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a b s t r a c t

Identifying road accident hotspots is a key role in determining effective strategies for the reduction of
high density areas of accidents. This paper presents (1) a methodology using Geographical Information
Systems (GIS) and Kernel Density Estimation to study the spatial patterns of injury related road accidents
in London, UK and (2) a clustering methodology using environmental data and results from the first
eywords:
ccident
IS
lustering
olicy

section in order to create a classification of road accident hotspots. The use of this methodology will be
illustrated using the London area in the UK. Road accident data collected by the Metropolitan Police from
1999 to 2003 was used. A kernel density estimation map was created and subsequently disaggregated by
cell density to create a basic spatial unit of an accident hotspot. Appended environmental data was then
added to the hotspot cells and using K-means clustering, an outcome of similar hotspots was deciphered.
Five groups and 15 clusters were created based on collision and attribute data. These clusters are discussed

to the
and evaluated according

. Introduction

Road accidents are a consequence of the increased mobility of
oday’s society. The impact of road traffic accidents in terms of
njuries and fatalities is a social and public health challenge. Road
afety is of great concern to the UK government highlighted by
he most recent report ‘Tomorrow’s Roads: Safer for Everyone’ (UK
epartment of Transport, 2000) which outlines the current trends
nd statistics in road accidents. The report offers projections for the
uture and a best practice policy guideline to reduce these numbers.
very year approximately 3500 people are killed on Britain’s roads
nd 40,000 are seriously injured (UK Department for Transport,
000). The World Health Organisation estimates 1.18 million peo-
le were killed in 2002 in a road collision which is 2.1% of the
lobal mortality (WHO, 2004). Road traffic accidents according to
he WHO are the leading injury related cause of death among people
ged 10–24.

Identifying accident hotspots and appending value added data to
nderstand the processes occurring in these hotspots is important
or the appropriate allocation of resources for safety improvements.
y identifying road accident hotspots, using Geographical Informa-

ion Systems (GIS) and appending value added data, a more robust
nderstanding can be gained, with regards to indicators of casual
ffects. GIS is a technology for managing and processing locational
nd related information (Longley et al., 2005). Using GIS as a plat-
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form to perform this research is fundamental as it enables the
efficient manipulation, analysis and visualisation of spatial data.

The foci of this paper are (1) to present a methodology for the
identification of high density accident zones using GIS and kernel
density estimation (KDE) (2) to add attribute data to the accident
zones, and (3) to identify similar zones using a K-means cluster-
ing algorithm with regards to attribute data and compare. This
methodology and clustering technique uses 5 years (1999–2003)
of road accident data for the metropolitan area of London as the
study region.

2. Background

The road accident literature provides no universally accepted
definition of a road accident ‘hotspot’. Hauer (1997) describes how
researchers rank locations according to accident rate while other
researchers use accident frequencies (accident per road kilome-
tre). Road accident hotspot analysis has traditionally centred on
road segments or specific junctions (Thomas, 1996) while area wide
hotspots and the spread of risk which is produced from a collision
is somewhat neglected. Traditionally since the late 1970s statistical
models have been applied to road accident analysis, however the
early models where flawed in such that they would assume acci-

dents to be normally distributed (Oppe, 1979; Ceder and Livneh,
1982). The next stage was to accommodate this statistical draw-
back was to use Poisson log linear regression to account for the
randomness of accidents in time and space (Blower et al., 1993).
Many authors such as Hauer and Persaud (1987), Miaou (1994),

http://www.sciencedirect.com/science/journal/00014575
http://www.elsevier.com/locate/aap
mailto:t.anderson3@uq.edu.au
dx.doi.org/10.1016/j.aap.2008.12.014


3 is and

S
a
e
t
t

d
r
i
a
a
2
r
‘
o
a
a
t
e
b
c

s
o
p
v
b
a
a
f
f
s
i
(

o
t
t
h
t
d
d
i
c
d
f
n
t
i
s
p

r
u
a
h
f
k
a
d

3

s

considering a circular neighbourhood around each cell (the sim-
ple method), the kernel method draws a circular neighbourhood
around each feature point (the accident) and then a mathematical
equation is applied that goes from 1 at the position of the fea-
ture point to 0 at the neighbourhood boundary (see Fig. 1). Road
60 T.K. Anderson / Accident Analys

hankar et al. (1995), Maher and Summersgill (1996), Abdel-Aty
nd Radwan (2000) have used negative binominal regression mod-
ls. In all of these models only the reported number of accidents in
he observed time period is used and locational characteristics are
herefore modelled as constant within a given time period.

This paper in contrast is based on the assumption that road acci-
ents occurring in a similar area, not just taking into account the
oad network or junctions, are spatially dependent because of the
ncreased density of accidents in a specific area. This dependence is
rgued to be the result of a shared common cause(s) between the
ccidents, albeit of varying intensity (Flahaut et al., 2003; Flahaut,
004). While human error and mechanical failure can be causes of
oad traffic accidents the importance of spatial factors has been
grossly underestimated’ (Whitelegg, 1987). This paper is based
n the assumption that road accidents occurring in similar areas
re spatially dependent. The existence of hotspots comes from the
wareness of the evident spatial interaction existing between con-
iguous accident locations (Flahaut et al., 2003). Accident hotspots
xpose concentrations and therefore suggest spatial dependence
etween individual occurrences which may be due to one or several
ommon causes.

Road accident hotspot analysis requires a comprehensive under-
tanding of the vehicle accident involvement process, the severity
f resultant injuries, and the surrounding road environment. A GIS
latform is particularly suited to this type of problem because it pro-
ides an efficient system of linking a large number of disparate data
ases. It provides a spatial referencing system for reporting output
t different levels of aggregation, it allows input of both historical
nd statistical accident experience in estimating accident risk at dif-
erent locations and times, and it allows controls on a myriad of risk
actors explaining variations in accident involvement and injury
everity. The most straightforward use of GIS for accident analysis
s the examination of spatial characteristics of accident locations
Steenberghen et al., 2004).

Classifications of road accident hotspots are generally based
n the available data associated with the accident itself (namely,
ime of day, type of victim, type of vehicle). This can often limit
he scope of understanding of the complexities of road accident
otspots which can be the outcome of a number of environmen-
al, social and economic factors neglected by the standard accident
ata collection. The use of ‘traditional’ typologies in road acci-
ent analysis has been prolific throughout the literature. Examples

nclude delineating road users (Pietro, 2001; Oxley et al., 2005) and
lassifying by temporal and spatial measures and also types of acci-
ent (Levine et al., 1995). A small proportion of the research has
ocused on interpreting the spatial element into the typologies most
otably Pulugurtha et al. (2003) who focused on ranking pedes-
rian hotspots. This paper presents a spatial methodology which
nvestigates the variables which might be present at dependent
patial accidents in order to develop a robust understanding of the
rocesses at work.

In general, methods which determine road accident hotspots
arely incorporate variables from other sources relating to land
se and the environment. The literature review did not identify
ny research which identifies hotspots and goes on to cluster the
otspots and create a typology based on spatial indicators. There-

ore this paper identifies an original method which uses GIS and
ernel density estimation to create a basic spatial unit of a hotspot
nd statistical analysis to cluster the hotspots according to attribute
ata of the accident including the surrounding area.
. Methodology to identify high density accident zones

There are a variety of spatial tools developed to assist the under-
tanding of the changing geographies of point patterns. The most
Prevention 41 (2009) 359–364

promising of these tools is kernel density estimation (Chainey and
Ratcliffe, 2005; Sabel, 2006). There are many advantages of ker-
nel density estimation (KDE) as opposed to statistical hotspot and
clustering techniques such as K-means. The main advantage for this
method lies in determining the spread of risk of an accident. The
spread of risk can be defined as the area around a defined cluster in
which there is an increased likelihood for an accident to occur based
on spatial dependency. Secondly by using this density method, an
arbitrary spatial unit of analysis can be defined and be homoge-
nous for the whole area which makes comparison and ultimately a
taxonomy possible.

Kernel density estimation involves placing a symmetrical sur-
face over each point and then evaluating the distance from the
point to a reference location based on a mathematical function and
then summing the value for all the surfaces for that reference loca-
tion. This procedure is repeated for successive points. This therefore
allows us to place a kernel over each observation, and summing
these individual kernels gives us the density estimate for the dis-
tribution of accident points (Fotheringham et al., 2000).

f (x, y) = 1
nh2

n∑
i=1

K

(
di

h

)
(1)

where f (x, y) is the density estimate at the location (x, y); n is the
number of observations, h is the bandwidth or kernel size, K is the
kernel function, and di is the distance between the location (x, y)
and the location of the ith observation. The effect of placing these
humps or kernels over the points is to create a smooth and contin-
uous surface. The method is known as KDE because around each
point at which the indicator is observed a circular area (the ker-
nel) of defined bandwidth is created. This takes the value of the
indicator at that point spread into it according to some appropriate
function. Summing all of these values at all places, including those
at which no incidences of the indicator variable were recorded,
gives a surface of density estimates. Density can be measured by
two methods; simple and kernel. The simple method divides the
entire study area to predetermined number of cells and draws a
circular neighbourhood around each cell to calculate the individual
cell density values, which is the ratio of number of features that fall
within the search area to the size of the area. Radius of the circu-
lar neighbourhood affects the resulting density map. If the radius
is, increased there is a possibility that the circular neighbourhood
would include more feature points which results in a smoother
density surface (Silverman, 1986). The kernel method divides the
entire study area into predetermined number of cells. Rather than
Fig. 1. Diagram of how the quadratic kernel density method works and is the basis
for the density method used for this study (source: Bailey and Gatrell, 1995).
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Table 1
Environmental and land use data and associated sources.

Attribute Source

Road length Ordnance Survey MastermapTM

Cycle lane length London Cycle Network
Pedestrian crossings Transport for London
London underground stations Transport for London
Traffic lights Transport for London
T.K. Anderson / Accident Analys

raffic accident data from 1999–2003 was used covering the geo-
raphical area of London, UK. This data is called Stats19 data and
s the official statistics collected by the Department of Transport
nd Police on personal injury road accidents. The accuracy and
redibility of the Stats19 collection process depends upon close
o-operation between central government, local government and
olice forces. In terms of spatial accuracy, the location of the acci-
ent is recorded using a GPS by the attending police officer to a 10 m
esolution.

The resulting surface is a selection of grid cells (2290) which have
n extensively high density. These grid cells are scattered evenly
cross London and a large proportion are grouped together indicat-
ng differing sizes in high density hotspots. The two parameters

hich affect the outcome of the KDE are bandwidth (some-
imes known as search radius) and cell size. Arguably the most
mportant criterion for determining the most appropriate density
urface is the bandwidth (Silverman, 1986; Bailey and Gatrell, 1995;
otheringham et al., 2000). The choice of bandwidth will affect the
utcome of the hotspots, for example the larger the bandwidth the
arger the hotspots will be. The limited range of studies which have
ocumented parameters for road accident density measurements
eans that the process of deciding the bandwidth and grid cell

ize is somewhat subjective. The final choice was based on taking
search radius which is two times the size of the grid cell, there-

ore for this study the bandwidth is 200 m and the grid cell size
s 100 m.

. Adding data and K-means clustering

The methods used in the previous section created a surface
hereby the grid cells represent the hotspots based on the density
easure. The number of grid cells in a hotspot varies, showing the

otspots are not uniform in size or shape. To be part of a hotspot
grid cell has to have an accident density level which is over a

pecified threshold, indicating these are the areas in London where
he accident density prevalence is at its most intense. This grid
urface provides the basis for collating the accidents which occur
ithin these grid based hotspots. The result is a database of hotspots
hereby the nature of the database means that there is no analysis

f individual accidents, but an analysis of groups of accidents which
hare a common nearby spatial location, implying a common casual
actor. By ascertaining the nature of this similarity, comparisons

etween hotspots can be made on a ‘like by like’ basis.

Fig. 2 shows the different spatial levels of road accidents. The
ccidents which share a spatial commonality within the grid cell
re selected. These hotspots are then classified using the clustering
rocess and are organised into classes (or clusters) based on simi-

Fig. 2. How the hotspot classification method works.
Bus stops Transport for London
Schools (primary and secondary) Department for Education
Speed cameras London Safety Camera Partnership

lar attributes. These clusters are then organised into groups, based
on the similarity of the clusters. This hierarchical process allows a
classification of spatial hotspots based on similarity of either the
characteristics of the accidents within the hotspots or of the envi-
ronmental and land use information associated with the hotspot
area itself or indeed of both.

When determining the database used to build the classification
it is important to assess the type of data which would be collected
and would have the potential of having impact on accident density.
Therefore it was important to consider not just the attributes of the
accidents themselves but environmental and land use data which
were found in the vicinity of the hotspots.

To select the hotspots, various rules were established to make
the process simpler. Hotspots were established by the linking of
cells. A hotspot could be made up of one single cell of many cells.
The rule was that the cells had to join sides, and no diagonally
linked cells would constitute being part of the hotspot. Overall a
total of 428 hotspots were selected as being over a predetermined
density threshold, Table 1 shows an example of attribute data and
corresponding source.

The accident data added into the hotspot database was in count
format, relating to the accidents occurring within the hotspot. For
example, the severity of each accident (fatal, serious or slight)
within the hotspot is added to the database. Each of these counts
including the added non-Stats19 counts needed to be related to a
corresponding base count. The main objective in creating a logical
classification is to create an accurate representation of the data;
therefore the data must have a suitable basis for comparison.

The data was normalised by one of two variables, the num-
ber of accidents in each hotspot or the number of grid cells that
make up each hotspot. The reason for this, was to accommodate
the two different types of data being used (Stats19 and environmen-
tal/road network). The Stats19 accident type counts were divided by
the number of accidents within the hotspot, and the environmen-
tal/road network data were divided by the number of grid cells as
these data were related to the area within the grid cell. The variables
were also weighted for the purpose of the clustering methodology.

5. Clustering process

This procedure represents an attempt to classify each of the 428
hotspots into relatively homogenous types based on their environ-
mental characteristics. The algorithm starts by defining K hotspots,
one for each of the predefined clusters. These are selected on a
random basis but proportional to the number of grid cells in the
hotspot. The first stage is to find the most similar’ pair of clusters,
i.e. the pair that could be combined for the least incremental loss of
variance of the original data; these are merged into a parent clus-
ter and the process repeated until all the clusters have been joined

together. The similarity between clusters is defined in terms of the
distance between clusters weighted by the number of grid cells. The
success of the clustering process is based of what is referred to as
the percentage of variance which is explained by the clustering pro-
gramme. In this instance the variance explained is 34%. Although
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Table 3
Characteristics of Cluster Type A5.

High Low

Variable Index Variance Variable Index Variance

Casualties = 6 190 4.72 Rain with wind 67 7.77
Pedestrians 161 62.11 Cyclist 66 75.69
Tube stations 138 4.03 Casualties = 3 65 71.81
Bus stops 121 5.65 Vehicles = 4 62 5.2
62 T.K. Anderson / Accident Analys

his appears to be a low figure, previous studies indicate that this
gure is an ‘acceptable’. A study by Naveh and Marcus (2002) who
ried to depict the causes of fatal road accidents and injury only road
ccidents found the variance for fatal accidents, 2% and for injury
nly accidents, 12%.

. Results and discussion

The clustering process created 5 groups and 15 clusters (these
umbers were predetermined). Fig. 3 shows the numbers of
otspots within each cluster and the number of clusters within each
roup.

The groups created from the clustering process vary in size con-
iderable, with groups A1 and A4 containing the majority of the
lusters. The major difference between the groups and the clusters
ithin them is the variance of the constituent variables. The vari-

nce for the variables in each group is considerably lower, because of
he hierarchical structure of the clustering results (Table 2). There-
ore the description of the pen portraits is much less conclusive
ompared to the clusters. To give an indication of the characteristics
f the hotspot clusters, two clusters are discussed in more depth;
5 Illicit late night Zone 1 pedestrians; C10 Cyclists in Westminster.
.1. Cluster A5: Illicit late night Zone 1 pedestrians

This cluster consists of 48 of the total number of records (428).
his cluster is characterised by having a higher than average num-

Fig. 3. Clusters and groups.

able 2
roups and associated clusters.

roups Clusters

roup A: Central
London Pedestrians

A1: Late Night Football Supporters

A2: Inner city pedestrian risk takers
A3: Saturday morning leisure time hotspots
A4: Sunday afternoon car drivers
A5: Illicit late night Zone 1 pedestrians
A6: Pedestrians in the dark
A7: Weekday rush hour pedestrian hotspots
A8: Morning commuting cyclists at rush hour

roup B: High density
vehicle damage

B9: High density careless weekend drivers

roup C: Cyclists in
danger

C10: Cyclists in Westminster

roup D: Multiple
main road accidents

D11: Dual carriageway joy riders

D12: Main road multiple victim accidents in
Outer London
D13: Sunday afternoon multiple casualties
D14: Risk taking early risers

roup E: Weekend risk
takers

E15: Sunday morning pedestrian risk takers
Vehicles = 1 121 57.42 Number of cells 30 12.57
Time 0000–0359 117 33.83 Number of accidents 28 83.02
Sunday 114 40.7 Vehicles = 5 14 82.83

ber of accidents occurring between midnight and 3 a.m. and early
on a Sunday morning. A high proportion of these occur at or
near pedestrian crossings and bus stops resulting in serious injury.
Table 3 demonstrates variables with the highest and lowest index
scores.

The London boroughs with high proportions of A5 include Isling-
ton (5), Southwark (5), Camden (4), Haringey (4) and Kensington
(4). This shows a strong Central London distribution, which sup-
ports the idea of pedestrians who have been drinking in Central
London and then try to cross busy roads in order to get home or to
a bus stop. There is a prominent Camden hotspot associated with
high numbers of bars and clubs in this area (see Fig. 4).

6.2. Cluster C10 Cyclists in Westminster

The characteristics of cluster C10 are unique. It has 10 hotspots
and the average number of grid cells per hotspot is 39.3 which is the
highest out of all the clusters. This is due to the nature of the cluster
covering a large proportion of Central London. This cluster, unlike
all the others has a significantly high index score for both the num-
ber of accidents and number of cells. This indicates therefore that
the hotspots which occur in this cluster have a high number of acci-
dents and are spatially extensive. Many of these cluster 10 hotspots
occur in Central London, particularly Westminster where there is a
large traffic flow and the hotspots cover large areas (Fig. 5). The clus-
ter also has a high number of accidents involving only one vehicle,
likely to result in a fatal injury. However, what is missed from the
index scores is the unusually low propensity for cyclists involved.
From the index scores, cyclists are underrepresented within this
cluster (Table 4): however the count data reveal that this cluster
account for 37% of all cyclists’ accidents. It also consists of nearly
17% of all the fatal accidents, which is significantly higher than
average.

The cluster types have led to some interesting patterns across
time and space, particularly the strong divide of clusters between
those that involve pedestrians and cyclists and those that do not.
Predominantly the cluster types involving pedestrians and cyclists

occur in Central London while vehicle only cluster types are more
likely to occur on the larger more arterial roads around Central Lon-
don. The outcome of this methodology is a database of hotspots
of varying size and density and associated collisions which fall

Table 4
Characteristics of Cluster Type C10.

High Low

Variable Index Variance Variable Index Variance

Number accidents 524 83.02 Casualties = 4 11 6.95
Number cells 516 82.83 Rain with wind 5 7.77
Other weather 178 12.12 Vehicles = 4 4 5.2
Severity = Fatal 162 9.16 Snowing 0 3.5
Vehicles = 1 149 57.42 Vehicles = 5 0 12.57
Unknown 120 14.57 Casualties = 5 0 8.24
Tube stations 118 4.03 Casualties = 6 0 4.72
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Fig. 4. A5 ‘Illicit late night

ithin the boundaries of the hotspot. The nature of the database
eans that there is no analysis of individual collisions, but an anal-

sis of the set of the collisions which share a common nearby
patial location, implying a common and linking casual factor.
lthough hotspots may be treated as though each is unique, they
ay share similar characteristics such as the proportion of pedes-

rians or cyclists or an increased number of collisions in certain
eather types or they may occur at a certain time of day or par-

icular day of week. By ascertaining the nature of this similarity,
omparisons between hotspots can be made on a ‘like by like’
asis.

Using kernel density estimation to investigate the spatial clus-

ering of road accidents is not new. Previous work by Flahaut et
l. (2003), Steenberghen et al. (2004) suggest that this is a suc-
essful spatial clustering method. However the study presented
ere suggests a innovative method adding value to the kernel den-
ity estimation method by using it not only to determine high

Fig. 5. C10 ‘Cyclists in
1 pedestrians (Camden)’.

density accident areas but to select sites for further investigation
and append data to them. It is this last point which is of impor-
tance in the results and outcome of this paper. Previous empirical
research has been limited to only the accident event itself. In a
dense urban environment such as London, accident locations are
based on proximity characteristics, examples might include acci-
dent concentrations near schools or underground station exits. This
research is unique because it uses a spatial interpolation technique
to differentiate the different factors that influence road accident
rates from a social-spatial perspective. This is largely because of
the unique nature of the urban setting and of the clusters identified.
Studies can support individual findings of the clusters, for example

the characteristics of cluster C10 indicated high numbers of acci-
dents involving cyclists. This is generally not a new finding, with
evidence from xxx suggesting similar findings in an urban setting.
Cyclists are a vulnerable road user however; the nature of the clus-
ter indicates other factors which are influencing the high density

Westminster’.
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f road accidents. The very nature of these results provides further
hought into the spatial interaction of different factors within these
lusters.

. Conclusion

This paper presents a methodology to identify high density acci-
ent hotspots and in turn create a clustering technique which deter-
ines casual indicators more likely to be present at certain clusters,

herefore being able to compare like with like across time and space.
he kernel density estimation tool enabled an overarching visual-
sation and manipulation of the accidents based on density which
as used in turn to create the basic spatial unit for the hotspot clus-

ering method. The classification of road accident hotspots in road
afety still remains an important and yet under developed theme.
hese typologies provide a snapshot of the processes which are
ccurring at these sites and the people upon whom they impact.
his information can lead road safety professionals to a better
nderstanding, not only of the types of hotspots but their patterns
cross London. There are some evident potential policy implications
or certain clusters. For example, C10 highlights the need for safety
f cyclists in central London, whether this is the mandatory use of
ycle helmets, better cycle lane provision or better cyclist/driver
ducation. One of the most important recommendations which
eflects the current local governmental policy is the focus on com-
unity and neighbourhood. By drilling down to specific accident

lusters in specific areas, allows for a greater neighbourhood par-
icipation in understanding people’ road user risk.

Some critiques of KDE challenge the fact that its treats dis-
rete events as a continuous surface. However this paper is also
oncerned with the spread of risk, the risk of having an acci-
ent, geographically will occur not just at a single point but over
given area. KDE offers a method which takes into account this

otion of spread of accident risk. However one main drawback
eoccurs, which relates to determining the statistical significance
f the resulting clusters. This is an area of research which is some-
hing to investigate in further studies. This study represents a large
cale model for road accident clustering. Further study needs to be
onducted in a number of areas. Firstly, there needs to be develop-
ent of a method for testing for statistical significance of the kernel

ensity output. Secondly, there needs to be investigation into the
hanging dynamics of the clusters over different temporal and spa-
ial scales. Thirdly, a policy led investigation needs to be conducted
nto the suggestions made from the cluster outcomes.

Road accident analysis particularly the spatial patterns of road
ccidents requires further attention. This study aims to highlight
ome of the gaps in the research with particular attention to
patial clustering of road accidents. This is one of a handful of
esearch papers which addresses the nature of supplementary
ata to examine the road accident hotspots. Traditionally research
as relied on raw statistics alone without examining the potential
ndicators found in complimentary datasets such as those referring
o the environment, land use, accident victims and road furniture
or statistical clustering. This paper adds significant value to the
esearch on the delineation of road accident hotspots and the
omplex nature of how we measure road accident hotspots.
Prevention 41 (2009) 359–364
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