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Multivariate Gaussian density

Definition
X is a Gaussian vector of dimension p if any linear combination of its
components @’ X is a Gaussian in dimension 1.
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Density function

'éSeféof f ,006 saimplées :
Example of a multivariate Gaussian with m = [21] and § = 7 /6.
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Properties of the covariance matrix

The covariance matrix is symmetric, definite positive,

Y=V DV’
where

V' are the eigen vectors defining the principal axes (orientation of the
density) and

D are the eigen values defining the dispertion along the axes.

Theorem

The components of a Gaussian vector are independent if and only if X is
a diagonal matrix, i.e. if the components are not correlated.
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lllustration of 2D Gaussians

From the correlation point of view From the geometric point of view

5 o?  poioy . cos(f) sin(6

pO90y O sin(@) cos(8

theta=0,vp=[41] theta=pi/6,vp=[41] theta=pi/6,vp=[22]

0.04
AT
0.035 / ;:::':““‘\‘\‘ N
003 A
5 "/:,.M‘ -
Q Y o
£ 002 g
T B
% 00 ¢
2 2
@ 0.015 g
9 9]
T 001 °
I
0.005 I
1 i TR
AT
XX

i
AR i I
A ARKIIAGY

0
5

0= 0=m/6 0=m/6
D = diag(4 1) D = diag(4 1) D = diag(2 2)

&:IRISA
Data analysis and stochastic modeling — Mixture models. — 4



Isodensity ellipsoids

Isodensity curves are (hyper)ellipsoids whose equation is given by

(x— )2z —p)=c
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90% of the samples lie whithin the pink ellipse  99% of the samples lie whithin the red ellipse
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Why mixture models?

true distribution Gaussian model Mixture model
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Why mixture models?
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[courtesy of J-F. Bonastre]
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Mixture model — definition

A mixture model is a weighted sum of laws, the likelihood of a sample x
being given by

with the constraint that

° fi() can be any density and the f;()’s need not be from the same family
° f() is a density since ffooo f(z)dx =1

© the model can extend to discrete variables
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Examples of mixture model densities

120.9, w2=0.1
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Multivariate Gaussian mixture model

© Each component of the mixture is a multivariate Gaussian density

1 1
10) = s 0 { —5 0 = ) S e = )}

© Parameters of the model

> weights of each component (K)
> mean vectors (Kn)
> covariance matrices (Kn(n+1)/2)

° |n practice, we often assume diagonal covariance matrices

> much less parameters (Kn << Kn(n+1)/2)
> much less computation (saves matrix inversion)
> can be compensated with more components
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Gaussian mixture model
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Gaussian mixture model
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Mixture models from the generative viewpoint

A sample is drawn according to the law of the component f;() of the mixture
with probabiliy 7;.

Practically, sampling is a two step process

1. choose a component 7 of the mixture according to the discrete law
defined by the weights w;

2. draw a sample according to the law f;()

Example: w = [0.3,0.7], fy = N(0,1), fo = N(2,1)
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Mixture models from the generative viewpoint

Interpretation: [from a generative point of view,| the samples in a mixture
model are drawn from either one of the component of the models with the
proportion defined by the weights, i.e.

° for each component 7, there is a set of samples distributed according
to fz(l’)

© the proportion of such samples is given by 7;

—> hidden variable indicating the component to which a sample
belong!
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Mixture models and hidden variables

The law of x is the marginal over the hidden variable Z, i.e.

Sampling Likelihood
4 4
(Z, X) (X) =) (X, 2)
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Mixture models and hidden variables

© Conditional density of x given z

p( Zfz I[(z 1)

° Joint density of (z, 2)

K
i=1
© Marginal density of x

— Zp(:c, z) = Z Zﬂz‘fi(iﬁ)ﬂ(zzz‘) — Zﬂ-zfz(x)
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Maximum likelihood parameter estimation

o Letx = {x1,...,x N} be aset of training samples from which we want
to estimate the parameters of a Gaussian mixture model with /
components, i.e.

> weights {wl, e ,U)K},
> mean vectors {1, ..., [i2},
> variance vectors {01, ...,02}.

o Maximum likelihood criterion

In f(x) = Z In (Z w; f(as; 99')>

— direct maximization (nearly) impossible!
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Direct maximum likelihood parameter estimation

© Directly solving the ML equations

> they often do not exist!
> complex equations when they do exist

© Gradient descent algorithms

> non convex likelihood function = non unicity of the solution
> need for prior knowledge on the domain of

© The Expectation-Maximization algorithm
> nice and elegant solution!
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Maximum likelihood with complete data

© The set of training samples X is incomplete!
© Assume for each sample x;, we know the component indicator function z;
° The set{x1, 21,..., %N, 2N} is known as complete data

° Maximum likelihood estimates can be obtained from the complete data,
e.g.

N
Z Tj Lizy=i)
=1
- N
Z H(iji)
=1

| N
W; = ; Lz, =) and 1b;

= but the variables Z; are not known!
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The Expectation-Maximization principle

The Expectation-Maximization (EM) principle compensates for missing (aka
latent) data, replacing them by their expectations.

EM Iterative principle

1. estimate the missing variables given a current estimate of the
parameters

2. estimate new parameters given the current estimate of the missing
variables

3. repeat steps 1 and 2 until convergence

Note: this principle applies to many problems, not only for maximum likelihood
parameter estimation!
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The auxiliary function

The EM algorithm aims at maximizing an auxiliary function defined as

AN AN

Q0,0) = E|ln f(z,x;0)|x; 0]
where f(z, x; 6) is the likelihood function of the complete data.

Estimation step

AN

E compute the expected quantities in Q)(6, 0) (given = 6.,
Maximization step

M maximize the auxiliary function w.r.t. the (true) parameters 6 (given the

expected quantities) to obtain a new estimate 6 = 6,1, i.e.

(97;_|_1 — arg meax Q((g, 62)
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Close-up on the auxiliary function

Assume we have a n-sample X = {1, ..., T, } and already know a wide

guess 0 of the parameters 6 that we seek to estimate.

The log-likelihood of the complete data is given by

In fo(z,x) = In (H BPylZ; = Zi]ﬁ@@z‘@)

> 3 ] s
=T, eg. N(pz;,0z,)
K n
_ Z Zln(wj)ﬂ(]—z ) + In(pg; (%)) L(j=z)
j=1i=1

Hence the auxiliary function boils down to

Q,0) = > In(m;)Eyll—.|x] + In(po, (2:)) E5ll =, |X]

j=1i=1
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Maximizing the auxiliary function

Maximizing
Z In(7;) E5(L(j=z,) %] + In(po, (i) E5lL =z, X]
71=1 =1

w.r.t. 7r; under the constraints that weights sum to 1 yields

ZEA ]I(z _J)|X
ZZE’\H(Z _k) X] .

Similarly, maximization w.r.t. the parameters @j of the log-likelihood of the 7-th
component, In(pg, (;)), will yield a function of the expectations

B\ ,,—5)|x], e.g., for a Gaussian density — details later

ZZEZ ]I(z _J)|X]

Hj o S
Z EgL (=5 %]
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A simple example

°© x ={z,...,xy} from two classes with prior probabilities m and 1 — 7
o class indicator function z = {z1,...,2n}, z; € {0, 1}

© joint distribution of (X, Z)

N
In po(x, z) Z Inpo(x;|2;) + In Py|Z; = 2]

1=1

S: S: (lanj (.CC@) + In PQ[ZZ — ]])H(Zz:])
1=1 5€{0,1}

© auxiliary function N

Y S‘ (Inpe, (z;) + In Py Z; = j]) E5lL(.,—j)|x]
=1 5€{0,1}
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A simple example: maximization equations

© auxiliary function (contd)

Y I ) Byllmy

JE{O 1} i=1

N
+ ZEAH(Z _0)|X —|—1n 1—m Z ]I(z _1)|X
1=1 i=1

© Maximization w.r.t. T

Z Eall,——1)|x]
> > Eglle—jX]

j€{0,1} ¢

T <

°© Maximization w.r.t. 0;

> only depends on the expecation Fyn |I,,—)|x]

&:IRISA
Data analysis and stochastic modeling — Mixture models. — 25



Simple example: expectation computation

AN

The maximization (M-step) of () (6, #) requires the computation of the
expectations (E-step)

Egll.,=)|x] = P5(Z; = jlai] = v;(9)
fori € [1, N]and 5 € {0, 1}, which is given by (dropping ) to facilitate reading)

p(xi|Z; = j)P|Z; = j]

S p(ilZ = k)PIZ;=k]
ke{0,1}

P|Z; = jlz;] =

In our two class example, for 3 = 0 we have
p(xilZ; = j)P|Z; = j| = pi pg (2;)

where T and 6 are the current estimates of the parameters.
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EM and hidden class

In all generality
mipg, (i)

> 7w, (w:)
k

(1) = PglZi = jlai] =

The latent variable v;(¢) indicates membership to a class as estimated from
the current estimate 6 of the parameters, we have the following interpretation:

o P5|Z; = j|z;] = degree (€ |0, 1]) of membership to class j of the 7'th
observation

© maximization relies on standard estimators based on the degree of
membership (weighted standard estimators) [see Gaussian mixture example]
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EM from an algorithmic viewpoint

1. choose some initial (good) parameters 6,
2. n <0
3. while not happy (with convergence)
@ fortr=1— Nandj)=1— K
compute the component posterior fy](-n)(i) = P|Z; = j|x;;0,)]
(b) foreach paramter « in 6
compute new parameter value v, 1 from the quantities vﬁn) (2)
(by maximizing Q(6, 6,,))
c) n<n+1
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Properties of the EM algorithm

Property 1

The serie of estimators {0,, } is such that the likelihood of the data
increases with each iteration of the algorithm.

It can be shown that

Q(eaeﬁ—l) — Q(eﬁi) —
P(Z‘X59i+1)
np(x; bi1) — Inplx )+\ " T p(zlx; ;)

<0

‘X§ 0,

which implies that

Q(O,0:41) 2 Q0,0:) = p(x;0i41) = p(x;6;)
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Properties of the EM algorithm

Property 2

The EM algorithm enables the computation of the gradient of the
log-likelihood function at the points 6;.

It can be verified that under some non very restrictive assumptions

0Q(6,0;) _ Oln f(x;0) N OF|In p(z|x; 0)|x; ;]
00 60, 00 60, 00 0—p.

(]
\ J/
-~

=0
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Convergence of the EM algorithm

Property 1

The serie of estimators {«9(”)} Is such that the likelihood of the data
increases with each iteration of the algorithm.

Property 2

The EM algorithm enables the computation of the gradient of the
log-likelihood function at the points 0;.

|

The EM estimate converges toward stationary points of the

log-likelihood function In p(x; ).
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Convergence of the EM algorithm in practice

© The convergence is only guaranteed toward a local maximum of the
likelihood function In p(x; 6).
> need for a good initial guess 6
> need to avoid degenerate solutions!

© |n practice, convergence is controled by two factors
> increase of the log-likelihood of the data
> fixed number of iterations

© Constraints on the parameter space are often used to avoid bad or
degenerated solutions, e.g.

> minimum variance floor
> initialization based on (segmental) k-means algorithm
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EM for Gaussian mixtures

° Joint likelihood of (x, z)

N K
In f(x,z) Z Zln wj f(xq; 15,05))(2=5)

=1 j7=1

© Auxiliary function

K
O(ZZIH w] H(Z_J)’XQ]

=1 =1

J
K N d
1 (Tik — pjk)?
222( oz + @ g,
j=1i=1 \k=1 gk
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EM for Gaussian mixtures (cont’d)

© Compute the expectations at iteration n

(n)() () Flas ()7 gn))
E Zwl(g) f xz”uk 70-1(:))

where the parameters correspond to the current estimate o).

° Maximization

Z (n) Z Lik
(n—i—l) _ (n+1)
Wy Jk

Z Z 7(n) Z (n)

k=1 1=1
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[courtesy of A. W. Moore and J-F. Bonastre]
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The EM at work: iteration 1

[courtesy of A. W. Moore and J-F. Bonastre]
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The EM at work: iteration 2
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[courtesy of A. W. Moore and J-F. Bonastre]

&:IRISA
Data analysis and stochastic modeling — Mixture models. — 37



The EM at work: iteration 3

[courtesy of A. W. Moore and J-F. Bonastre]
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The EM at work: iteration 4

[courtesy of A. W. Moore and J-F. Bonastre]
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The EM at work: iteration 20

[courtesy of A. W. Moore and J-F. Bonastre]
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The EM at work: another example

[courtesy J-F. Bonastre]
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EM and k-means clustering

© Maximum likelihood estimates with known class membership
N
Z Zj L2y i)
j=1
N
> T
j=1

1 N
A’i:_ ]Iz-—i Ai:
w N;:l: (=) Z

© EM estimates with unknown class membership

N
) . ) ;xj Bl =%, 0n]
D= > Blls—)|x 0n] i =g
= > Ell,—i|x, 6]
j=1
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EM and k-means clustering

EM algorithm K-means
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A practical use of the Gaussian law

0.45 T T T T T . T T .
threshold = m1 - a * s1 high energy Gaussian
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EM, sufficient statistics and the exponential family

© Joint density is from the exponential family

f(x,2;0) = exp (a(9) a(x, z) + b(x, z) — 5(0))

° E-step = estimate the sufficient statistic a(x, z) by computing its
expectation under the posterior law given a current estimation of the

parameters
© Examples:
Z%:w — S B[, |x: 6]
J
Z L H(ZJ =1) — Z L j E[H(zgzz) |X; en]
Z< —05)° Lsymiy — Z ;)2 Ell . )| 0,]
J J
&:1RISA
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The LDA topic mixture model

| eat fish and vegetables.
Fishes are pets.

My kitten eats fish. O+

a 0
M
Topic 247 Topic 5 Topic 43 Topic 56
word prob. word prob. word prob. word prob.
DRUGS 069 RED .202 MIND 081 DOCTOR 074
DEUG 060 BLUE .099 THOUGHT .066 DE. 063
MEDICINE 027 GREEN 096 REMEMBEE .064 PATIENT .061
EFFECTS 026 YELLOW 073 MEMORY .037 HOSPITAL 049
BODY 023 WHITE 048 THINKING 030 CARE 046
MEDICINES 019 COLOR. .048 PROFESSOR  .028 MEDICAT 042
PAIN 016 BRIGHT 030 FELT 025 NURSE 031
PERSON 0l6 COLORS .029 REMEMBERED 022 PATIENTS 029
MARITUANA 014 ORANGE .027 THOUGHTS - .020 DOCTORS 028
LABEL 012 BROWN 027 FORGOTTEN .020 HEALTH 025
ALCOHOL 012 PINK 017 MOMENT .020 MEDICINE 017
DANGEROUS 011 LOOK 017 THINKE 019 NURSING 017
ABUSE 009 BLACK 016 THING 016 DENTAL 015
EFFECT 009 PURPLE 015 WONDEE. 014 NURSES 013
ENOWN  .008 CROSS 011 FORGET 012 PHYSICIAN 012
PILLS 008 COLOEED 009 RECALL 012 HOSPITALS 011

Figure 1. An illustration of four (out of 300) topics extracted from the TASA corpus.
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Variants

The EM principle enables many variants when the E-step and/or the M-step
are intractable

° Monte-Carlo EM: replace the exact computation of the expected
quantities by some Monte-Carlo approximations obtained using the
current parameters

© Generalized EM: simply increase the auxiliary function rather than
maximizing it, e.g. using a gradient algorithm

o Variational EM: replace the auxiliary function () by a more simple
variational approximation based on factorial distribution () ~ H ; Q;.
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Choosing the number of components

© Experimentations...

© Information criterion
Z(x,0) = Inp(x;0) — g(#parameters, #data)

> Akaike

> Bayesian Information criterion (BIC)
D = = ow
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