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What for?

Hypothesis testing = make some decision on whether something is true

or not based on experimental evidences, yet knowing the risk we are taking

with that decision.

Typical hypotheses we want to test are:

◦ the mean time to failure of a system exceeds a threshold θ0 (or not)

◦ the job arrival rate in a queing system is equal to λ0 (or not)

◦ the distribution of some samples is Gaussian (or not)

◦ two estimated mean values correspond to the same mean (or not)

◦ an observed arrival process is Poisonian (or not)

◦ etc.
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A useful reminder

Empirical mean estimator X =
1

n

n
∑

i=1

Xi

Empirical variance estimator S2 =
1

n

n
∑

i=1

(Xi −X)2

(1)

The central limit theorem states that

X −m

σ/
√
n

L−−−−→ N (0, 1)

Note on Gaussian variables: for Gaussian variables, it’s not a convergence, it’s

an equality!
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The rainmakers example

◦ rain levels (in mm) are assumed to be Gaussian N (600, 100)

◦ people claim they can increase rain levels by 50 mm and, using their

method over 9 years, we observed the following rain levels

year 1 2 3 4 5 6 7 8 9

mm 510 614 780 512 501 534 603 788 650

◦ Is this a scam or not?

Two hypotheses are confronted

H0 m = 600mm

H1 m = 650mm

Since the method to increase rain levels is expensive, we want to use it only if

we are pretty sure that it works, i.e. if we have only a 5 % chance of wrongly

accepting H1 from the evidences (risk α = 0.05).
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The rainmakers example (cont’d)

We study the empirical mean X over the nine year period

◦ if H0 is true, X  N (600, 100/
√
9) [see lecture 4]

◦ decision rule

⊲ if X > k, accept H1 (or reject H0)

⊲ if X < k, reject H1 (or accept H0)

⊲ k is determined so that the probability of wrongly accepting H1 is 0.05

k = 600 +
100√
9
1.64 = 655

Conclusion: those rainmakers are ripping you off!
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The rainmakers example (cont’d)

What if rainmakers were very unlucky over those nine years?

◦ if they were right, X  N (650, 100/
√
9)

◦ an error is made each time X < 655

◦ the probability of wrongly accepting H0 (or wrongly rejecting H1) is given

by the risk β

β = P

[

U <
655− 650

100/
√
9

]

= 0.56

◦ H1 defines the shape of the critical decision region (650 > 600)

but the threshold k only depends on H0 and α

◦ additional knowledge on H1 is used to compute the risk β
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Concepts and vocabulary

◦ a statistical hypothesis is an assertion which can be valid or not

◦ a statistical test is a procedure to make a decision

◦ the null hypothesis H0 is a claim that we are interested in accepting or

rejecting

◦ the alternative hypothesis H1 is the contradiction of H0

◦ the critical or rejection region is the region where we reject H0 (above

k in the example) as opposed to the acceptance region

◦ wrongly rejecting H0 is known as the type 1 error and the probability α
that this happens is the level of significance of the test

◦ wrongly rejecting H1 is a type 2 error and the quantity 1− β is the

power of the test
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Hypotheses and types of errors

◦ α = probability of choosing H1 when H0 is true

◦ β = probability of choosing H0 when H1 is true

truth \ decision H0 H1

H0 1− α α

H1 β 1− β

In practice, α is given by the decision maker and H0 corresponds to the

following

◦ a well established hypothesis, not contradicted so far

◦ a safe decision

e.g. when testing a vaccine, H0 is the less favorable hypothesis

◦ the only hypothesis that is easy to formulate

e.g. m = m0 is easir to formulate than m 6= m0
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Methodology

1. define H0 and H1

2. determine the variables on which to make the decision

3. determine the shape of the critical region based on H1

4. compute the critical region given α

5. eventually compute the power of the test

6. compute the experimental value of the decision variable

7. accept or reject H0
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Methodology

Many flavors and variants of tests:

◦ comparing data with theoretical distribution (fitting)

→ mean value, χ2, etc.

◦ comparing two populations

→ χ2, paired t-test, ranks, etc.

◦ likelihood ratio tests
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Compare sample to mean value
Given a set of evidence data Xi = xi i.i.d of unknown mean µ and (known)

standard deviation σ, we might we to test the following based on the test

statistics

Z =
X − µ

σ/
√
n
 N (0, 1)

µ = µ0 vs. µ 6= µ0 µ = µ0 vs. µ > µ0

reject if |Z| > kα reject if Z > kα
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Probability tables to determine the threshold
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Compare sample to mean value (cont’d)

If standard deviation σ is unknown, Z can no longer be used and we use the

Student test statistics

T =
√
n− 1

X −m

S
 tn−1

Example:

◦ H0 m = 30 vs. H1 m 6= 30

◦ 15 samples with x = 37.2 and s = 6.2

◦ under H0, t =
√
14

37.2− 30

6.2
= 4.35

◦ critical value at α = 0.05 for T14 = 1.761 ⇒ REJECT H0!
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Probability tables
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The χ2 fitting tests

X is a random variable divided into k classes of resp. probabilities

p1, p2, . . . , pk and we observe a sample of the variable with population size in

each class N1 = n1, N2 = n2, . . . Nk = nk

Note that E[Ni] = npi

We want to test if the underlying law of the observed process fits the

theoretical distribution defined by the pi’s (H0) or not.

◦ test statistics is D2 =
k
∑

i=1

(Ni − npi)
2

npi

◦ asymptotic distribution of the test statistics = χ2
k−1

Notes:

◦ if m parameters are estimated from the sample (e.g. λ in Poisson) D2
 χ2

k−1−m

◦ need for at least 5 (or 3) elements per class
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χ2 table
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Comparing two populations

[Janez Demsǎr. From Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning

Research 7:1–30, 2006]
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Paired sample comparison

Assume we have a single population X1, . . . , Xn observed through one

variable but measured at two time instants, e.g., individual i before treatment

(Ai) and after treatment (Pi). These are called paired samples.

We want to test whether there is a statistical difference between the Ai’s and

the Pi’s or not. E.g., does a treatment/algorithm has some effect?

◦ H0 = no effect ⇒ E[A] = E[P ]

◦ H1 = effect ⇒ E[A] 6= E[P ], E[A] > E[P ], E[A] < E[P ]

Let’s consider Zi = Ai − Pi, which are n i.i.d. variables for which we have

E[Z] = E[A]− E[P ].

Under H0, we expect to have E[Z] = 0. So the test boils down to a fitting

test of the mean of Zi with the theoretical value 0.
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Testing moment equality

Are two independent samples of resp. sizes n1 and n2 coming from the same

population/distribution?

Gaussian case: X1  N (m1, σ1) and X2  N (m2, σ2)

◦ test variance equality (unknown mean) ⇒ Fisher-Snedecor

Fn1−1,n2−1 =

(

n1S2
1

n1− 1

)(

n2S2
2

n2− 1

)−1

◦ test mean equality (equal variance) ⇒ Student

Tn1+n2−2 =
√
n1 + n2 − 2

(X1 −m1)− (X2 −m2)
√

(n1S
2
1 + n2S

2
2)

(

1

n1
+

1

n2

)
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Wilcoxon tests

Are two independent samples of resp. sizes n1 and n2 coming from the same

population/distribution?

General case: compare {x1, . . . , xn} and {y1, . . . , ym}
◦ Wilcoxon

⊲ mix all values xi and yi and sort them (ascending order)

⊲ test statistics U = number of pairs (xi, yj) such that xi > yj
⋄ U = 0 ⇒ x1, . . . , xn, y1, . . . ym
⋄ U = nm ⇒ y1, . . . ym, x1, . . . , xn
⋄ under H0 the ranking should be “homogeneous”

⊲ asymptotic distribution is N
(

nm

2
,

√

nm(n+m+ 1)

12

)

⊲ critical region
∣

∣U − nm
2

∣

∣ > kα
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The χ2 test: are all subsamples similar?

◦ Test statistic

D2 =
∑

i

∑

j

(nij − ni·pj)
2

ni·pj
=
∑

i

∑

j

(

nij − ni·n·j

n

)2

ni·n·j

n

◦ Under H0 = all sub-samples have the same distribution

D2
 χ2

(k−1)(r−1)
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Optimal decision for simple tests

Consider X with density f(x; θ), and denote L(x, θ)

the density of the sample x.

H0 θ = θ0

H1 θ = θ1

Maximize the power of the test!

⇓

P [W |H1] = 1− β =

∫

W

L(x; θ1)dx

Jerzy Neyman, 1894 – 1981

Karl Pearson, 1857 – 1936

The optimal critical region is defined by the points such that
L(x; θ1)

L(x; θ0)
> kα .
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Testing composite hypotheses

H0 θ = θ0
H1 θ = θ1

vs H0 θ = θ0
H1 θ 6= θ0

⇒ the risk β (and hence the power) depends on θ

H0 m = 600

H1 m > 600
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The likelihood ratio test

H0 θ = θ0
H1 θ 6= θ0

with θ ∈ R
p

◦ Test statistics

λ =
L(x; θ0)

sup
θ

L(x; θ)

⊲ Note that replacing L(x; θ0) by sup
θ

L(x; θ) is like using the ML estimate of θ

◦ Critical region = {x|λ < Kα}
◦ Asymptotic distribution of the test statistics under H0: −2 ln(λ) χ2

p
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Detecting changes in statistics

tt−k t+k1θ 2θ

0θ

Data analysis and stochastic modeling – Hypothesis testing – 25



Speaker or face identity verification

◦ H0: the person is who he/she says he/she is

◦ H1: the person is an impostor

p(yT1 ;H0)

p(yT1 ;H1)

H0
>
<
H1

β

In speaker verification

◦ p(yT1 ;H0) = Gaussian mixture model trained with the speaker’s speech

◦ p(yT1 ;H1) = GMM of speech in general

Data analysis and stochastic modeling – Hypothesis testing – 26



Speaker or face identity verification (cont’d)

Two errors : false acceptance (type 1) et false rejection (type 2).
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◦ text known or not

◦ size of the data set

◦ signal duration

◦ signal quality

◦ speaker

◦ ...

site ENST IRISA LIA

%fa 9.8 0.3 2.8

%fr 25.3 23.6 30.6

F-measure 46.9 84.3 66.0
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Thanks for attending until the end!
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