Data analysis and stochastic modeling

Lecture 4 – Machine learning and estimation theory

Guillaume Gravier

guillaume.gravier@irisa.fr

Why statistical modeling?

exploratory statistics \rightarrow inferential statistics

describe analyze generalize decide

- \rightarrow summarize data using a (parametric) model
- ightarrow estimate the parameters of a model
- \rightarrow decision, discrimination, classification
- \rightarrow prediction

Why statistical modeling?

Summarize all the data available in a model for

which the number of parameters is small with

respect to the amount of data

Use **all** the information available!

- 1. Prior knowledge of what we expect (and do not expect!) to see
- 2. Data, data, data, data... (the best data is more data)

STATISTICAL MACHINE LEARNING

NOTIONS OF MACHINE LEARNING

Slides courtesy of Samy Bengio.

Various problems to solve

- Let Z_1, Z_2, \dots, Z_n be an *n*-tuple random sample of an unknown distribution of density p(z).
- $^{\circ}$ All Z_i are independently and identically distributed (iid).

1. Classification: $Z = (X, Y) \in \mathbb{R}^d \times \{-1, 1\}$

 \Rightarrow given a new x, estimate P(Y|X = x)

2. Regression: $Z = (X, Y) \in \mathbb{R}^d \times \mathbb{R}$

 \Rightarrow given a new x, estimate E[Y|X = x]

3. Density estimation: $Z \in \mathbb{R}^d$

$$\Rightarrow$$
 given a new z , estimate $p(z)$

The function space

Learning = search for a good function in a function space ${\cal F}$

Examples of parametric functions:

• Regression

$$\hat{y} = f(x; a, b) = a \cdot x + b$$

• Classification

$$\hat{y} = f(x; a, b) = \operatorname{sign}(a \cdot x + b)$$

• Density estimation

$$\hat{p}(z) = f(z;\mu,\Sigma) = \frac{1}{(2\pi)^{\frac{|z|}{2}}\sqrt{|\Sigma|}} \exp\left(-\frac{1}{2}(z-\mu)^T \Sigma^{-1}(z-\mu)\right)$$

The loss function

Learning = search for a good function in a function space \mathcal{F}

Examples of loss functions $L: \mathcal{Z} \times \mathcal{F}$

• Regression

$$L(z, f) = L((x, y), f) = (f(x) - y)^2$$

• Classification

$$L(z,f) = L((x,y),f) = \left\{ \begin{array}{ll} 0 & \text{if } f(x) = y \\ 1 & \text{otherwise} \end{array} \right.$$

• Density estimation

$$L(z, f) = -\log p(z)$$

Risk and empirical risk

 $^\circ\,$ Minimize the expected risk on ${\mathcal F}$, defined for a given function f as

$$R(f) = E_Z[L(z, f)] = \int_Z L(z, f)p(z)dz$$

- Induction Principle
 - $\,\triangleright\,$ find $f\in\mathcal{F}$ which minimizes R(f)
 - $\,\,{}^{\triangleright}\,$ problems: p(z) is unknown, and we don't have access to all L(z,f)!!!
- Empirical Risk

$$\hat{R}(f, D_n) = \frac{1}{n} \sum_{i=1}^n L(z_i, f)$$

Risk and empricial risk (cont'd)

• The empirical risk:

$$\hat{R}(f, D_n) = \frac{1}{n} \sum_{i=1}^n L(z_i, f)$$

• The (expected) risk:

$$R(f) = E_Z[L(z, f)] = \int_Z L(z, f)p(z)dz$$

 $^{\circ}~$ The empirical risk is an unbiased estimate of the risk

The principle of empirical risk minimization (ERM):

$$f^{\star}(D_n) = \arg\min_{f\in\mathcal{F}} \hat{R}(f, D_n)$$

∮§IRISA

Risk and empricial risk (cont'd)

• Training error:

$$\hat{R}(f^{\star}(D_n), D_n) = \min_{f \in \mathcal{F}} \hat{R}(f, D_n)$$

• Is the training error a biased estimate of the risk? YES.

$$E[R(f^{\star}(D_n)) - \hat{R}(f^{\star}(D_n), D_n)] \ge 0$$

° The solution $f^{\star}(D_n)$ found by minimizing the training error is better on D_n than on any other set D'_n drawn from p(z).

Risk and empirical risk

 \implies Don't fit too much on a (limited) training set!

SIRISA

Is it magic?

Statistical models and machine learning

Statistical modeling and decision theory can be seen as a particular "subset" of the general machine learning theory

- function space limited to probability mass/density functions
- only classical decision rules for classification problems
- boils down to density estimation

with nice properties concerning the quality of the estimated functions!

Introductory example

[borrowed from A. Rakotomamonjy and G. Gasso, INSA Rouen]

We wish to classify a pixel into class 1 (dark) and class 2 (light).

If we know nothing on the pixel:

- $\rightarrow \max_k P[C_k]$
- \rightarrow It's dark!

If we know the pixel value:

- \rightarrow make use of $P[x|C_k]$
- \rightarrow choose according to $P[C_k|x]$

Optimal decision rules

Maximum likelihood model esimtation

$$\widehat{\theta} = \arg\max_{\theta} p(x;\theta)$$

• Classification

Maximum a posteriori Maximum likelihood

$$\widehat{c} = \arg \max_{c} p(c|x) = \arg \max_{c} p(x|c)p(c)$$

 $\widehat{c} = \arg \max_{c} p_{c}(x)$

Maximum likelihood is a particular case of maximum a posterior with $p(c) \rightsquigarrow \mathcal{U}$.

Hypothesis testing

$$\frac{p(x; H_0)}{p(x; H_1)} \begin{array}{c} H_0 \\ > \\ < \\ H_1 \end{array} \beta$$

Why maximum a posteriori?

 $D: x \in X \longrightarrow y = D(x) \in \{1, \dots, K\}$

For a cost function l_{jk} (cost of deciding class j when it's in fact class k), the (conditional) risk of deciding class j after observing x is given by

$$R(D(x) = j|x) = \sum_{k=1}^{K} l_{jk} P[\operatorname{class}(x) = k]$$

and leads to the theoretical (average) risk defined as

$$E[R(D(x))] = \int_X R(D(x)|x)p(x)dx$$

The MAP (aka Bayes) decision rule corresponds to choosing the class i for a sample \boldsymbol{x} such that

$$R(D(x) = i|x) < R(D(x) = j|x) \quad \forall j \neq i$$

and minimizes E[R(D(x))].

∮ §IRISA

When Bayes gets naive

Given observed data x, we wish to predict a (discrete) label y. Bayesian (optimal) decision says that

$$\hat{y} = \arg\max_{y} p(y|x) = \arg\max_{y} p(x,y) = \arg\max_{y} p(x|y)p(y)$$

Example:

- $\circ y$ = weather of the day
- $\circ x =$ temprature, humidity, etc.

When Bayes gets naive (cont'd)

The *naive Bayes* classifier assumes all observations to be (conditionally) independent

$$p(\mathbf{x}, y) = p(y) \prod_{i=1}^{n} p(x_i | y)$$

$$\arg\max_{c} P[Y = c | x_1, x_2, x_3] = \arg\max_{c} P[Y = c] \prod_{i=1}^{3} P[X_i = x_i | Y = c]$$

2110

Parameter estimation

Statistical inference

Given a limited amount of samples from a population, infer the properties of the entire population.

Requires independent samples representative of the population

- sampling strategies exists (when sampling can be controled)
- ° assume this to be true in pattern recognition problems

Two inference strategies :

- 1. estimate basic characteristics, *e.g.* mean, variance or median, of the population from the samples
- 2. estimate the parameters of a model which has been selected from expert knowledge

Note : for simple models, estimating the mean and/or the variance is equivalent to estimating the parameters of the model.

∮≸IRISA

Definition of a statistic

Each sample can be seen as a random variable X_i whose observed value is x_i , where all the variables X_i have the same distribution.

Example : suppose we extract n bulbs from a production line and measure their lifetime x_i . Assuming there has been no changes in the fabrication process, the values x_i can be considered as observations of a single random variable X. The model considers X_i the random variable corresponding to the lifetime of the i'th bulb, whose value is x_i . All the variables X_i follow the same distribution, that of X.

Definition

A statistic is a random variable which is a measurable function of X_1, X_2, \ldots, X_n , denoted $T = f(X_1, X_2, \ldots, X_n)$.

EMPIRICAL ESTIMATORS

∮ ≸IRISA

Some well known statistics

Some well known statistics over a set of observations X_1, \ldots, X_n :

Empirical frequency
$$F_k = \frac{1}{n} \sum_{i=1}^{n} \delta(X_i = k)$$

Empirical mean estimator

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

n

Empirical variance estimator $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$

A statistic is a random variable since any function of random variables is a random variable.

Empirical mean estimation

 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is a *statistic* estimating the mean value of a population from a finite set of samples.

zero-mean unit-variance Gaussian, 1000 samples per trial empirical mean = -0.004, empirical standard deviation = 0.0306

Distribution of the empirical mean

It can easily be shown that

$$E[\overline{X}] = m$$
 and $V[\overline{X}] = \frac{\sigma^2}{n}$

The estimator \overline{X} converges in quadratic mean toward m when $n \to \infty$, since $E[(\overline{X} - m)^2] \to 0.$

Moreover, the central limit theorem states that

$$\frac{\overline{X} - m}{\sigma/\sqrt{n}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

Note on Gaussian variables: for Gaussian variables, the convergence is in fact an equality, *i.e.* if $X \rightsquigarrow \mathcal{N}(0, 1)$, then $\overline{X} \rightsquigarrow \mathcal{N}(m, \frac{\sigma}{\sqrt{n}})$.

∮≸IRISA

Empirical variance estimation

The empirical variance estimator is given by

$$S^{2} = \frac{\sum (X_{i} - \overline{X})^{2}}{n} \qquad S^{2} = \frac{\sum X_{i}^{2}}{n} - \overline{X}^{2}$$
$$S^{2} = \frac{\sum (X_{i} - m)^{2}}{n} - (\overline{X} - m)^{2}$$

which leads to

$$E[S^2] = \frac{n-1}{n}\sigma^2$$

The estimator is biased, since $E[S^2] \neq \sigma^2,$ but does converge when $n \to \infty!$

Empirical proportion estimation

Given the discrete random variables X_i whose values are in [1, K], the proportion estimation for the event k (or equivalently the probability $p_k = P[X = k]$) is estimated by the statistic

$$F_k = \frac{\sum \delta(X_i = k)}{n}$$

where $\delta(X_i = k) = 1$ if $X_i = k$ and 0 otherwise.

It can easily be shown that

$$E[F_k] = p_k$$
 and $V[F_k] = \frac{p_k(1-p_k)}{n}$

According to the central-limit theorem, $F \to \mathcal{N}(p, \sqrt{\frac{p(1-p)}{n}}).$

∮≸IRISA

A practical example

Problem: Imagine a production line where objects are manufactured with a given length, where we know from previous study that the (real) distribution of the length is a Gaussian of mean 10 and standard deviation 2. For quality control purposes, a set of 25 samples are taken from the production line. What is the range of values for which we have 9 chances over 10 of observing the empirical mean \overline{X} ?

Solution: We have seen so far that $\overline{X} \to \mathcal{N}(10; \frac{2}{\sqrt{25}})$. Moreover, for a zero mean unit variance Gaussian variable U, P(-1.64 < U < 1.64) = 0.9. Hence, with a probability of 0.9, we have

$$10 - 1.64 \frac{2}{\sqrt{25}} < \overline{X} < 10 + 1.64 \frac{2}{\sqrt{25}}$$

and the range of value for \overline{X} is [9.34, 10.66].

INTRODUCTION TO THE THEORY OF ESTIMATION

∮ ∎ RISA

Quality of an estimator

We have seen that the *empirical statistics* \overline{X} , S^2 and F are *estimators* of respectively the mean, the variance and the (discrete) probability, since they almost surely converge towards the true quantity (resp. m, σ^2 and p_k).

But other estimators can be used, *e.g.* for the mean

- $^{\rm o}~\alpha\text{-truncated}$ mean where the αn biggest and smallest values are discarded
- $^{\circ}~$ median value ($\alpha=50~\%$)
- \circ mean extrema values ($(\max(X_i) + \min(X_i))/2$)
- ° a randomly chosen sample
- $^\circ~$ a constant value, e.g. 0

\implies need for a quality measure!

∮≸IRISA

Expected qualities

Let us consider an estimator T of a parameter θ , obtained from a set of samples X_i . The expected quality of an estimator are:

- $^{\circ}\;$ convergence: $T \rightarrow \theta$ when $n \rightarrow \infty$
- convergence speed: some estimators converges more rapidly than others
- $^\circ~$ risk: the risk is defined as the mean quadratic error

$$E_{\theta}[(T - \theta)^{2}] = (\underbrace{E[T] - \theta}_{\text{bias}})^{2} + \underbrace{V[T]}_{\text{variance}}$$

 \Rightarrow Given two non biased estimators, the best one is the one with the smallest variance.

Generalized risk

The risk can be defined in a more general way using a loss/error function $l(t, \theta)$, where $l(\theta, t) = 0$ iff $t = \theta$,

$$R(T,\theta) = E_{\theta}[l(T(X),\theta)]$$

Example of error functions are

quadratic error	$l(a,b) = (a-b)^2$
absolute error	l(a,b) = a-b
ϵ -loss	$l(a,b)=0 \text{ if } a-b <\epsilon$

Warning: unfortunately, directly minimizing the risk is possible only in some very particular cases...

Comparing the risk of estimators

- It is possible to compare estimators based on the risk, even though the risk function is rarely easily defined
- $^{\circ}\;$ An estimator T is *better than* an estimator T' if

$$R(T,\theta) < R(T',\theta) \quad \forall \theta \in \Theta$$

- $^\circ~$ It is usually impossible to find an estimator T which is better than any other for all the values of $\theta-$ think of a constant estimator
- Except in some very special cases, there seldom is an estimator which is uniformly better than all the others

About biased estimators

A biased estimator is not necessarily a bad estimator!

 $^{\circ}\,$ Let's consider the following biased and unbiased variance estimators assuming the mean m is known

$$T = \frac{1}{n} \sum (X_i - m)^2 \qquad S_0^2 = \frac{1}{n-1} \sum (X_i - m)^2$$

It can be shown that T is better that S_0^2 since $V[T] < V[S_0^2]$.

 $^{\circ}\,$ Let's consider the following biased and unbiased estimators of the autocorrelation $r(p)=E[X_iX_{i-p}]$ (assuming m is known and null)

$$R_0 = \frac{1}{n-p} \sum_{i=1}^{n-p} X_i X_{i+p} \qquad R_1 = \frac{1}{n} \sum_{i=1}^{n-p} X_i X_{i+p}$$

 R_0 is unbiased but with a huge variance when $p \rightarrow n$, in which case R_1 is often prefered.

∮≸IRISA

Unbiased minimum variance estimators

The problem of finding the best estimator cannot be solved in all generality and we therefore put limits to the problem at hand.

- class of estimators
- ° still cannot solve the risk minimization problem in most of the cases

 \Rightarrow search for a given law family $f(x, \theta)$ the unbiased estimator of θ with the minimal variance, the search of which is related to the notion of *sufficient statistic*.

Sufficient statistics

A sufficient statistic is a statistic which contains all the information carried by the samples X_i on θ .

Let us denote

- $L(x_1, x_2, \ldots, x_n; \theta)$ the density or mass function of (X_1, \ldots, X_n) ,
- $\circ \ T$ a statistic whose density or mass function is given by g(t; heta)

Fisher's factorization theorem

T is a sufficient statistic if $L(\mathbf{x}, \theta) = g(t, \theta)h(\mathbf{x})$, or, in other words, if the density of \mathbf{x} conditionnaly to T is independent of θ .

The idea of the definition is the following: if, when T is known, the conditional density of (X_1, \ldots, X_n) no longer depends on θ , then T carries all the information concerning θ .

∮≸IRISA

Examples of sufficient statistics

 $^{\rm o}\,$ Gaussian law, m known, σ unknown

$$L(\mathbf{x},\theta) = \frac{1}{\sigma^n \sqrt{n} 2\pi} \exp\left(-\frac{1}{2}\left(\frac{x_i - m}{\sigma}\right)\right)$$

For the statistic $T = \sum (X_i - m)^2$, it can be shown that $T/\sigma^2 \rightsquigarrow \chi_n^2$ and hence that $L(\mathbf{x}, \theta) = g(t, \theta)h(\mathbf{x})$.

 $^{\circ}~$ Poisson with λ unknown

$$L(\mathbf{x}, \theta) = exp(-n\lambda)\frac{\lambda \sum x_i}{\prod x_i!}$$

The statistic $S = \sum X_i$ is exhaustive and $S \rightsquigarrow \mathcal{P}(n\lambda)$.

 \Rightarrow can tell if a statistic is exhaustive but does not tell how to find one if ever there exists one!

Theorem of Darmois

Theorem of Darmois

A necessary and sufficient condition for a sample (X_1, \ldots, X_n) to admit a sufficient statistic is that the density be from the exponential family, i.e.

$$f(\mathbf{x}, \theta) = \exp\left(a(x)\alpha(\theta) + b(x) + \beta(\theta)\right)$$

Under certain conditions on the function a, the statistic $T = \sum a(X_i)$ is sufficient.

- $^\circ~$ Note that the theorem applies only if the definition domain of X does not depend on $\theta~$
- In fact, there exists efficient (*i.e.* unbiased minimum variance) estimators only for the exponential family
- $^{\rm O}~$ Most common laws are from the exponential family (except those with a term of the form x^{θ})

∮ ≸IRISA

More sufficient statistics

The density of the law γ_{θ} is given by

$$\ln f(x,\theta) = -x + (\theta - 1)\ln(x) - \ln(\Gamma(\theta))$$

and the statistic $\sum \ln(X_i)$ is sufficient according to the previous theorem.

More examples of sufficient statistics:

Bernoulli with parameter pGaussian, m unknown, σ known Gaussian, m known, σ unknown Gaussian, m and σ unknown exponential law

$$\sum_{i} X_{i}$$

$$\sum_{i} (X_{i} - m)^{2}$$

$$(\overline{X}, S^{2})$$

$$\sum_{i} X_{i}$$

The role of sufficient statistics

Theorem of Rao-Blackwell

If T is an unbiased estimator of θ and U a sufficient statistic for θ , then $T^* = E[T|U]$ is an unbiased estimator of θ at least as good as T.

Theorem

If there exist a sufficient statistic U for θ , then the unique unbiased minimum variance estimator T of θ only depends on U.

Theorem of Lehmann-Scheffe

If T^* is an unbiased estimator of θ depending of a complete sufficient statistics U, then T^* is the unique unbiased minimum variance estimator of θ . In particular, if T is an unbiased estimator of θ , then $T^* = E[T|U]$.

In other words, an unbiased estimator function of a complete sufficient statistic is the best possible estimator.

∮ ∎IRISA

ESTIMATION TECHNIQUES

Moment based methods

Principle: express analytically the moments as a function of the parameter and estimate the parameter value based on the empirical estimates.

Let g_i be functions such that $\forall \theta \in \Theta$, $E_{\theta}[g_i(X)] < \infty$. Typical such functions are $g_i(x) = x^i$ or $g_i(x) = I(x \in \Delta_i)$.

Moment estimates are solutions to the equation system given by

 $E_{\theta}[g_i(x)] = \overline{\mu}_i$

Moment based methods: an example

• Lifetime of a component represented by the distribution

$$f(x; \alpha, \lambda) = [\lambda^{\alpha} / \Gamma(\alpha)] x^{\alpha - 1} \exp(-\lambda x)$$

• Let's consider the two moments

$$\mu_1(\theta) = E_{\theta}[X] = \alpha/\lambda$$
 and $\mu_2(\theta) = E_{\theta}[X^2] = \alpha(1+\alpha)/\lambda^2$

• This equation system has a single solution

$$lpha = (\mu_1(heta)/\sigma(heta))^2$$
 and $\lambda = \mu_1(heta)/\sigma^2(heta)$

where $\sigma^2(\theta) = \mu_2(\theta) - \mu_1^2(\theta)$.

 By replacing the moment by their empirical estimates, the moment estimates are obtained.

Maximum likelihood estimators

Let $X = (X_1, \ldots, X_n)$ be random variables in \mathbb{R}^d , and $p(x; \theta)$ the density. The likelihood is the joint density of the observations, seen as a function of $\theta \to p(x; \theta)$

The maximum likelihood estimator $\widehat{\theta}(X)$ is such that

$$p(x; \hat{\theta}(X)) \ge \max_{\theta \in \Theta} p(x; \theta)$$

and, if $p(x; \boldsymbol{\theta})$ is differentiable, it is given by

$$\frac{\partial p(x;\theta)}{\partial \theta} = 0$$

Note: the maximum likelihood estimator looks for the best fit of the (training) samples, assuming that the observations were the most probable.

Maximum likelihood estimators (cont'd)

In practice, we often use

$$\frac{\partial \ln p(x;\theta)}{\partial \theta} = 0 \; .$$

Moreover, if the X_i 's are iid, then

$$\ln p(x;\theta) = \sum \ln p(x_i;\theta)$$

Maximum likelihood estimators: an example

Assume $X_i \rightsquigarrow \mathcal{N}(\mu, \sigma^2)$. The log-likelihood is given by

$$\ln p(x;\mu,\sigma^2) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2$$

The maximum likelihood equations are given by

$$\frac{\partial \ln p(x;\mu,\sigma^2)}{\partial \mu} = 0$$
 and $\frac{\partial \ln p(x;\mu,\sigma^2)}{\partial \sigma^2} = 0$

for which the solutions are given by

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 and $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \widehat{\mu})^2$

∮§IRISA

Theory of maximum likelihood estimation

Maximum likelihood estimation is related to unbiased minimum variance estimation and moment estimators.

 $^{\circ}\,$ If there exists a sufficient statistics U, the maximum likelihood estimator depends on it.

$$p(x,\theta) = g(u,\theta)h(x) \quad \text{and} \quad \frac{\partial \ln p(x,\theta)}{\partial \theta} = \frac{\partial \ln g(u,\theta)}{\partial \theta} \quad \text{hence} \quad \widehat{\theta} = f(u)$$

- $\circ \ \ {\rm If} \ \widehat{\theta} \ {\rm is the \ ML \ estimator \ of \ } \theta, \ f(\widehat{\theta}) \ {\rm is \ the \ ML \ estimator \ of \ } f(\theta).$
- the ML estimate is asymptotically efficient, *i.e.*

$$V[\widehat{\theta}_n] \to \frac{1}{I_n(\theta)}$$

 For the exponential family, the ML estimates are equal to the moment estimates.

Dangers of data fitting

Maximum a posteriori

- The ML estimator might lead to bad solutions: *e.g.*, very small variances for Gaussians when the amount of training data is small
- The maximum a posteriori (MAP) estimator is given by

$$\widehat{\theta} = \arg\max_{\theta} p(\theta|x) = \arg\max_{\theta} p(x|\theta)p(\theta)$$

• The MAP estimator acts as a regularized ML estimator.

Other approaches

Some other fancy criteria for parameter estimation:

- (Bayesian) information criterion [BIC]
- minimum classification errors
 - explicit minimization [MCE]
 - neural networks based estimation
- maximum entropy (models) [Maxent]
 - choose the model with the largest entropy possible!
- maximum mutual information [MMI]
- ° etc.

Other approaches: examples

• Bayesian information criterion

$$BIC(x_1^n, \theta) = \ln p(x_1^n; \theta_{\mathsf{ML}}) - \frac{1}{2} \# \theta \ln(n)$$

minimum classification error

$$d(i) = -\ln p(x_i, c_i; \theta) + \ln \left(\frac{1}{N} \sum_{j \neq i} \exp(\eta \ln p(x_i, c_j; \theta))\right)^{\eta}$$
$$e(i) = \frac{1}{1 + \exp(-\alpha d(l) + \beta)}$$

 \Rightarrow minimize $\sum_{i} e(i)$ using a GPD algorithm.

Other approaches: examples

MCE algorithm:

- 1. initialize parameter θ_0
- 2. while not converged
 - (a) compute log-likelihoods $p(x_i, c_i; \theta_k)$
 - (b) update θ_{k+1} so as to maximize $\sum_i e_i$

What's the goal?

The goal can be

- 1. give the best model you can on a training set
- 2. give the expected performance of a model obtained by empirical risk minimization given a training set
- 3. give the best model and its expected performance
- $^\circ~$ if the goal is (1) \rightarrow model selection
- $^{\circ}\,$ if the goal is (2) ightarrow risk estimation
- $^{\circ}$ if the goal is (2) \rightarrow both!

Two popular protocoles are used either for model selection methods, namely validation and cross-validation.

Validation methodology

Principle: divide the data into two separate sets

• For risk estimation

- training set = used for model selection (eventually with divided into training/validation sets)
- test set = compute the empirical risk as an estimation of the risk
- For model selection
 - training set = estimate the parameters with some given hyper-parameters
 - validation set = estimate the empirical risk for the model obtained on the training set
 - ▷ select the hyper-parameters with the best empirical risk on the validation set
 - estimate the model parameters on the complete data set for the optimal hyper-parameters (optionnal)
 - \Rightarrow the risk on the validation set is a very bad estimator of the risk!

∮§IRISA

Cross-validation methodology

Principle: divide the data into N separate sets D_n

• For risk estimation

- \triangleright foreach seg D_i
 - \diamond model selection using the training set $\{D_{j\neq i}\}$
 - \diamond estimate the risk with the empirical risk on the test set D_i
- ▷ average the risk estimators
- For model selection
 - \triangleright foreach set D_i
 - ♦ select the best model on the training set $\{D_{j\neq i}\}$ for some given hyper-parameters
 - \diamond compute the empirical risk on the validation set D_i
 - select the hyper-parameters with the best average empirical risk over all the validation sets
 - ▷ estimate the model parameters on the complete data set given the optimal

parameters

∮ SIRISA

Data analysis and stochastic modeling – Machine learning and estimation theory. 54