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Maximum a posteriori classification

Given observed data x, we wish to predict a (discrete) label y. Bayesian

(optimal) decision says that

ŷ = argmax
y

p(y|x) = argmax
y

p(x, y) = argmax
y

p(x|y)p(y)

Example:

◦ y = weather of the day

◦ x = temprature, humidity, etc.

Data analysis and stochastic modeling – Conditional random fields 2



Maximum a posteriori classification (cont’d)

Classification from multiple attributes often makes independence assumption

p(x, y) = p(y)
n∏

i=1

p(xi|y)

Same holds for HMMs

p(x,y) = p(y0)p(x0|y0)
n∏

i=2

p(yi|yi−1)p(xi|yi)
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The “discriminative” principle

Directly model the distribution of p(y|x) to

◦ not waste effort on modeling the distribution of x

◦ take into account interacting features and long term dependencies

◦ training directly for the task at hand

⇒ discriminative modeling is linked with maximum entropy distributions!

Usually opposing “generative” and “discriminative” models.
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Entropy: Measuring uncertainty

The probability distribution of an event and the amount of in-

formation each event brings forms a random variable whose

expected value is the average amount of information, called

entropy, that the distribution is providing.

◦ deterministic event→ entropy is null

◦ uniform distribution→ entropy is one

Formally

H(X) = E[− logb P (x)] = −
∑

i

P (xi) logb P (xi)

The Bernoulli process example: tossing a coin, varying

P [X = heads] from 0 to 1.

Conditional entropy:

Claude E. Shannon

1916–2001

H(X|Y ) =
∑

i,j

P (xi, yj) logb
p(yj)

p(xi, yj)
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The maximum entropy principle

Definition: Given some testable information (or prior) we know about the data,

the best probability distribution for the data is the one whose entropy is

maximal subject to the constraints that we have from the priors.

Testable information can be

◦ knowledge of some moments, e.g., the mean of x is 0.25

◦ prior knowledge on probabilities, e.g., p(1) = 0.25 or p(1) + p(3) = 0.4

→ often given by empirical estimates on training data for model

specification

Examples of maximum entropy distributions you know:

◦ Uniform distribution and piecewise uniform distributions

◦ Normal distribution for a given mean and standard deviation

◦ Exponential distribution with given mean 1/λ
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Maximum entropy distribution illustrated

Example taken from A. Berger, S. Della Pietra and V. Della Pietra, A maximum entropy approach to natural language

processing, Journal in Computational Linguistics, 22(1):39–71, 1996.]

Suppose we want to translate the English word in to the French language. To

help us, we gather data in which the word in appears along with its translation.

We observe that possible translation are {dans, en, à, au cours de, pendant}.

We consider a simple probabilistic translation model to assign the probability

for a translation of in, possibly given the context in which the word occurs.

Case 1: Nothing is known apart from the above and we only have the

constraint that

p(dans) + p(en) + p(à) + p(au cours de) + p(pendant) = 1 .

The best model (the one with highest entropy) is uniform distribution.
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Maximum entropy distribution illustrated (cont’d)

Case 2: We now observe empirically from the data that

p(dans) + p(en) = 3/10 .

The best model (the one with highest entropy) reflecting this new fact (plus the

sum to one constraint) is piecewise uniform, i.e.,

p(dans) = p(en) = 3/20 and p(à) = p(au cours de) = p(pendant) = 7/20

Case 3: We furthermore observe that

p(dans) + p(à) = 1/2 .

It’s not so trivial anymore to find the best distribution!

⇒We want to generalize the idea to select the best models consistent with

facts that are observed on the training data, where facts can also be

contextual, e.g., “if April is following the word in, we observe an emprirical

frequency p̃(en) = 0.9”.
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Maximum entropy distribution: Back to theory

Consider a variable x taking values in {x1, . . . , xn} (not to be confused with

training data). Constraints are expressed as m measurable feature functions

fk(x) whose theoretical expectation should match the facts (e.g., the

empirical frequencies in the previous example), i.e.,
n∑

i=1

fk(xi)P (xi) = Fk ∀k = 1, . . . ,m .

The maximum entropy distribution for X has the form

P [X = xk] =
1

Z
exp




m∑

j=1

λjfj(xk)


 ∀k = 1, . . . , n

where the λj parameters are determined to verify the constraints (and are

thus linked to Fk) and Z is a normalizing function (a.k.a. partition function),

i.e.,

Z =

n∑

i=1

exp




m∑

j=1

λjfj(xi)



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Feature functions in the translation example

P [Y = y|X = x; Λ] =
1

Z(x; Λ)
exp




m∑

j=1

λjfj(x, y)




Classification based on

ŷ = argmax
y

P [Y = y|X = x; Λ] = argmax
y

m∑

j=1

λjfj(x, y)

In the translation example, feature functions are binary indicators, e.g.,

fi(x, y) =

{
1 if y = en and April follows in

0 otherwise
,

and we want E[f(x, y)], i.e., the proba. of observing this configuration, to be

equal to the empirical proportion of the configuration in the training data, e.g.,

E[fi(x, y)] =
∑

x,y

fi(x, y)p̃(x)p(y|x) =
∑

x,y

fi(x, y)p̃(x, y) = Fi
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About estimation

Parameters: Λ = {λ1, . . . , λm}

Estimation: Λ̂ is the set of Lagrange multipliers obtained by the set of

equations

Fk =
∂ lnZ(Λ)

∂λk

Interestingly, Λ̂ will prove to maximize the conditional log-likelihood in

classification problems (as we will see later).
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Binary logistic regression

◦ Observed variables: X = {X1, . . . , Xn}

◦ Class variable: Y ∈ {0, 1} (binomial distribution)

◦ We posit that the log ratio of posterior probabilities is a linear combination

of the xi, e.g.,

ln
P [Y = 1|X]

1− P [Y = 1|X]
= λ0 + λ1x1 + . . .+ λnxn

◦ The class posterior is given by

P [Y = 1|X = x] =
exp (λ0 + λ1x1 + . . .+ λnxn)

1 + exp (λ0 + λ1x1 + . . .+ λnxn)

=
1

1 + exp (−λ0 − λ1x1 − . . .− λnxn)
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Multinomial logistic regression (Maxent)

◦ Observed variables: X = {X1, . . . , Xn}

◦ Class variable: Y ∈ {1, . . . , K} (multinomial distribution)

◦ Idea: One set of regression coefficient λ
(k)
i for each class

◦ Class posterior probabilities are given by

P [Y = k|X = x] =
exp(λ

(k)
0 + λ

(k)
1 x1 + . . .+ λ(k)

n xn)∑

i

exp(λ
(i)
0 + λ

(i)
1 x1 + . . .+ λ(i)

n xn)
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MAP and Maxent compared

MAP

p(y,x) = p(y)
n∏

i=1

p(xi|y)

MAXENT

p(y|x) =
1

Z
exp(b(k) +w

(k)
x)

Figure taken from C. Sutton and A. McCallum. An introduction to conditional random fields for relational learning.

Foundations and Trends in Machine Learning 4 (4). 2012
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Log-linear models for sequences

X : sequence of n multivariate observations

Y : sequences of n labels

P [Y |X] =
1

Z(x,Λ)
exp

(
m∑

j=1

λjfj(x, y)

)
?

Data analysis and stochastic modeling – Conditional random fields 15



Back to feature functions

◦ fj : X × Y → R or {0, 1} are usually specified by templates (class of

feature functions) and are often of the form

fj(x, y) = Aa(x)Bb(y) .

◦ Aa(x) and Bb(y) binary→ binary conjunction indicator state/feature

◦ Feature functions are arbitrary and may overlap in any way

A1(x) I(x starts with a capital letter)

A2(x) I(x starts with letter G)

A3(x) I(x has 6 letters)

⇒ need for sequential features and tractability!
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Feature functions for sequences

Feature functions

◦ can be position-specific ... or sum over all positions in the sequence

◦ can look at one xs ... but also at a set of xs up to x globally

◦ will depend on at most two neighboring tags ... not on y globally

⇒ similar to Markov property in HMMs

We will assume from now on (without loss of generality) that

fi(x, y) =
n∑

s=1

fi(ys−1, ys, x, s)

Advantages:

◦ fixed set of feature functions regardless of the sequence length

◦ tractable decoding (a.k.a. inference) as will be illustrated
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Feature functions for sequences (cont’d)

POS tagging examples for f(ys−1, ys, x, s):

ys is NOUN and xs is capitalized

xs−1 is ’Mr’ and ys is PROPER_NOUN

ys−1 is SALUTATION and ys is PROPER_NOUN

Trick: y0 = START and yn+1=END
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Feature functions for sequences (cont’d)

In standard toolkits, they are defined by (cryptic) templates, e.g., for BIO

tagging on POS-tagged data

U00:%x[-2,0] # look at w_{k-2}

U01:%x[-1,0] # look at w_{k-1}

...

U17:%x[1,0]/%x[1,1] # look at w_{k+1} and pos_{k+1}

U18:%x[1,0]/%x[2,1] # look at w_{k+1} and pos_{k+2}

..

U20:%x[-2,1]/%x[-1,1]/%x[0,1] # guess what????

The DT B-NP

pen NN I-NP

is VB B-VP

a DT B-NP

from which features are generated for each position in the data
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The linear-chain CRF model

The posterior probability of a linear chain CRF is the Gibbs distribution given

by

P [Y |X] =
1

Z(x,Λ)
exp

(
m∑

i=1

λifi(x, y)

)

where

fi(x, y) =
n∑

s=1

fi(ys−1, ys, x, s) ∀i ∈ [1,m]

The partition function is given by

Z(x,Λ) =
∑

y

exp

(
m∑

i=1

λifi(x, y)

)

The parameters of the model are Λ = {λ1, . . . , λm}.
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Sequence decoding with linear-chain CRFs

Finding the state sequence which maximizes the posterior Gibbs distribution

boils down to

ŷ = argmax
y

1

Z(x,Λ)
exp

(
m∑

i=1

λifi(x, y)

)
= argmax

y

m∑

i=1

λifi(x, y)

Since fi(x, y) =
n∑

s=1

fi(ys−1, ys, x, s), we get

ŷ =

m∑

i=1

λi

n∑

s=1

fi(ys−1, ys, x, s)

=

n∑

s=1

m∑

i=1

λifi(ys−1, ys, x, s)

︸ ︷︷ ︸
gs(ys−1,ys)
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Dynamic programming with linear-chains CRFs

H(k, v): score of the best sequence of tags y1 to yk = v

H(k, v) = max
y1,...,yk−1

k−1∑

s=1

gs(ys−1, ys) + gk(yk−1, v)

= max
yk−1

max
y1,...,yk−2

k−2∑

s=1

gs(ys−1, ys) + gk−1(yk−2, yk−1)

︸ ︷︷ ︸
H(k−1,yk−1)

+gk(yk−1, v)

We finally get the recursion

H(k, v) = max
u

H(k − 1, u) + gk(u, v)
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Dynamic programming with linear-chains CRFs

In practice, we use a Viterbi-like dynamic programming exploiting the K ×K
matrix gathering gs(ys−1, ys) functions for all pairs of tags.
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Parameter estimation

◦ Objective: Maximize ln p(y|x; Λ) on the training data (x(r), y(r)), i.e.,

Λ̂ = argmax
Λ

∑

r

(
∑

i

λifi(x
(r), y(r))− lnZ(x(r); Λ)

)

◦ no analytical solution (as usual with Gibbs distributions)

◦ ∩-convex objective function⇒ gradient ascent
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Parameter estimation: Gradient computation

Limiting ourselves to a single training sample (x, y) for sake of simplicity as of

now

∂

∂λi

ln p(y|x; Λ) = fi(x, y)−
∂

∂λi

lnZ(x,Λ)

= fi(x, y)−
1

Z(x,Λ)

∂

∂λi

Z(x,Λ)

So we need to compute
∂

∂λi

Z(x,Λ).
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Parameter estimation: Gradient computation (cont’d)

∂

∂λi

Z(x,Λ) =
∑

y

∂

∂λi

exp

(
∑

j

λjfj(x, y)

)

=
∑

y

fi(x, y) exp

(
∑

j

λjfj(x, y)

)

Hence

∂

∂λi

ln p(y|x; Λ) = fi(x, y)−
1

Z(x,Λ)

∑

y′

fi(x, y
′) exp

(
∑

j

λjfj(x, y
′)

)
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Log conditional likelihood and Maxent

Taking the partial derivative of the log conditional likelihood over the entire

training set and setting to zero, we have

∑

r

fi(x
(r), y(r)

︸ ︷︷ ︸
empirical expectation

=
∑

r

E[fi(x, y)|x(r); Λ̂]

︸ ︷︷ ︸
theoretical expectation

Equality holds for the entire training data, not for a single point!
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Linear-chain CRF training (at last)

Foreach training couple (x(r), y(r)), do

1. compute (or estimate) E[fi(x, y)|x
(r); Λ] given a current estimate of the

parameters

→ done (somewhat) efficiently with a forward-backward algorithm
→ alternative solutions are Gibbs sampling, iterative scaling

2. compute fi(x
(r), y(r))

3. update parameters using grandient ascent, i.e.,

λi ← λi + α
(
fi(x

(r), y(r))− E[fi(x, y)|x(r); Λ]
)

A bit more complex in practice! Need for regularization, other gradient

optimization methods (e.g., BFGS).
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Linear-chain CRF vs. HMM

P [X = x1, . . . , xT ] = exp

(
lnπx1

+

T∑

t=2

ln a(xt−1, xt)

)

⇓

g(xt−1, xt) =
∑

i,j

ξij δ(xt−1 = i) δ(xt = j)
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Linear-chain CRF vs. HMM (cont’d)

[From C. Sutton and A. McCallum. An introduction to conditional random fields for relational learning. Foundations

and Trends in Machine Learning 4 (4), 2012]
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Beyond HMMs and linear-chain CRFs

Tractability rapidly becomes an issue!
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Mixing LSTMs and CRFs

LSTM directly predicts yi from hi

L(y1, . . . , yn) ∝

n∑

k=1

softmax(f(xk, hk))[yk]︸ ︷︷ ︸
P (k, x, yk) = probability for tag yk at position k

CRF layer adds dependency between neighboring tags

L(y1, . . . , yn) ∝

n∑

k=1

A(yk−1, yk)︸ ︷︷ ︸
transition

+P (k, x, yk)
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Mixing LSTMs and CRFs (cont’d)

Formally, from the score s(y, x) =
∑

k A(yk−1, yk) + P (k, x, yk), we

define the posterior probability

p(y|x) =
exp s(y, x)∑

y′∈Y

exp s(y′, x)

Decoding maximizes ln(p(t|w)) in two steps

1. run LSTM to generate tag probability distribution P (k, :) for all k

2. dynamic programming P (k, x, )

Back-propagation follows the same two step procedure

s(y, x) can be seen as the potential function in CRF models, equivalent

to
∑

i λifi(x, y) for complex feature functions fi()

Zhiheng Huang et al., 2015. Bidirectional LSTM-CRF models for sequence tagging.
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Markov random fields

Markov property in random fields

P [Xs = xs|XS\s = xS\s] = P [Xs = xs|XVs
= xVs

]

◦ ∀s ∈ S xs ∈ E

◦ sample space: Ω = E |S|

◦ neighborhood system: V

◦ set of cliques : c ∈ C

s

s

q

q

q

q

q

q

q

q

P [X = x] =
1

Z
exp−

∑

c∈C

Uc(x)

︸ ︷︷ ︸
U(x)

with Z =
∑

x∈Ω

exp−U(x)
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Markov random fields: an example

P [Xs|XVs
] =

exp
(
αxs +

∑
r∈Vs

βxsxr

)

1 + exp
(
αxs +

∑
r∈Vs

βxsxr

)
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Hidden Markov random fields

X 7−→ Y , version bruitée du champ X

indépendance conditionnelle des données

⇓

P [Y = y|X = x] =
∏

s∈S

bxs
(ys) = exp−

∑

s∈S

− ln bxs
(ys)

︸ ︷︷ ︸
U(y|x)

P [X = x|Y = y] : distribution de Gibbs d’énergie U(x) + U(y|x)
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