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Joint probability, conditionals and marginals

In general, statistical learning is based on

ŷ = argmax
y
p(y|x) = argmax

y
p(x|y)p(y)

which requires obtaining a model of either p(x|c) or p(c|x), where x might be

a complex collection of random variables.

Need for simple, tractable models ⇒ assumptions must be made

naive Bayes p(x1, . . . , xn|c) =
∏

i p(xi|c)

Markov property p(x1, . . . , xn) = p(x1)
∏

i p(xi|xi−1)

HMMs p(x1, y1, . . . , xn, yn) = p(x1)p(y1|x1)
∏

i p(xi|xi−1)p(yi|xi)

... to the expense of accuracy!

How can we handle more complex (and thus better) models ... without

requiring a new theory everytime?
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The key idea of graphical models

represent variable dependence (and thus independence) as a

graph that enables factorization of the joint probability and graph-

theoretic generic inference algorithms

A graphical model is a family of probability distributions defined in terms of a

directed or undirected graph. The nodes in the graph are identified with

random variables, and joint probability distributions are defined by taking

products over functions defined on connected subsets of nodes.

[Michael I. Jordan, Graphical models, Statistical Science, 2004]

p(x, y) = p(y)
n∏

i=1

p(xi|y)
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Directed vs. Undirected

Directed graphs Undirected graphs

p(x) =
∏

v∈V

p(xv|xπv
) p(x) =

1

Z

∏

c∈C

ψc(xc)

◦ used to encode “causal” relations

◦ graph must be acyclic (DAG)

◦ used to encode spatial relations

◦ known as random fields

xA represents the set {xi ∀i ∈ A} and πv the set of parent vertices of v

V is the set of vertices, C is the set of cliques on the graph
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Undirected graph: Markov random fields

Markov property in random fields

P [Xs = xs|XS\s = xS\s] = P [Xs = xs|XVs
= xVs

]

◦ ∀s ∈ S xs ∈ E

◦ sample space: Ω = E |S|

◦ neighborhood system: V

◦ set of cliques : c ∈ C

s

s

q

q

q

q

q

q

q

q

P [X = x] =
1

Z
exp−

∑

c∈C

Uc(x)

︸ ︷︷ ︸
U(x)

with Z =
∑

x∈Ω

exp−U(x)
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Markov random fields: an example

P [Xs|XVs
] =

exp
(
αxs +

∑
r∈Vs

βxsxr
)

1 + exp
(
αxs +

∑
r∈Vs

βxsxr
)
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Hidden Markov random fields

X 7−→ Y , a noisy version of X

As we assumed conditional independence of the observations, we have

P [Y = y|X = x] =
∏

s∈S

bxs
(ys) = exp−

∑

s∈S

− ln bxs
(ys)

︸ ︷︷ ︸
U(y|x)

P [X = x|Y = y] : Gibbs distribution U(x) + U(y|x)
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Directed graph: Bayesian networks

Bayesian network

=

directed acyclic graph over a collection of (discrete) random variables

P [X1, . . . , X7] = P [X1]P [X2|X1]P [X3|X2, X1]P [X4|X1, X2, X3]

P [X5|X1, . . . , X4]P [X6|X1, . . . , X5]

P [X7|X1, . . . , X6]

= P [X1]P [X2]P [X3]P [X4|X1, X2, X3]

P [X5|X1, X3]P [x6|X4]P [X7|X4, X5]

[from Bishop, 2006]Interest:

◦ enables factorization of the joint likelihood

◦ enables the use of generic algorithms for inference
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Bayesian networks: a parametric model

The sprinkler DAG encodes a family of

distributions that verifies P [C, S,R,W ] =

P [C]P [S|C]P [R|C]P [W |S,R] (we say the dis-

tribution factorizes on the graph), an instance

of which is specified by the parameters in the

figure.

Factorization enables different types of reasoning:

◦ Bottom-up: given observations, what are the most likely causes
→ i.e., P [S = 1|W = 1] and P [R = 1|W = 1]

◦ Top-down or causal: what is the probability of an event?
→ i.e., P [W = 1|C = 1]
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Bottom-up inference in the spinkler example

P [S = 1|W = 1] =

∑

c,r

P [S = 1,W = 1, C = c, R = r]

P [W = 1]

= 0.2781/0.6471

P [R = 1|W = 1] =

∑

c,s

P [R = 1,W = 1, C = c, S = s]

P [W = 1]

= 0.4581/0.6471

Rain is more likely to have caused wet grass than sprinkler! Interstingly, if we
know it’s raining, we have

P [S = 1|W = 1, R = 1] =

∑

c

P [S = 1,W = 1, C = c, R = 1]

P [W = 1, R = 1]
= 0.1945

i.e., the probability that the sprinkler explains the wet grass diminishes (aka

explaining away for two competing variables).
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Basic (3 vertices) graphs and independence

Chain graph

X ⊥ Y |Z and P [Y |Z,X] = P [Y |Z]

Latent cause graph

X ⊥ Y |Z and P [X,Y |Z] = P [X|Z]P [Y |Z]

Explain away graph (aka v-shape)

X ⊥ Y and P [X,Y ] = P [X]P [Y ]

X ⊥ Y |Z does not hold in the explain away graph!
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Bayesian networks we’ve already seen

naive Bayes

HMM

LDA
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More complex networks

[...] The errors-in-covariates logistic regression

model of Richardson, Leblond, Jaussent and

Green (2002). The core of this model is a logis-

tic regression of Yi on Xi . The covariate Xi

is not observed (in general ), but noisy mea-

surements Ui of Xi are available, as are ad-

ditional observed covariates Ci. The density

model for Xi is taken to be a mixture model,

where K is the number of components, W are

the mixing proportions, Zi are the allocations

and θ parameterizes the mixture components.

[Michael I. Jordan, Graphical models, Statisti-

cal Science, 2004]
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Common vision for directed/undirected graphs

Directed graphs Undirected graphs

p(x) =
∏

v∈V

p(xv|xπv
) p(x) =

1

Z

∏

c∈C

ψc(xc)

can all be cast into factor graphs: p(x) =
1

Z

∏

i∈I

fi(xCi
)

P [x] =
1

Z
fa(x1, x2)fb(x1, x3)fc(x2, x4)fd(x3, x5)fe(x2, x5, x6)
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Moralization of directed graphs

P [x] = P [x4|x1, x2, x3]P [x1]P [x2]P [x3] =
1

Z
fa(x1, x2, x3, x4)

For chain graphs, moralization boils down to “removing” the direction of the

edges

P [x] = P [x1]P [x2|x1]P [x3|x2] . . . P [xn|xn−1]

= f1(x1)f2(x1, x2)f3(x2, x3) . . . fn(xn−1, xn)

[From Chritopher M. Bishop, Pattern Recognition and Machine Learning, 2006]
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Towards generic inference algorithms

Inference = find posteriors for (all) unobserved variables given the

observed ones

The idea is to define generic algorithms that take advantage of the

(undirected) graph structure

Three families of approaches

◦ exact inference algorithms

→ works well for particular cases or fairly simple structures

◦ Monte Carlo approaches

→ use sampling to compute posteriors and marginalization

→ Gibbs sampling commonly used in this case

◦ Variational methods

→ make simplifications of the model to get an approximate solution
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The variable elimination principle

factorizing according to

P [x] =
1

Z
fa(x1, x2)fb(x1, x3)fc(x2, x4)fd(x3, x5)fe(x2, x5, x6)
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The variable elimination principle (cont’d)

P [x1] ∝
∑

x2

. . .
∑

x6

fa(x1, x2)fb(x1, x3)fc(x2, x4)fd(x3, x5)fe(x2, x5, x6)

∝
∑

x2

fa(x1, x2)
∑

x3

fb(x1, x3)
∑

x4

fc(x2, x4)
∑

x5

fd(x3, x5)
∑

x6

fe(x2, x5, x6)

︸ ︷︷ ︸
m6(x2,x5)

∝
∑

x2

fa(x1, x2)
∑

x3

fb(x1, x3)
∑

x4

fc(x2, x4)
∑

x5

fd(x3, x5)m6(x2, x5)
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The variable elimination principle (cont’d)

P [x1] ∝
∑

x2

fa(x1, x2)
∑

x3

fb(x1, x3)
∑

x4

fc(x2, x4)
∑

x5

fd(x3, x5)m6(x2, x5)

︸ ︷︷ ︸
m5(x2,x3)

∝
∑

x2

fa(x1, x2)
∑

x3

fb(x1, x3)
∑

x4

fc(x2, x4)
∑

x5

fd(x3, x5)m6(x2, x5)

︸ ︷︷ ︸
m5(x2,x3)

∝
∑

x2

fa(x1, x2)
∑

x3

fb(x1, x3)
∑

x4

fc(x2, x4)m5(x2, x3)
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The variable elimination principle (cont’d)

P [x1] ∝
∑

x2

fa(x1, x2)
∑

x4

fc(x2, x4)

︸ ︷︷ ︸
m4(x2)

∑

x3

fb(x1, x3)m5(x2, x3)

∝
∑

x2

fa(x1, x2)m4(x2)
∑

x3

fb(x1, x3)m5(x2, x3)

︸ ︷︷ ︸
m3(x1,x2)

∝
∑

x2

fa(x1, x2)m4(x2)m3(x1, x2) ∝ m2(x1)
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The variable elimination principle (almost last)

To sum up, the idea is to progressively “eliminate variables” by iteratively

making partial sums.

The iterative process breaks down the complexity but key questions/issues

remain:

◦ choosing an adequate elimination order is far from trivial in general
⊲ it’s in fact known as a NP-hard problem for general graphs!

◦ need to run a specific elimination procedure foreach variable
⊲ that’s bad!

If variables are observed, the algorithm remains valid by replacing the corresponding

sum by a single value
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Variable elimination on chain graphs

P [x] ∝ f1,2(x1, x2)f2,3(x2, x3)f3,4(x3, x4) . . . fn−1,n(xn−1, xn) .

To compute efficiently compute P [xi] =
∑

x1

. . .
∑

xi−1

∑

xi+1

. . .
∑

xn

P [x] , we can

take advantage of the fact that the summation on

◦ xn only depends on fn−1,n(xn−1, xn) = βn(xn−1)
◦ xn−1 only depends on fn−2,n−1(xn−2, xn−1) and βn(xn−1)

or, similarly, that the summation on

◦ x1 only depends on f1,2(x1, x2) = α1(x2)
◦ x2 only depends on f2,3(x2, x3) and α1(x2)
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Variable elimination and message passing

∑

x1

. . .
∑

xi−1

∑

xi+1

. . .
∑

xn

P [x] ∝




∑

xi−1

fi−1,i(xi−1, xi) . . .




∑

x2

f2,3(x2, x3)




∑

x1

f1,2(x1, x2)







 . . .





︸ ︷︷ ︸

αi−1(xi)



∑

xi+1

fi,i+1(xi, xi+1) . . .




∑

xn−1

fn−2,n−1(xn−2, xn−1)

(
∑

xn

fn−1,n(xn−1, xn)

)

 . . .





︸ ︷︷ ︸

βi+1(xi)

αi−1(xi) =
∑

xi−1

fi−1,i(xi−1, xi)αi−2(xi−1) βi(xi−1) =
∑

xi

fi−1,i(xi−1, xi))βi+1(xi)
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Generalization to trees (sum-product)

The message passing principle illustrated with chain graphs straightforwardly

generalizes to trees (where a node has a single parent) and is know as the

sum-product algorithm

Many variants of the sum-product principle do exist like

◦ replace sum with max to get the most likely configuration

◦ exploit the bipartite factor graph
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Generalization with junction trees

A junction tree T for a graph G is a tree where nodes are clusters of nodes

from G related to the cliques in G and that verifies the following properties:

◦ only one path between each pair of clusters (it’s a tree!)

◦ each clique in G is included in a cluster

◦ for each pair of cluster A and B that contains i, each cluster on the

(unique) path between A and B contains i

[borrowed from Mark Paskin’s course]
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Building junction trees

1. choose a node elimination order

2. run node elimination to get the set of elimination cliques

3. build a complete graph over the elimination maximal cliques

4. weight edge A→ B with |A ∪ B|

5. build maximum weight spanning tree
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Inference with the junction tree algorithm

apply sum-product on the junction tree of G to perform in-

ference on G

The junction tree inference algorithm boils down to

1. compute moral graph (if input is directed) – will change topology!

2. perform graph triangulation to remove chord-less cycles – will change

topology!

3. create junction tree on triangulated graph

4. run sum-product or max-product message passing on the junction tree

5. compute marginals on G from message passing on the junction tree

Generic and efficient algorithm for reasonably well-formed Bayes nets or

graphs but rapidly becomes intractable when graph topology gets complex

(because width of junction tree explodes)!
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A quick word in estimation

Parameter estimation

◦ Standard maximum likelihood approaches for complete data

◦ Possible maximum a posteriori regularization

◦ EM and EM-like algorithms for incomplete data

→ E-step benefits from sum-product algorithm!

Model selection: a large body of work on learning the BN structure

◦ Bayesian information criteria

◦ Augmented networks: tree augmented, forest augmented, etc.

◦ The K2 algorithm

◦ etc.
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Revisiting the bestiary of models
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Revisiting the bestiary of models
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Bayesian network extensions of HMMs
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