Data analysis and stochastic modeling

Lecture 5 – Mixture models and the EM algorithm

Guillaume Gravier

guillaume.gravier@irisa.fr

Data analysis and stochastic modeling – Mixture models. – 1

Multivariate Gaussian density

Definition

X is a Gaussian vector of dimension p if any linear combination of its components a'X is a Gaussian in dimension 1.

Example of a multivariate Gaussian with m = [21] and $\theta = \pi/6$.

∮ §IRISA

Properties of the covariance matrix

The covariance matrix is symmetric, definite positive,

 $\Sigma = V \ D \ V'$

where

- $V\,$ are the eigen vectors defining the principal axes (orientation of the density) and
- D are the eigen values defining the dispertion along the axes.

Theorem

The components of a Gaussian vector are independent if and only if Σ is a diagonal matrix, *i.e.* if the components are not correlated.

Illustration of 2D Gaussians

∮§IRISA

Data analysis and stochastic modeling – Mixture models. – 4

Isodensity ellipsoids

Isodensity curves are (hyper)ellipsoids whose equation is given by

$$(x-\mu)'\Sigma^{-1}(x-\mu) = c$$

90% of the samples lie whithin the pink ellipse

99% of the samples lie whithin the red ellipse

Data analysis and stochastic modeling – Mixture models. – 5

Why mixture models?

true distribution

Gaussian model

Mixture model

Why mixture models?

[courtesy of J-F. Bonastre]

Mixture model – definition

A mixture model is a weighted sum of laws, the likelihood of a sample \boldsymbol{x} being given by

$$f(x) = \sum_{i=1}^{K} \pi_i f_i(x)$$

with the constraint that

$$\sum_{i=1}^{K} \pi_i = 1 \; .$$

 \boldsymbol{V}

- $\circ f_i()$ can be any density and the $f_i()$'s need not be from the same family
- $^\circ~f()$ is a density since $\int_{-\infty}^\infty f(x)dx=1$
- ^o the model can extend to discrete variables

∮≋IRISA

Examples of mixture model densities

SIRISA

Data analysis and stochastic modeling – Mixture models. – 9

Multivariate Gaussian mixture model

• Each component of the mixture is a multivariate Gaussian density

$$f_i(x) = \frac{1}{(2\pi)^{n/2} |\Sigma_i|^{1/2}} \exp\left\{-\frac{1}{2}(x-\mu_i)' \Sigma_i^{-1}(x-\mu_i)\right\}$$

- Parameters of the model
 - \triangleright weights of each component (K)
 - \triangleright mean vectors (*Kn*)
 - \triangleright covariance matrices (Kn(n+1)/2)
- In practice, we often assume diagonal covariance matrices
 - ▷ much less parameters (Kn < Kn(n+1)/2)
 - much less computation (saves matrix inversion)
 - ▷ can be compensated with more components

Gaussian mixture model

∮≸IRISA

Data analysis and stochastic modeling - Mixture models. - 11

Gaussian mixture model

Mixture models from the generative viewpoint

A sample is drawn according to the law of the component $f_i()$ of the mixture with probabiliy π_i .

Practically, sampling is a two step process

- 1. choose a component i of the mixture according to the discrete law defined by the weights w_j
- 2. draw a sample according to the law $f_i()$

Example: $w = [0.3, 0.7], f_1 = \mathcal{N}(0, 1), f_2 = \mathcal{N}(2, 1)$

Mixture models from the generative viewpoint

Interpretation: [from a generative point of view,] the samples in a mixture model are drawn from either one of the component of the models with the proportion defined by the weights, *i.e.*

- $^{\rm o}\,$ for each component i , there is a set of samples distributed according to $f_i(x)$
- $^{\circ}$ the proportion of such samples is given by π_i

 \Rightarrow hidden variable indicating the component to which a sample belong!

Mixture models and hidden variables

The law of x is the marginal over the hidden variable Z, *i.e.*

$$f(x) = \sum_{i=1}^{K} \underbrace{\pi_i}_{P[Z=i]} \underbrace{f_i(x)}_{p(x|Z=i)}$$

∮≸IRISA

Mixture models and hidden variables

 $^{\circ}$ Conditional density of x given z

$$p(x|z) = f_z(x) = \sum_{i=1}^{K} f_i(x) \mathbb{I}_{(z=i)}$$

 $^{\circ}$ Joint density of (x,z)

$$p(x,z) = \pi_z f_z(x) = \left(\sum_{i=1}^K f_i(x) \mathbb{I}_{(z=i)}\right) \left(\sum_{i=1}^K \pi_i \mathbb{I}_{(z=i)}\right)$$

 $^{\circ}\,$ Marginal density of x

$$p(x) = \sum_{z} p(x, z) = \sum_{z} \sum_{i} \pi_{i} f_{i}(x) \mathbb{I}_{(z=i)} = \sum_{i} \pi_{i} f_{i}(x)$$

SIRISA

Maximum likelihood parameter estimation

- ° Let $\mathbf{x} = \{x_1, \ldots, x_N\}$ be a set of training samples from which we want to estimate the parameters of a Gaussian mixture model with K components, *i.e.*
 - \triangleright weights $\{w_1, \ldots, w_K\}$,
 - ▷ mean vectors $\{\mu_1, \ldots, \mu_2\}$,
 - \triangleright variance vectors $\{\sigma_1, \ldots, \sigma_2\}$.
- Maximum likelihood criterion

$$\ln f(\mathbf{x}) = \sum_{i=1}^{N} \ln \left(\sum_{j=1}^{K} w_j f_j(x_i; \theta_j) \right)$$

 \Rightarrow direct maximization (nearly) impossible!

Direct maximum likelihood parameter estimation

- Directly solving the ML equations
 - ▷ they often do not exist!
 - complex equations when they do exist
- Gradient descent algorithms
 - $^{\triangleright}\;$ non convex likelihood function \Rightarrow non unicity of the solution
 - $\,\triangleright\,$ need for prior knowledge on the domain of θ
- The Expectation-Maximization algorithm
 - nice and elegant solution!

Maximum likelihood with complete data

- $^{\circ}~$ The set of training samples x is incomplete!
- ° Assume for each sample x_i , we know the component indicator function z_i
- The set $\{x_1, z_1, \ldots, x_N, z_N\}$ is known as *complete data*
- Maximum likelihood estimates can be obtained from the complete data, e.g.

$$\widehat{w}_{i} = \frac{1}{N} \sum_{j=1}^{N} \mathbb{I}_{(z_{j}=i)} \quad \text{and} \quad \widehat{\mu}_{i} = \frac{\sum_{j=1}^{N} x_{j} \mathbb{I}_{(z_{j}=i)}}{\sum_{j=1}^{N} \mathbb{I}_{(z_{j}=i)}}$$

 \Rightarrow but the variables z_j are not known!

 \mathcal{N}

The Expectation-Maximization principle

The Expectation-Maximization (EM) principle compensates for missing (aka latent) data, replacing them by their expectations.

EM Iterative principle

- 1. estimate the missing variables given a current estimate of the parameters
- 2. estimate new parameters given the current estimate of the missing variables
- 3. repeat steps 1 and 2 until convergence

Note: this principle applies to many problems, not only for maximum likelihood parameter estimation!

The auxiliary function

The EM algorithm aims at maximizing an auxiliary function defined as

$$Q(\theta, \widehat{\theta}) = E[\ln f(\mathbf{z}, \mathbf{x}; \theta) | \mathbf{x}; \widehat{\theta}]$$

where $f(z, x; \theta)$ is the likelihood function of the complete data.

Estimation step

E compute the expected quantities in $Q(\theta, \widehat{\theta})$ (given $\widehat{\theta} = \theta_n$)

Maximization step

M maximize the auxiliary function w.r.t. the (true) parameters θ (given the expected quantities) to obtain a new estimate $\hat{\theta} = \theta_{i+1}$, *i.e.*

$$\theta_{i+1} = \arg\max_{\theta} Q(\theta, \theta_i)$$

∮≋IRISA

Close-up on the auxiliary function

Assume we have a n-sample $\mathbf{x} = \{x_1, \dots, x_n\}$ and already know a wide guess $\widehat{\theta}$ of the parameters θ that we seek to estimate.

The log-likelihood of the complete data is given by

$$\ln f_{\theta}(\mathbf{z}, \mathbf{x}) = \ln \left(\prod_{i=1}^{n} P_{\theta}[Z_i = z_i] p_{\theta}(x_i | z_i) \right)$$
$$= \sum_{i=1}^{n} \ln \underbrace{P_{\theta}[Z_i = z_i]}_{= \pi_{z_i}} + \ln \underbrace{p_{\theta}(x_i | z_i)}_{\text{e.g., } \mathcal{N}(\mu_{z_i}, \sigma_{z_i})}$$
$$= \sum_{j=1}^{K} \sum_{i=1}^{n} \ln(\pi_j) \mathbb{I}_{(j=z_i)} + \ln(p_{\theta_j}(x_i)) \mathbb{I}_{(j=z_i)}$$

Hence the auxiliary function boils down to

$$Q(\theta,\widehat{\theta}) = \sum_{j=1}^{K} \sum_{i=1}^{n} \ln(\pi_j) E_{\widehat{\theta}}[\mathbb{I}_{(j=z_i)} | \mathbf{x}] + \ln(p_{\theta_j}(x_i)) E_{\widehat{\theta}}[\mathbb{I}_{(j=z_i)} | \mathbf{x}]$$

∮≋IRISA

Data analysis and stochastic modeling - Mixture models. - 22

Maximizing the auxiliary function

Maximizing

$$Q(\theta,\widehat{\theta}) = \sum_{j=1}^{K} \sum_{i=1}^{n} \ln(\pi_j) E_{\widehat{\theta}}[\mathbb{I}_{(j=z_i)} | \mathbf{x}] + \ln(p_{\theta_j}(x_i)) E_{\widehat{\theta}}[\mathbb{I}_{(j=z_i)} | \mathbf{x}]$$

w.r.t. π_j under the constraints that weights sum to 1 yields

$$\widehat{\pi_j} \leftarrow \frac{\sum_{i} E_{\widehat{\theta}}[\mathbb{I}_{(z_i=j)} | \mathbf{x}]}{\sum_{k} \sum_{i} E_{\widehat{\theta}}[\mathbb{I}_{(z_i=k)} | \mathbf{x}]}$$

Similarly, maximization w.r.t. the parameters θ_j of the log-likelihood of the j-th component, $\ln(p_{\theta_j}(x_i))$, will yield a function of the expectations $E_{\widehat{\theta}}[\mathbb{I}_{(z_i=j)}|\mathbf{x}]$, e.g., for a Gaussian density — details later

$$\widehat{\mu}_{j} \leftarrow \frac{\sum_{i} x_{i} E_{\widehat{\theta}}[\mathbb{I}_{(z_{i}=j)} | \mathbf{x}]}{\sum_{i} E_{\widehat{\theta}}[\mathbb{I}_{(z_{i}=j)} | \mathbf{x}]}$$

∮≸IRISA

Data analysis and stochastic modeling – Mixture models. – 23

A simple example

 $\circ \mathbf{x} = \{x_1, \dots, x_N\}$ from two classes with prior probabilities π and $1 - \pi$

- $^{\circ}$ class indicator function $\mathbf{z} = \{z_1, \ldots, z_N\}$, $z_i \in \{0, 1\}$
- $^{\circ}\;$ joint distribution of (\mathbf{x},\mathbf{z})

$$\ln p_{\theta}(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{N} \ln p_{\theta}(x_i | z_i) + \ln P_{\theta}[Z_i = z_i]$$
$$= \sum_{i=1}^{N} \sum_{j \in \{0,1\}} (\ln p_{\theta_j}(x_i) + \ln P_{\theta}[Z_i = j]) \mathbb{I}_{(z_i = j)}$$

• auxiliary function $Q(\theta, \widehat{\theta}) = \sum_{i=1}^{N} \sum_{j \in \{0,1\}} \left(\ln p_{\theta_j}(x_i) + \ln P_{\theta}[Z_i = j] \right) E_{\widehat{\theta}}[\mathbb{I}_{(z_i = j)} | \mathbf{x}]$

A simple example: maximization equations

auxiliary function (cont'd)

$$Q(\theta, \widehat{\theta}) = \sum_{j \in \{0, 1\}} \sum_{i=1}^{N} \ln p_{\theta_j}(x_i) E_{\widehat{\theta}}[\mathbb{I}_{(z_i=j)} | \mathbf{x}]$$

+
$$\ln(\pi) \sum_{i=1}^{N} E_{\widehat{\theta}}[\mathbb{I}_{(z_i=0)} | \mathbf{x}] + \ln(1-\pi) \sum_{i=1}^{N} E_{\widehat{\theta}}[\mathbb{I}_{(z_i=1)} | \mathbf{x}]$$

 $^\circ\,$ Maximization w.r.t. $\pi\,$

$$\pi \leftarrow \frac{\sum_{i} E_{\widehat{\theta}}[\mathbb{I}_{(z_i=-1)} | \mathbf{x}]}{\sum_{j \in \{0,1\}} \sum_{i} E_{\widehat{\theta}}[\mathbb{I}_{(z_i=j)} | \mathbf{x}]}$$

- ° Maximization w.r.t. θ_j
 - \triangleright only depends on the expecation $E_{\theta^n}[\mathbb{I}_{(z_i=j)}|\mathbf{x}]$

Simple example: expectation computation

The maximization (M-step) of $Q(\theta, \widehat{\theta})$ requires the computation of the expectations (E-step)

$$E_{\widehat{\theta}}[\mathbb{I}_{(z_i=j)}|\mathbf{x}] = P_{\widehat{\theta}}[Z_i=j|x_i] = \gamma_j(i) ,$$

for $i \in [1, N]$ and $j \in \{0, 1\}$, which is given by (dropping $\widehat{\theta}$ to facilitate reading)

$$P[Z_i = j | x_i] = \frac{p(x_i | Z_i = j) P[Z_i = j]}{\sum_{k \in \{0,1\}} p(x_i | Z_i = k) P[Z_i = k]}$$

In our two class example, for j=0 we have

$$p(x_i|Z_i = j)P[Z_i = j] = \widehat{p_i} \ p_{\widehat{\theta}_0}(x_i)$$

where $\widehat{\pi}$ and $\widehat{ heta}_0$ are the current estimates of the parameters.

∮ §IRISA

EM and hidden class

In all generality

$$\gamma_j(i) = P_{\widehat{\theta}}[Z_i = j | x_i] = \frac{\widehat{\pi}_j p_{\widehat{\theta}_j}(x_i)}{\sum_k \widehat{\pi}_k p_{\widehat{\theta}_k}(x_i)}$$

The latent variable $\gamma_j(i)$ indicates membership to a class as estimated from the current estimate $\hat{\theta}$ of the parameters, we have the following interpretation:

- $\circ \ P_{\widehat{\theta}}[Z_i=j|x_i]$ = degree ($\in [0,1]$) of membership to class j of the i 'th observation
- maximization relies on standard estimators based on the degree of membership (weighted standard estimators) [see Gaussian mixture example]

EM from an algorithmic viewpoint

- 1. choose some initial (good) parameters θ_0
- 2. $n \leftarrow 0$
- 3. while not happy (with convergence)
 - (a) for $i=1 \rightarrow N$ and $j=1 \rightarrow K$

compute the component posterior $\gamma_j^{(n)}(i) = P[Z_i = j | x_i; \theta_n]$

(b) foreach paramter α in θ

compute new parameter value α_{n+1} from the quantities $\gamma_j^{(n)}(i)$ (by maximizing $Q(\theta, \theta_n)$)

(c) $n \leftarrow n+1$

Properties of the EM algorithm

Property 1

The serie of estimators $\{\theta_n\}$ is such that the likelihood of the data increases with each iteration of the algorithm.

It can be shown that

$$Q(\theta, \theta_{i+1}) - Q(\theta, \theta_i) = \ln p(\mathbf{x}; \theta_{i+1}) - \ln p(\mathbf{x}; \theta_i) + E \left[\ln \frac{p(\mathbf{z} | \mathbf{x}; \theta_{i+1})}{p(\mathbf{z} | \mathbf{x}; \theta_i)} | \mathbf{x}; \theta_i \right]$$

$$< 0$$

which implies that

$$Q(\theta, \theta_{i+1}) \ge Q(\theta, \theta_i) \implies p(\mathbf{x}; \theta_{i+1}) \ge p(\mathbf{x}; \theta_i)$$

Properties of the EM algorithm

Property 2

The EM algorithm enables the computation of the gradient of the log-likelihood function at the points θ_i .

It can be verified that under some non very restrictive assumptions

$$\frac{\partial Q(\theta, \theta_i)}{\partial \theta}\Big|_{\theta=\theta_i} = \frac{\partial \ln f(\mathbf{x}; \theta)}{\partial \theta}\Big|_{\theta=\theta_i} + \underbrace{\frac{\partial E[\ln p(\mathbf{z}|\mathbf{x}; \theta)|\mathbf{x}; \theta_i]}{\partial \theta}\Big|_{\theta=\theta_i}}_{=0}$$

Convergence of the EM algorithm

Property 1

The serie of estimators $\{\theta^{(n)}\}$ is such that the likelihood of the data increases with each iteration of the algorithm.

Property 2

The EM algorithm enables the computation of the gradient of the log-likelihood function at the points θ_i .

 \Downarrow

The EM estimate converges toward stationary points of the log-likelihood function $\ln p(\mathbf{x}; \theta).$

Convergence of the EM algorithm in practice

- $^\circ~$ The convergence is only guaranteed toward a local maximum of the likelihood function $\ln p({\bf x};\theta).$
 - \triangleright need for a good initial guess θ_0
 - ▷ need to avoid degenerate solutions!
- In practice, convergence is controled by two factors
 - ▷ increase of the log-likelihood of the data
 - fixed number of iterations
- Constraints on the parameter space are often used to avoid bad or degenerated solutions, *e.g.*
 - minimum variance floor
 - ▷ initialization based on (segmental) k-means algorithm

EM for Gaussian mixtures

 $^{\circ}\;$ Joint likelihood of (\mathbf{x},\mathbf{z})

$$\ln f(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{N} \sum_{j=1}^{K} \ln(w_j f(x_i; \mu_j, \sigma_j)) \mathbb{I}_{(z_i=j)}$$

• Auxiliary function

$$Q(\theta, \theta_n) \propto \sum_{j=1}^K \sum_{i=1}^N \ln(w_j) E[\mathbb{I}_{(z_i=j)} | \mathbf{x}; \theta_n] - \frac{1}{2} \sum_{j=1}^K \sum_{i=1}^N \left(\sum_{k=1}^d \ln(\sigma_{jk}^2) + \frac{(x_{ik} - \mu_{jk})^2}{\sigma_{jk}^2} \right) E[\mathbb{I}_{(z_i=j)} | \mathbf{x}; \theta_n]$$

EM for Gaussian mixtures (cont'd)

 $^{\circ}$ Compute the expectations at iteration n

$$\gamma_j^{(n)}(i) = \frac{w_j^{(n)} f(x_i; \mu_j^{(n)}, \sigma_j^{(n)})}{\sum_k w_k^{(n)} f(x_i; \mu_k^{(n)}, \sigma_k^{(n)})}$$

where the parameters correspond to the current estimate $\theta^{(n)}$.

• Maximization

$$w_{j}^{(n+1)} = \frac{\sum_{i=1}^{N} \gamma_{j}^{(n)}(i)}{\sum_{k=1}^{K} \sum_{i=1}^{N} \gamma_{k}^{(n)}(i)} \qquad \qquad \mu_{jk}^{(n+1)} = \frac{\sum_{i=1}^{N} \gamma_{j}^{(n)}(i)}{\sum_{i=1}^{N} \gamma_{j}^{(n)}(i)}$$

The EM at work: initialization

[courtesy of A. W. Moore and J-F. Bonastre]

Data analysis and stochastic modeling – Mixture models. – 36

[courtesy of A. W. Moore and J-F. Bonastre]

The EM at work: another example

[courtesy J-F. Bonastre]

EM and k-means clustering

Maximum likelihood estimates with known class membership

$$\widehat{w}_{i} = \frac{1}{N} \sum_{j=1}^{N} \mathbb{I}_{(z_{j}=i)} \qquad \qquad \widehat{\mu}_{i} = \frac{\sum_{j=1}^{N} x_{j} \mathbb{I}_{(z_{j}=i)}}{\sum_{j=1}^{N} \mathbb{I}_{(z_{j}=i)}}$$

• EM estimates with unknown class membership

$$\widehat{w}_{i} = \frac{1}{N} \sum_{j=1}^{N} E[\mathbb{I}_{(z_{j}=i)} | \mathbf{x}, \theta_{n}] \qquad \qquad \widehat{\mu}_{i} = \frac{\sum_{j=1}^{N} x_{j} E[\mathbb{I}_{(z_{j}=i)} | \mathbf{x}, \theta_{n}]}{\sum_{j=1}^{N} E[\mathbb{I}_{(z_{j}=i)} | \mathbf{x}, \theta_{n}]}$$

EM and k-means clustering

A practical use of the Gaussian law

Data analysis and stochastic modeling - Mixture models. - 44

EM, sufficient statistics and the exponential family

Joint density is from the exponential family

$$f(\mathbf{x}, \mathbf{z}; \theta) = \exp\left(\alpha(\theta)' a(\mathbf{x}, \mathbf{z}) + b(\mathbf{x}, \mathbf{z}) - \beta(\theta)\right)$$

- ° E-step \Rightarrow estimate the sufficient statistic $a(\mathbf{x}, \mathbf{z})$ by computing its expectation under the posterior law given a current estimation of the parameters
- Examples:

$$\sum_{j} \mathbb{I}_{(z_j=i)} \longrightarrow \sum_{j} E[\mathbb{I}_{(z_j=i)} | \mathbf{x}; \theta_n]$$

$$\sum_{j} x_j \mathbb{I}_{(z_j=i)} \longrightarrow \sum_{j} x_j E[\mathbb{I}_{(z_j=i)} | \mathbf{x}; \theta_n]$$

$$\sum_{j} (x_j - \hat{\mu}_j)^2 \mathbb{I}_{(z_j=i)} \longrightarrow \sum_{j} (x_j - \hat{\mu}_j)^2 E[\mathbb{I}_{(z_j=i)} | \mathbf{x}; \theta_n]$$

The LDA topic mixture model

I eat fish and vegetables. Fishes are pets. My kitten eats fish.

Topic 247		Topic 5			Topic 43		Topic 56	
word	prob.	word	prob.]	word	prob.	word	prob.
DRUGS	.069	RED	.202]	MIND	.081	DOCTOR	.074
DRUG	.060	BLUE	.099		THOUGHT	.066	DR.	.063
MEDICINE	.027	GREEN	.096		REMEMBER	.064	PATIENT	.061
EFFECTS	.026	YELLOW	.073		MEMORY	.037	HOSPITAL	.049
BODY	.023	WHITE	.048		THINKING	.030	CARE	.046
MEDICINES	.019	COLOR	.048		PROFESSOR	.028	MEDICAL	.042
PAIN	.016	BRIGHT	.030		FELT	.025	NURSE	.031
PERSON	.016	COLORS	.029		REMEMBERED	.022	PATIENTS	.029
MARIJUANA	.014	ORANGE	/b. <mark>02</mark> 7. 0	sdn	net THOUGHTS 1	7.020	DOCTORS	.028
LABEL	.012	BROWN	.027		FORGOTTEN	.020	HEALTH	.025
ALCOHOL	.012	PINK	.017		MOMENT	.020	MEDICINE	.017
DANGEROUS	.011	LOOK	.017		THINK	.019	NURSING	.017
ABUSE	.009	BLACK	.016		THING	.016	DENTAL	.015
EFFECT	.009	PURPLE	.015		WONDER	.014	NURSES	.013
KNOWN	.008	CROSS	.011		FORGET	.012	PHYSICIAN	.012
PILLS	.008	COLORED	.009		RECALL	.012	HOSPITALS	.011

Figure 1. An illustration of four (out of 300) topics extracted from the TASA corpus.

Variants

The EM principle enables many variants when the E-step and/or the M-step are intractable

- Monte-Carlo EM: replace the exact computation of the expected quantities by some Monte-Carlo approximations obtained using the current parameters
- Generalized EM: simply increase the auxiliary function rather than maximizing it, *e.g.* using a gradient algorithm
- Variational EM: replace the auxiliary function Q by a more simple variational approximation based on factorial distribution $Q \simeq \prod_i Q_i$.

0

Choosing the number of components

- Experimentations...
- Information criterion

$$\mathcal{I}(\mathbf{x}, \theta) = \ln p(\mathbf{x}; \theta) - g(\# \text{parameters}, \# \text{data})$$

- Akaike
- Bayesian Information criterion (BIC)

 \triangleright

Bibliography

- A. P. Dempster, N. M. Laird, D. B. Rubin. Maximum Likelihood from Incomplete Data via the EM algorithm. Journal of the Royal Statistical Society. Series B, Vol. 39, No. 1, pp. 1–38, 1977.
- T. K. Moon. The Expectation-Maximization Algorithm. IEEE Signal Processing Magazine, pp. 46–60, November, 1996.
- G. J. McLachlan, T. Krishnan. The EM algorithm and extensions. Wiley Series in Probability and Statistics, 1997.