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Multivariate Gaussian density

Definition

X is a Gaussian vector of dimension p if any linear combination of its

components a′X is a Gaussian in dimension 1.

f(x) =
1

(2π)n/2|Σ|1/2
exp

{
−
1

2
(x− µ)′Σ−1(x− µ)

}
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Properties of the covariance matrix

The covariance matrix is symmetric, definite positive,

Σ = V D V ′

where

V are the eigen vectors defining the principal axes (orientation of the

density) and

D are the eigen values defining the dispertion along the axes.

Theorem

The components of a Gaussian vector are independent if and only if Σ is

a diagonal matrix, i.e. if the components are not correlated.
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Illustration of 2D Gaussians

From the correlation point of view

Σ =

(
σ2
1 ρσ1σ2

ρσ2σ1 σ2
2

)
From the geometric point of view

V =

(
cos(θ) sin(θ)

sin(θ) cos(θ)

)
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Isodensity ellipsoids

Isodensity curves are (hyper)ellipsoids whose equation is given by

(x− µ)′Σ−1(x− µ) = c
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Why mixture models?

true distribution Gaussian model Mixture model
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Why mixture models?

[courtesy of J-F. Bonastre]
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Mixture model – definition

A mixture model is a weighted sum of laws, the likelihood of a sample x
being given by

f(x) =
K∑

i=1

πifi(x)

with the constraint that
K∑

i=1

πi = 1 .

◦ fi() can be any density and the fi()’s need not be from the same family

◦ f() is a density since
∫
∞

−∞
f(x)dx = 1

◦ the model can extend to discrete variables
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Examples of mixture model densities

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-4 -3 -2 -1  0  1  2  3  4  5

w1=0.7, w2=0.3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-4 -3 -2 -1  0  1  2  3  4  5

w1=0.3, w2=0.7

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-5  0  5  10  15
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-4 -3 -2 -1  0  1  2  3  4  5

w1=0.9, w2=0.1

Data analysis and stochastic modeling – Mixture models. – 9



Multivariate Gaussian mixture model

◦ Each component of the mixture is a multivariate Gaussian density

fi(x) =
1

(2π)n/2|Σi|1/2
exp

{
−
1

2
(x− µi)

′Σ−1
i (x− µi)

}

◦ Parameters of the model

⊲ weights of each component (K)
⊲ mean vectors (Kn)
⊲ covariance matrices (Kn(n+ 1)/2)

◦ In practice, we often assume diagonal covariance matrices

⊲ much less parameters (Kn << Kn(n+ 1)/2)
⊲ much less computation (saves matrix inversion)
⊲ can be compensated with more components
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Gaussian mixture model

[courtesy of A. A. D’Souza and J-F. Bonastre]
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Gaussian mixture model
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Mixture models from the generative viewpoint

A sample is drawn according to the law of the component fi() of the mixture

with probabiliy πi.

Practically, sampling is a two step process

1. choose a component i of the mixture according to the discrete law

defined by the weights wj

2. draw a sample according to the law fi()

Example: w = [0.3, 0.7], f1 = N (0, 1), f2 = N (2, 1)
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Mixture models from the generative viewpoint

Interpretation: [from a generative point of view,] the samples in a mixture

model are drawn from either one of the component of the models with the

proportion defined by the weights, i.e.

◦ for each component i, there is a set of samples distributed according

to fi(x)

◦ the proportion of such samples is given by πi

⇒ hidden variable indicating the component to which a sample
belong!
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Mixture models and hidden variables

The law of x is the marginal over the hidden variable Z , i.e.

f(x) =
K∑

i=1

πi
︸︷︷︸

P [Z = i]

fi(x)
︸ ︷︷ ︸
p(x|Z = i)

Sampling

⇓

(Z,X)

Likelihood

⇓

(X) =
∑

Z

(X,Z)
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Mixture models and hidden variables

◦ Conditional density of x given z

p(x|z) = fz(x) =
K∑

i=1

fi(x)I(z=i)

◦ Joint density of (x, z)

p(x, z) = πzfz(x) =

(
K∑

i=1

fi(x)I(z=i)

)(
K∑

i=1

πiI(z=i)

)

◦ Marginal density of x

p(x) =
∑

z

p(x, z) =
∑

z

∑

i

πifi(x)I(z=i) =
∑

i

πifi(x)
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Maximum likelihood parameter estimation

◦ Let x = {x1, . . . , xN} be a set of training samples from which we want

to estimate the parameters of a Gaussian mixture model with K
components, i.e.

⊲ weights {w1, . . . , wK},
⊲ mean vectors {µ1, . . . , µ2},
⊲ variance vectors {σ1, . . . , σ2}.

◦ Maximum likelihood criterion

ln f(x) =
N∑

i=1

ln

(
K∑

j=1

wjfj(xi; θj)

)

⇒ direct maximization (nearly) impossible!
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Direct maximum likelihood parameter estimation

◦ Directly solving the ML equations

⊲ they often do not exist!
⊲ complex equations when they do exist

◦ Gradient descent algorithms

⊲ non convex likelihood function⇒ non unicity of the solution
⊲ need for prior knowledge on the domain of θ

◦ The Expectation-Maximization algorithm

⊲ nice and elegant solution!
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Maximum likelihood with complete data

◦ The set of training samples x is incomplete!

◦ Assume for each sample xi, we know the component indicator function zi
◦ The set {x1, z1, . . . , xN , zN} is known as complete data

◦ Maximum likelihood estimates can be obtained from the complete data,

e.g.

ŵi =
1

N

N∑

j=1

I(zj=i) and µ̂i =

N∑

j=1

xj I(zj=i)

N∑

j=1

I(zj=i)

⇒ but the variables zj are not known!
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The Expectation-Maximization principle

The Expectation-Maximization (EM) principle compensates for missing (aka

latent) data, replacing them by their expectations.

EM Iterative principle

1. estimate the missing variables given a current estimate of the

parameters

2. estimate new parameters given the current estimate of the missing

variables

3. repeat steps 1 and 2 until convergence

Note: this principle applies to many problems, not only for maximum likelihood

parameter estimation!
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The auxiliary function

The EM algorithm aims at maximizing an auxiliary function defined as

Q(θ, θ̂) = E[ln f(z,x; θ)|x; θ̂]

where f(z, x; θ) is the likelihood function of the complete data.

Estimation step

E compute the expected quantities in Q(θ, θ̂) (given θ̂ = θn)

Maximization step

M maximize the auxiliary function w.r.t. the (true) parameters θ (given the

expected quantities) to obtain a new estimate θ̂ = θi+1, i.e.

θi+1 = argmax
θ

Q(θ, θi)
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Close-up on the auxiliary function

Assume we have a n-sample x = {x1, . . . , xn} and already know a wide

guess θ̂ of the parameters θ that we seek to estimate.

The log-likelihood of the complete data is given by

ln fθ(z,x) = ln

(
n∏

i=1

Pθ[Zi = zi]pθ(xi|zi)

)

=

n∑

i=1

lnPθ[Zi = zi]︸ ︷︷ ︸
= πzi

+ ln pθ(xi|zi)︸ ︷︷ ︸
e.g., N (µzi

, σzi
)

=
K∑

j=1

n∑

i=1

ln(πj)I(j=zi) + ln(pθj (xi))I(j=zi)

Hence the auxiliary function boils down to

Q(θ, θ̂) =

K∑

j=1

n∑

i=1

ln(πj)Eθ̂
[I(j=zi)|x] + ln(pθj (xi))Eθ̂

[I(j=zi)|x]
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Maximizing the auxiliary function
Maximizing

Q(θ, θ̂) =

K∑

j=1

n∑

i=1

ln(πj)Eθ̂
[I(j=zi)|x] + ln(pθj (xi))Eθ̂

[I(j=zi)|x]

w.r.t. πj under the constraints that weights sum to 1 yields

π̂j ←

∑

i

E
θ̂
[I(zi=j)|x]

∑

k

∑

i

E
θ̂
[I(zi=k)|x]

.

Similarly, maximization w.r.t. the parameters θj of the log-likelihood of the j-th

component, ln(pθj(xi)), will yield a function of the expectations

Eθ̂[I(zi=j)|x], e.g., for a Gaussian density — details later

µ̂j ←

∑

i

xiEθ̂
[I(zi=j)|x]

∑

i

E
θ̂
[I(zi=j)|x]

.
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A simple example

◦ x = {x1, . . . , xN} from two classes with prior probabilities π and 1− π

◦ class indicator function z = {z1, . . . , zN}, zi ∈ {0, 1}

◦ joint distribution of (x, z)

ln pθ(x, z) =
N∑

i=1

ln pθ(xi|zi) + lnPθ[Zi = zi]

=

N∑

i=1

∑

j∈{0,1}

(ln pθj (xi) + lnPθ[Zi = j])I(zi=j)

◦ auxiliary function

Q(θ, θ̂) =
N∑

i=1

∑

j∈{0,1}

(
ln pθj (xi) + lnPθ[Zi = j]

)
E

θ̂
[I(zi=j)|x]
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A simple example: maximization equations

◦ auxiliary function (cont’d)

Q(θ, θ̂) =
∑

j∈{0,1}

N∑

i=1

ln pθj (xi)Eθ̂
[I(zi=j)|x]

+ ln(π)

N∑

i=1

E
θ̂
[I(zi=0)|x] + ln(1− π)

N∑

i=1

E
θ̂
[I(zi=1)|x]

◦ Maximization w.r.t. π

π ←

∑

i

E
θ̂
[I(zi=−1)|x]

∑

j∈{0,1}

∑

i

E
θ̂
[I(zi=j)|x]

◦ Maximization w.r.t. θj
⊲ only depends on the expecation Eθn [I(zi=j)|x]

Data analysis and stochastic modeling – Mixture models. – 25



Simple example: expectation computation

The maximization (M-step) of Q(θ, θ̂) requires the computation of the

expectations (E-step)

E
θ̂
[I(zi=j)|x] = P

θ̂
[Zi = j|xi] = γj(i) ,

for i ∈ [1, N ] and j ∈ {0, 1}, which is given by (dropping θ̂ to facilitate reading)

P [Zi = j|xi] =
p(xi|Zi = j)P [Zi = j]∑

k∈{0,1}

p(xi|Zi = k)P [Zi = k]
.

In our two class example, for j = 0 we have

p(xi|Zi = j)P [Zi = j] = p̂i p
θ̂0
(xi)

where π̂ and θ̂0 are the current estimates of the parameters.
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EM and hidden class

In all generality

γj(i) = P
θ̂
[Zi = j|xi] =

π̂jpθ̂j (xi)∑

k

π̂kpθ̂k
(xi)

.

The latent variable γj(i) indicates membership to a class as estimated from

the current estimate θ̂ of the parameters, we have the following interpretation:

◦ Pθ̂[Zi = j|xi] = degree (∈ [0, 1]) of membership to class j of the i’th
observation

◦ maximization relies on standard estimators based on the degree of

membership (weighted standard estimators) [see Gaussian mixture example]
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EM from an algorithmic viewpoint

1. choose some initial (good) parameters θ0

2. n← 0

3. while not happy (with convergence)

(a) for i = 1→ N and j = 1→ K

compute the component posterior γ
(n)
j (i) = P [Zi = j|xi; θn]

(b) foreach paramter α in θ

compute new parameter value αn+1 from the quantities γ
(n)
j (i)

(by maximizing Q(θ, θn))

(c) n← n+ 1
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Properties of the EM algorithm

Property 1

The serie of estimators {θn} is such that the likelihood of the data

increases with each iteration of the algorithm.

It can be shown that

Q(θ, θi+1)−Q(θ, θi) =

ln p(x; θi+1)− ln p(x; θi) + E

[
ln

p(z|x; θi+1)

p(z|x; θi)
|x; θi

]

︸ ︷︷ ︸
< 0

which implies that

Q(θ, θi+1) ≥ Q(θ, θi) =⇒ p(x; θi+1) ≥ p(x; θi)
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Properties of the EM algorithm

Property 2

The EM algorithm enables the computation of the gradient of the

log-likelihood function at the points θi.

It can be verified that under some non very restrictive assumptions

∂Q(θ, θi)

∂θ

∣∣∣∣
θ=θi

=
∂ ln f(x; θ)

∂θ

∣∣∣∣
θ=θi

+
∂E[ln p(z|x; θ)|x; θi]

∂θ

∣∣∣∣
θ=θi︸ ︷︷ ︸

= 0
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Convergence of the EM algorithm

Property 1

The serie of estimators {θ(n)} is such that the likelihood of the data

increases with each iteration of the algorithm.

Property 2

The EM algorithm enables the computation of the gradient of the

log-likelihood function at the points θi.

⇓

The EM estimate converges toward stationary points of the

log-likelihood function ln p(x; θ).
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Convergence of the EM algorithm in practice

◦ The convergence is only guaranteed toward a local maximum of the

likelihood function ln p(x; θ).
⊲ need for a good initial guess θ0
⊲ need to avoid degenerate solutions!

◦ In practice, convergence is controled by two factors

⊲ increase of the log-likelihood of the data

⊲ fixed number of iterations

◦ Constraints on the parameter space are often used to avoid bad or

degenerated solutions, e.g.

⊲ minimum variance floor

⊲ initialization based on (segmental) k-means algorithm
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EM for Gaussian mixtures

◦ Joint likelihood of (x, z)

ln f(x, z) =
N∑

i=1

K∑

j=1

ln(wjf(xi;µj , σj))I(zi=j)

◦ Auxiliary function

Q(θ, θn) ∝
K∑

j=1

N∑

i=1

ln(wj)E[I(zi=j)|x; θn]

−
1

2

K∑

j=1

N∑

i=1

(
d∑

k=1

ln(σ2
jk) +

(xik − µjk)
2

σ2
jk

)
E[I(zi=j)|x; θn]
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EM for Gaussian mixtures (cont’d)

◦ Compute the expectations at iteration n

γ
(n)
j (i) =

w
(n)
j f(xi;µ

(n)
j , σ

(n)
j )

∑

k

w
(n)
k f(xi;µ

(n)
k , σ

(n)
k )

where the parameters correspond to the current estimate θ(n).

◦ Maximization

w
(n+1)
j =

N∑

i=1

γ
(n)
j (i)

K∑

k=1

N∑

i=1

γ
(n)
k (i)

µ
(n+1)
jk =

N∑

i=1

γ
(n)
j (i) xik

N∑

i=1

γ
(n)
j (i)
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The EM at work: initialization

[courtesy of A. W. Moore and J-F. Bonastre]
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The EM at work: iteration 1

[courtesy of A. W. Moore and J-F. Bonastre]
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The EM at work: iteration 2

[courtesy of A. W. Moore and J-F. Bonastre]
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The EM at work: iteration 3

[courtesy of A. W. Moore and J-F. Bonastre]
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The EM at work: iteration 4

[courtesy of A. W. Moore and J-F. Bonastre]
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The EM at work: iteration 20

[courtesy of A. W. Moore and J-F. Bonastre]

Data analysis and stochastic modeling – Mixture models. – 40



The EM at work: another example

[courtesy J-F. Bonastre]
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EM and k-means clustering

◦ Maximum likelihood estimates with known class membership

ŵi =
1

N

N∑

j=1

I(zj=i) µ̂i =

N∑

j=1

xj I(zj=i)

N∑

j=1

I(zj=i)

◦ EM estimates with unknown class membership

ŵi =
1

N

N∑

j=1

E[I(zj=i)|x, θn] µ̂i =

N∑

j=1

xj E[I(zj=i)|x, θn]

N∑

j=1

E[I(zj=i)|x, θn]
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EM and k-means clustering

EM algorithm K-means
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A practical use of the Gaussian law
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EM, sufficient statistics and the exponential family

◦ Joint density is from the exponential family

f(x, z; θ) = exp (α(θ)′a(x, z) + b(x, z)− β(θ))

◦ E-step⇒ estimate the sufficient statistic a(x, z) by computing its

expectation under the posterior law given a current estimation of the

parameters

◦ Examples:

∑

j

I(zj=i) −→
∑

j

E[I(zj=i)|x; θn]

∑

j

xj I(zj=i) −→
∑

j

xj E[I(zj=i)|x; θn]

∑

j

(xj − µ̂j)
2
I(zj=i) −→

∑

j

(xj − µ̂j)
2 E[I(zj=i)|x; θn]
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The LDA topic mixture model

I eat fish and vegetables.

Fishes are pets.

My kitten eats fish.
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Variants

The EM principle enables many variants when the E-step and/or the M-step

are intractable

◦ Monte-Carlo EM: replace the exact computation of the expected

quantities by some Monte-Carlo approximations obtained using the

current parameters

◦ Generalized EM: simply increase the auxiliary function rather than

maximizing it, e.g. using a gradient algorithm

◦ Variational EM: replace the auxiliary function Q by a more simple

variational approximation based on factorial distribution Q ≃
∏

i Qi.

◦ . . .
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Choosing the number of components

◦ Experimentations...

◦ Information criterion

I(x, θ) = ln p(x; θ)− g(#parameters,#data)

⊲ Akaike

⊲ Bayesian Information criterion (BIC)

⊲ . . .
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