
Analyse de données et modèles stochastiques

November 16, 2018

Duration: 2 hours

Lecture handouts and notes authorized. Calculators are authorized.

Exercises are independent. Question within exercises can mostly be considered as independent.
The number of points in front of each exercise is given as an indication and is subject to
changes within reasonable bounds.

When answering the questions, do not limit yourself to reporting just a number or a trivial
answer. Rather provide the details of your calculations and of your reasoning. What I care
about is evaluating what you understood from the lectures, not your calculation skills!

Exercise 1 – Estimation (6 points)

The two questions are independent.

2.1 Empirical mean estimators

We want to study the mean of a population from a sample of n = 2m independent measures,
Xi = xi, i ∈ [1, n], sorted in ascending order. We have at our disposal two estimators:

E1 =
1

n

n∑
i=1

Xi E2 =
Xm +Xm+1

2
.

Discuss the respective qualities of these estimators, in particular in terms of bias and variance,
comparing the two. Which one would you choose for noisy data exhibiting a significant
amount of outliers?

2.2 Moment estimation

We now assume that on the n samples, we measure a value e1 for E1. We also measure s1 as
the value for the empirical estimator of the standard deviation given by

S2
1 =

1

n

n∑
i=1

(Xi − e1)2 .

We assume that the distribution of the random variables Xi is a Gaussian of mean µ and
standard deviation σ. Applying the moment estimation technique, give the estimate of µ and
σ as a function of e1 and s1.

Exercise 2 – Sequence labeling with hidden Markov models (8

points)

You might use the simplified logarithm table in Appendix for numerical applications.
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Labeling sequences of observations is a very common problem for which hidden Markov mod-
els are well-suited (e.g., finding the syntactic tag for a word in natural language processing,
the letter corresponding to a portion of an image in optical character recognition). The tags
to be found are considered as the hidden states which have to be found from the observations
(words in case of syntactic tags, portion of images in OCR, etc.)

In this exercise, we consider such a model with four tags: A, B, C and D. We assume that
the sequence of tags is a Markov process of order 1 with the following transition probabilities

A B C D
A 0.2 0.6 0.1 0.1
B 0.5 0.0 0.1 0.4
C 0.6 0.1 0.2 0.1
D 0.4 0.1 0.3 0.2

We will take as initial probabilities P [A] = P [B] = P [D] = 1/3.

1. What is the probability of the sequence of tags D C A B A?

2. What is the sequence of tags corresponding to the observation

a b c d b

assuming the following association probabilities between states and tags

a b c d

A 0.5 0 0 0.5
B 0.6 0.4 0 0
C 0.3 0.4 0.3 0
D 0 0 0 1

Please explain your calculation to get to the result (a result with no explanation will
be considered as invalid).

We now are interested in estimating the parameters of the model, i.e., the transition
probabilities Aij with (i, j) ∈ {A,B,C,D}2 and state conditionnal probabilities Bik with
i ∈ {A,B,C,D} and j ∈ {a, b, c, d}, from a set of training samples.

3. Assuming we know the complete data, i.e., a set of sequences with their observation as
illustrated below, how would you estimate the parameters? Provide the exact equations,
introducing the necessary notations.

4. Using the equations from the previous question, give the estimation of the quantities
P [x|B] for all x ∈ {a, b, c, d, e}, P [D|D] and P [A|B] according to the following samples

a b c d
D B B C

e c b a d a
D C A C B C

e c a b d d a e
D A D D A B D A
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5. Explain in plain (and simple) words how the EM algorithm circumvents the fact that the
hidden state sequence is unknown. In the example above, P [a|A] = 0 and P [D|C] = 0.
Would the EM algorithm prevent these probabilities from being null assuming the ob-
servation sequences from the previous question (i.e., not knowing the hidden variables)?

Exercise 3 – Hypothesis testing (6 points)

We have designed a new sort algorithm that is faster than the traditionnal quicksort. To
verify this claim, we test our algorithm on a number of platforms and architectures, running
first the standard quicksort then our approach on the same data. We observe the following
execution times (in seconds) on 9 distinct hardware:

qsort() 9.22 9.38 12.30 9.77 10.70 13.00 9.44 12.70 7.08
mysort() 8.10 10.74 11.456 8.50 10.98 11.5 10.85 11.19 6.13

Can we legitimately claim, with a risk of error of 5 %, that our algorithm is faster than
quicksort?

We recall that for a random variable X following a Student distribution with 8 degress of
freedom, we have P [X ≤ 1.86] = 0.95.

A Appendix

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ln(x) -2.3 -1.6 -1.2 -0.9 -0.7 -0.5 -0.4 -0.2 -0.1
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