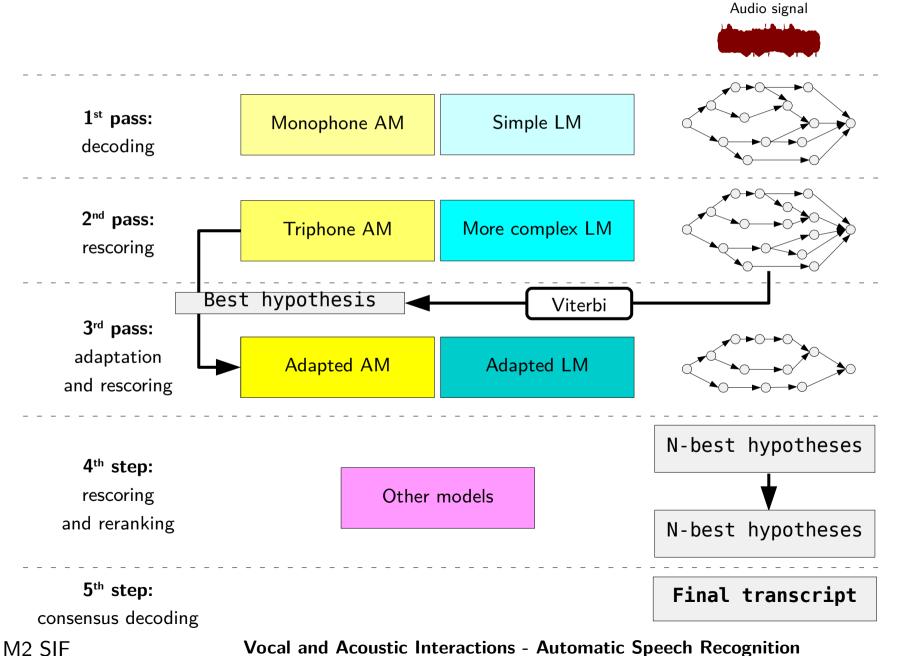
M2 SIF

Alternative hypotheses

Word lattice



Multi-pass architecture



End-to-end approach

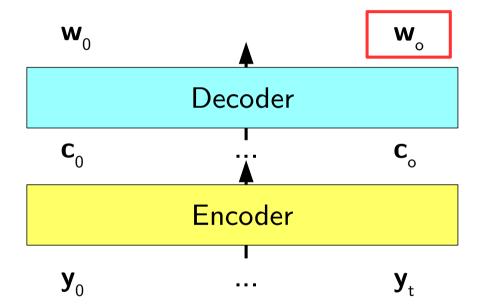
Reading:

 Lu et al. (2015). A study of the recurrent neural network encoderdecoder for large vocabulary speech recognition. In Proc. Interspeech (pp. 3249-3253).

End-to-end approach

 $\mathbf{W^*} = \arg \max_{\mathbf{W}} \mathsf{P}(\mathbf{W}|\mathbf{Y})$

- Encode Y (y_t) as a sequence of contexts C (c_t)
- Decode C into a sequence of words W



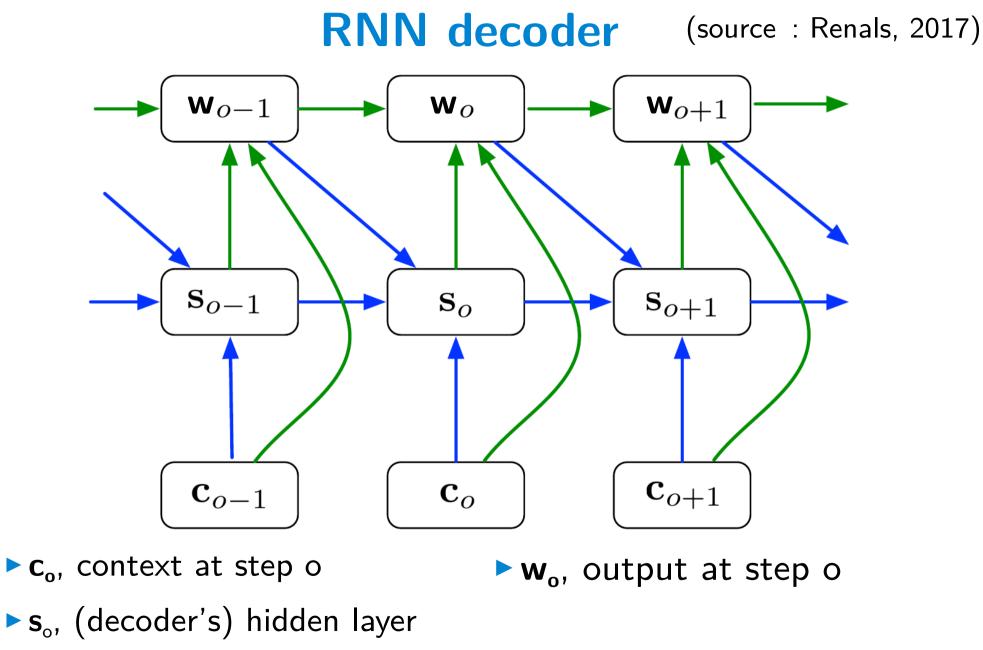
Beam-search decoding



h_t, (encoder's) hidden layer at

step t

M2 SIF



at step o

M2 SIF

Related tasks

M2 SIF

Vocal and Acoustic Interactions - Automatic Speech Recognition

87/91

Adaptation

Speaker adaptation

- GMM, DNN parameter changes

Language model

- (A) Grab task-related texts (web)
- (B) Spot discriminating words, phrases
- Increase probs

Vocabulary

- (A + B)
- Sub-word units, phonetic transcription
- Enrich pronunciation dictionnary
- Add n-grams / exploit related words parameters

Usage of speech transcripts

- Spoken language understanding/dialogue
- Spying
- Command
- Indexation/information retrieval
- Clustering/summarization
- Multimedia hyperlinking

Conclusion

M2 SIF

Vocal and Acoustic Interactions - Automatic Speech Recognition

90/91

Keypoints

- Statistical approach
 - Acoustic model,
 language model
- End-to-end approach
 - 1 big neural network
- Current trends
 - LSTMs
 - Removal of expert (acoustic, linguistic) knowledge

- Remaining challenges
 - Adaptation
 - Noisy environments
- Performance
 - Human still not beaten
 - Many possible applications yet