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Why statistical modeling?

exploratory statistics −→ inferential statistics

describe generalize

analyze decide

→ summarize data using a (parametric) model

→ estimate the parameters of a model

→ decision, discrimination, classification

→ prediction
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Why statistical modeling?

Summarize all the data available in a model for

which the number of parameters is small with

respect to the amount of data

Use all the information available!

1. Prior knowledge of what we expect (and do not expect!) to see

2. Data, data, data, data... (the best data is more data)

⇓
STATISTICAL MACHINE LEARNING
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NOTIONS OF

MACHINE LEARNING

Slides courtesy of Samy Bengio.
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Various problems to solve

◦ Let Z1, Z2, · · · , Zn be an n-tuple random sample of an unknown

distribution of density p(z).

◦ All Zi are independently and identically distributed (iid).

1. Classification: Z = (X, Y ) ∈ R
d × {−1, 1}

⇒ given a new x, estimate P (Y |X = x)

2. Regression: Z = (X, Y ) ∈ R
d × R

⇒ given a new x, estimate E[Y |X = x]

3. Density estimation: Z ∈ R
d

⇒ given a new z, estimate p(z)
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The function space

Learning = search for a good function in a function space F

Examples of parametric functions:

◦ Regression

ŷ = f(x; a, b) = a · x+ b

◦ Classification

ŷ = f(x; a, b) = sign(a · x+ b)

◦ Density estimation

p̂(z) = f(z;µ,Σ) =
1

(2π)
|z|
2

√
|Σ|

exp

(
−1

2
(z − µ)TΣ−1(z − µ)

)

Data analysis and stochastic modeling – Machine learning and estimation theory. 6



The loss function

Learning = search for a good function in a function space F

Examples of loss functions L : Z × F
◦ Regression

L(z, f) = L((x, y), f) = (f(x)− y)2

◦ Classification

L(z, f) = L((x, y), f) =

{
0 if f(x) = y

1 otherwise

◦ Density estimation

L(z, f) = − log p(z)
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Risk and empirical risk

◦ Minimize the expected risk on F , defined for a given function f as

R(f) = EZ [L(z, f)] =

∫

Z

L(z, f)p(z)dz

◦ Induction Principle

⊲ find f ∈ F which minimizes R(f)
⊲ problems: p(z) is unknown, and we don’t have access to all

L(z, f)!!!

◦ Empirical Risk

R̂(f,Dn) =
1

n

n∑

i=1

L(zi, f)
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Risk and empricial risk (cont’d)

◦ The empirical risk:

R̂(f,Dn) =
1

n

n∑

i=1

L(zi, f)

◦ The (expected) risk:

R(f) = EZ [L(z, f)] =

∫

Z

L(z, f)p(z)dz

◦ The empirical risk is an unbiased estimate of the risk

The principle of empirical risk minimization (ERM):

f ⋆(Dn) = argmin
f∈F

R̂(f,Dn)
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Risk and empricial risk (cont’d)

◦ Training error:

R̂(f ⋆(Dn), Dn) = min
f∈F

R̂(f,Dn)

◦ Is the training error a biased estimate of the risk? YES.

E[R(f ⋆(Dn))− R̂(f ⋆(Dn), Dn)] ≥ 0

◦ The solution f ⋆(Dn) found by minimizing the training error is better on

Dn than on any other set D
′

n drawn from p(z).
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Risk and empirical risk
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true risk

empirical risk

UNDERFITTING OVERFITTING

=⇒ Don’t fit too much on a (limited) training set!
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Is it magic?

Excellent Results

Random
Tuning

Training
Data

$$$
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$$$
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Learning
Algorithm

Tuning

$$$
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$$$

$$$
$$$$$$

$$$

Random
Algorithm
Learning

Lot’s of Time and Effort

Garbage
Results
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Statistical models and machine learning

Statistical modeling and decision theory can be seen
as a particular “subset” of the general machine
learning theory

- function space limited to probability mass/density functions

- only classical decision rules for classification problems

- boils down to density estimation

with nice properties concerning the quality of the
estimated functions!
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Introductory example
[borrowed from A. Rakotomamonjy and G. Gasso, INSA Rouen]

We wish to classify a pixel into class 1 (dark) and class 2 (light).

If we know nothing on the pixel:

→ maxk P [Ck]
→ It’s dark!

If we know the pixel value:

→ make use of P [x|Ck]

→ choose according to P [Ck|x]
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Optimal decision rules

◦ Maximum likelihood model esimtation

θ̂ = argmax
θ

p(x; θ)

◦ Classification

Maximum a posteriori ĉ = argmaxc p(c|x) = argmaxc p(x|c)p(c)
Maximum likelihood ĉ = argmaxc pc(x)

Maximum likelihood is a particular case of maximum a posterior with p(c) U .

◦ Hypothesis testing

p(x;H0)

p(x;H1)

H0
>
<
H1

β
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Why maximum a posteriori?

D : x ∈ X −→ y = D(x) ∈ {1, . . . , K}
For a cost function ljk (cost of deciding class j when it’s in fact class k), the

(conditional) risk of deciding class j after observing x is given by

R(D(x) = j|x) =
K∑

k=1

ljkP [class(x) = k]

and leads to the theoretical (average) risk defined as

E[R(D(x))] =

∫

X

R(D(x)|x)p(x)dx

The MAP (aka Bayes) decision rule corresponds to choosing the class i for a

sample x such that

R(D(x) = i|x) < R(D(x) = j|x) ∀j 6= i

and minimizes E[R(D(x))].
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When Bayes gets naive
Given observed data x, we wish to predict a (discrete) label y. Bayesian

(optimal) decision says that

ŷ = argmax
y

p(y|x) = argmax
y

p(x, y) = argmax
y

p(x|y)p(y)

Example:

◦ y = weather of the day

◦ x = temprature, humidity, etc.

⇒ what model/law for P (y) and P (x|y)?

Data analysis and stochastic modeling – Machine learning and estimation theory. 17



When Bayes gets naive (cont’d)

The naive Bayes classifier assumes all observations to be (conditionally)

independent

p(x, y) = p(y)
n∏

i=1

p(xi|y)

argmax
c

P [Y = c|x1, x2, x3] = argmax
c

P [Y = c]
3∏

i=1

P [Xi = xi|Y = c]
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Parameter estimation

Statistical inference

Given a limited amount of samples from a population, infer the proper-

ties of the entire population.

Requires independent samples representative of the population

◦ sampling strategies exists (when sampling can be controled)

◦ assume this to be true in pattern recognition problems

Two inference strategies :

1. estimate basic characteristics, e.g. mean, variance or median, of the population

from the samples

2. estimate the parameters of a model which has been selected from expert

knowledge

Note : for simple models, estimating the mean and/or the variance is equivalent to estimating the parameters of the

model.
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Definition of a statistic

Each sample can be seen as a random variable Xi whose observed

value is xi, where all the variables Xi have the same distribution.

Example : suppose we extract n bulbs from a production line and measure their lifetime xi.

Assuming there has been no changes in the fabrication process, the values xi can be

considered as observations of a single random variable X . The model considers Xi the

random variable corresponding to the lifetime of the i’th bulb, whose value is xi. All the

variables Xi follow the same distribution, that of X .

Definition

A statistic is a random variable which is a measurable function of

X1, X2, . . . , Xn, denoted T = f(X1, X2, . . . , Xn).
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EMPIRICAL ESTIMATORS
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Some well known statistics

Some well known statistics over a set of observations X1, . . . , Xn:

Empirical frequency Fk =
1

n

n∑

i=1

δ(Xi = k)

Empirical mean estimator X =
1

n

n∑

i=1

Xi

Empirical variance estimator S2 =
1

n

n∑

i=1

(Xi −X)2

A statistic is a random variable since any function of random variables is a

random variable.
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Empirical mean estimation

X =
1

n

n∑

i=1

Xi is a statistic estimating the mean value of a population from a

finite set of samples.

0 10 20 30 40 50 60 70 80 90 100
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

zero-mean unit-variance Gaussian, 1000 samples per trial

empirical mean = -0.004, empirical standard deviation = 0.0306
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Distribution of the empirical mean

It can easily be shown that

E[X] = m and V [X] = σ2

n

The estimator X converges in quadratic mean toward m when n → ∞, since

E[(X −m)2] → 0.

Moreover, the central limit theorem states that

X −m

σ/
√
n

L−−−−→ N (0, 1)

Note on Gaussian variables: for Gaussian variables, the convergence is in fact

an equality, i.e. if X  N (0, 1), then X  N (m, σ√
n
).
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Empirical variance estimation

The empirical variance estimator is given by

S2 =

∑
(Xi −X)2

n
S2 =

∑
X2

i

n
−X

2

S2 =

∑
(Xi −m)2

n
− (X −m)2

which leads to

E[S2] =
n− 1

n
σ2

The estimator is biased, since E[S2] 6= σ2, but does converge when

n → ∞!
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Empirical proportion estimation

Given the discrete random variables Xi whose values are in [1, K], the

proportion estimation for the event k (or equivalently the probability

pk = P [X = k]) is estimated by the statistic

Fk =

∑
δ(Xi = k)

n

where δ(Xi = k) = 1 if Xi = k and 0 otherwise.

It can easily be shown that

E[Fk] = pk and V [Fk] =
pk(1−pk)

n

According to the central-limit theorem, F → N (p,
√

p(1−p)
n

).
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A practical example

Problem: Imagine a production line where objects are manufactured with a given

length, where we know from previous study that the (real) distribution of the length is a

Gaussian of mean 10 and standard deviation 2. For quality control purposes, a set of

25 samples are taken from the production line. What is the range of values for which

we have 9 chances over 10 of observing the empirical mean X?

Solution: We have seen so far that X → N (10; 2√
25
). Moreover, for a zero mean

unit variance Gaussian variable U , P (−1.64 < U < 1.64) = 0.9. Hence, with a

probability of 0.9, we have

10− 1.64
2√
25

< X < 10 + 1.64
2√
25

and the range of value for X is [9.34, 10.66].
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INTRODUCTION TO

THE THEORY OF ESTIMATION
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Quality of an estimator

We have seen that the empirical statistics X , S2 and F are estimators of

respectively the mean, the variance and the (discrete) probability, since they

almost surely converge towards the true quantity (resp. m, σ2 and pk).

But other estimators can be used, e.g. for the mean

◦ α-truncated mean where the αn biggest and smallest values are

discarded

◦ median value (α = 50%)

◦ mean extrema values ((max(Xi) + min(Xi))/2)

◦ a randomly chosen sample

◦ a constant value, e.g. 0

=⇒ need for a quality measure!
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Expected qualities

Let us consider an estimator T of a parameter θ, obtained from a set of

samples Xi. The expected quality of an estimator are:

◦ convergence: T → θ when n → ∞
◦ convergence speed: some estimators converges more rapidly than others

◦ risk: the risk is defined as the mean quadratic error

Eθ[(T − θ)2] = ( E[T ]− θ
︸ ︷︷ ︸

bias

)2 + V [T ]
︸ ︷︷ ︸
variance

⇒ Given two non biased estimators, the best one is the one with the

smallest variance.
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Generalized risk

The risk can be defined in a more general way using a loss/error funcion

l(t, θ), where l(θ, t) = 0 iif t = θ,

R(T, θ) = Eθ[l(T (X), θ)]

Example of error functions are

quadratic error l(a, b) = (a− b)2

absolute error l(a, b) = |a− b|
ǫ-loss l(a, b) = 0 if |a− b| < ǫ

Warning: unfortunately, directly minimizing the risk is possible only in

some very particular cases...
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Comparing the risk of estimators

◦ It is possible to compare estimators based on the risk, even though the

risk function is rarely easily defined

◦ An estimator T is better than an estimator T ′ if

R(T, θ) < R(T ′, θ) ∀θ ∈ Θ

◦ It is usually impossible to find an estimator T which is better than any

other for all the values of θ – think of a constant estimator

◦ Except in some very special cases, there seldom is an estimator which is

uniformly better than all the others
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About biased estimators

A biased estimator is not necessarily a bad estimator!

◦ Let’s consider the following biased and unbiased variance estimators

assuming the mean m is known

T = 1
n

∑
(Xi −m)2 S2

0 = 1
n−1

∑
(Xi −m)2

It can be shown that T is better that S2
0 since V [T ] < V [S2

0 ].

◦ Let’s consider the following biased and unbiased estimators of the

autocorrelation r(p) = E[XiXi−p] (assuming m is known and null)

R0 =
1

n− p

n−p∑

i=1

XiXi+p R1 =
1

n

n−p∑

i=1

XiXi+p

R0 is unbiased but with a huge variance when p → n, in which case R1

is often prefered.
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Unbiased minimum variance estimators

The problem of finding the best estimator cannot be solved in all generality

and we therefore put limits to the problem at hand.

◦ class of estimators

◦ still cannot solve the risk minimization problem in most of the cases

⇒ search for a given law family f(x, θ) the unbiased estimator of θ with the

minimal variance, the search of which is related to the notion of sufficient

statistic.
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Sufficient statistics

A sufficient statistic is a statistic which contains all the information carried by

the samples Xi on θ.

Let us denote

◦ L(x1, x2, . . . , xn; θ) the density or mass function of (X1, . . . , Xn),
◦ T a statistic whose density or mass function is given by g(t; θ)

Fisher’s factorization theorem

T is a sufficient statistic if L(x, θ) = g(t, θ)h(x), or, in other words, if

the density of x conditionnaly to T is independant of θ.

The idea of the definition is the following: if, when T is known, the conditional density

of (X1, . . . , Xn) no longer depends on θ, then T carries all the information

concerning θ.
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Examples of sufficient statistics

◦ Gaussian law, m known, σ unknown

L(x, θ) =
1

σn
√
n2π

exp

(
−1

2

(
xi −m

σ

))

For the statistic T =
∑

(Xi −m)2, it can be shown that T/σ2
 χ2

n

and hence that L(x, θ) = g(t, θ)h(x).

◦ Poisson with λ unknown

L(x, θ) = exp(−nλ)
λ
∑

xi∏
xi!

The statistic S =
∑

Xi is exhaustive and S  P(nλ).

⇒ can tell if a statistic is exhaustive but does not tell how to find
one if ever there exists one!
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Theorem of Darmois

Theorem of Darmois

A necessary and sufficent condition for a sample (X1, . . . , Xn) to

admit a sufficient statistic is that the density be from the exponential

family, i.e.

f(x, θ) = exp (a(x)α(θ) + b(x) + β(θ))

Under certain conditions on the function a, the statistic T =
∑

a(Xi)
is sufficient.

◦ Note that the theorem applies only if the definition domain of X does not depend on θ

◦ In fact, there exists efficient (i.e. unbiased minimum variance) estimators only for the

exponential family

◦ Most common laws are from the exponential family (except those with a term of the form

xθ)
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More sufficient statistics

The density of the law γθ is given by

ln f(x, θ) = −x+ (θ − 1) ln(x)− ln(Γ(θ))

and the statistic
∑

ln(Xi) is sufficient according to the previous theorem.

More examples of sufficient statistics:

Bernoulli with parameter p
∑

Xi

Gaussian, m unknown, σ known
∑

Xi

Gaussian, m known, σ unknown
∑

(Xi −m)2

Gaussian, m and σ unknown (X,S2)

exponential law
∑

Xi
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The role of sufficient statistics

Theorem of Rao-Blackwell

If T is an unbiased estimator of θ and U a sufficient statistic for θ, then

T ∗ = E[T |U ] is an unbiased estimator of θ at least as good as T .

Theorem

If there exist a sufficient statistic U for θ, then the unique unbiased

minimum variance estimator T of θ only depends on U .

Theorem of Lehmann-Scheffe

If T ∗ is an unbiased estimator of θ depending of a complete sufficient

statistics U , then T ∗ is the unique unbiased minimum variance estimator

of θ. In particular, if T is an unbiased estimator of θ, then T ∗ = E[T |U ].

In other words, an unbiased estimator function of a complete sufficient statistic

is the best possible estimator.
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ESTIMATION TECHNIQUES
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Moment based methods

Principle: express analytically the moments as a function of the parameter

and estimate the parameter value based on the empirical estimates.

Let gi be functions such that ∀θ ∈ Θ, Eθ[gi(X)] < ∞. Typical such

functions are gi(x) = xi or gi(x) = I(x ∈ ∆i).

Moment estimates are solutions to the equation system given by

Eθ[gi(x)] = µi
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Moment based methods: an example

◦ Lifetime of a component represented by the distribution

f(x;α, λ) = [λα/Γ(α)]xα−1 exp(−λx)

◦ Let’s consider the two moments

µ1(θ) = Eθ[X] = α/λ and µ2(θ) = Eθ[X
2] = α(1 + α)/λ2

◦ This equation system has a single solution

α = (µ1(θ)/σ(θ))
2 and λ = µ1(θ)/σ

2(θ)

where σ2(θ) = µ2(θ)− µ2
1(θ).

◦ By replacing the moment by their empirical estimates, the moment

estimates are obtained.
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Maximum likelihood estimators

Let X = (X1, . . . , Xn) be random variables in R
d, and p(x; θ) the density.

The likelihood is the joint density of the observations, seen as a function of

θ → p(x; θ)

The maximum likelihood estimator θ̂(X) is such that

p(x; θ̂(X)) ≥ max
θ∈Θ

p(x; θ)

and, if p(x; θ) is differentiable, it is given by

∂p(x; θ)

∂θ
= 0 .

Note: the maximum likelihood estimator looks for the best fit of the (training)

samples, assuming that the observations were the most probable.
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Maximum likelihood estimators (cont’d)

In practice, we often use

∂ ln p(x; θ)

∂θ
= 0 .

Moreover, if the Xi’s are iid, then

ln p(x; θ) =
∑

ln p(xi; θ)
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Maximum likelihood estimators: an example

Assume Xi  N (µ, σ2). The log-likelihood is given by

ln p(x;µ, σ2) = −n

2
ln(2π)− n

2
ln(σ2)− 1

2σ2

n∑

i=1

(xi − µ)2

The maximum likelihood equations are given by

∂ ln p(x;µ,σ2)
∂µ

= 0 and
∂ ln p(x;µ,σ2)

∂σ2 = 0

for which the solutions are given by

µ̂ =
1

n

n∑

i=1

Xi and σ̂2 =
1

n

n∑

i=1

(Xi − µ̂)2
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Theory of maximum likelihood estimation

Maximum likelihood estimation is related to unbiased minimum variance

estimation and moment estimators.

◦ If there exists a sufficient statistics U , the maximum likelihood estimator
depends on it.

p(x, θ) = g(u, θ)h(x) and
∂ ln p(x, θ)

∂θ
=

∂ ln g(u, θ)

∂θ
hence θ̂ = f(u)

◦ If θ̂ is the ML estimator of θ, f(θ̂) is the ML estimator of f(θ).

◦ the ML estimate is asymptotically efficient, i.e.

V [θ̂n] →
1

In(θ)

◦ For the exponential family, the ML estimates are equal to the moment

estimates.
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Dangers of data fitting
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UNDERFITTING OVERFITTING
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Maximum a posteriori

◦ The ML estimator might lead to bad solutions: e.g., very small variances

for Gaussians when the amount of training data is small

◦ The maximum a posteriori (MAP) estimator is given by

θ̂ = argmax
θ

p(θ|x) = argmax
θ

p(x|θ)p(θ)

◦ The MAP estimator acts as a regularized ML estimator.

prior ML estimation

Data analysis and stochastic modeling – Machine learning and estimation theory. 48



Other approaches

Some other fancy criteria for parameter estimation:

◦ (Bayesian) information criterion [BIC]

◦ minimum classification errors

⊲ explicit minimization [MCE]

⊲ neural networks based estimation

◦ maximum entropy (models) [Maxent]

⊲ choose the model with the largest entropy possible!

◦ maximum mutual information [MMI]

◦ etc.
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Other approaches: examples

◦ Bayesian information criterion

BIC(xn
1 , θ) = ln p(xn

1 ; θML)−
1

2
#θ ln(n)

◦ minimum classification error

d(i) = − ln p(xi, ci; θ) + ln

(
1

N

∑

j 6=i

exp(η ln p(xi, cj; θ))

)η

e(i) =
1

1 + exp(−αd(l) + β)

⇒ minimize
∑

i e(i) using a GPD algorithm.
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Other approaches: examples

MCE algorithm:

1. initialize parameter θ0

2. while not converged

(a) compute log-likelihoods p(xi, ci; θk)

(b) update θk+1 so as to maximize
∑

i ei
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What’s the goal?

The goal can be

1. give the best model you can on a training set

2. give the expected performance of a model obtained by empirical risk

minimization given a training set

3. give the best model and its expected performance

◦ if the goal is (1) → model selection

◦ if the goal is (2) → risk estimation

◦ if the goal is (2) → both!

Two popular protocoles are used either for model selection methods, namely

validation and cross-validation.
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Validation methodology

Principle: divide the data into two separate sets

◦ For risk estimation

⊲ training set = used for model selection (eventually with divided into

training/validation sets)

⊲ test set = compute the empirical risk as an estimation of the risk

◦ For model selection

⊲ training set = estimate the parameters with some given hyper-parameters

⊲ validation set = estimate the empirical risk for the model obtained on the

training set

⊲ select the hyper-parameters with the best empirical risk on the validation set

⊲ estimate the model parameters on the complete data set for the optimal

hyper-parameters (optionnal)

⇒ the risk on the validation set is a very bad estimator of the risk!
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Cross-validation methodology

Principle: divide the data into N separate sets Dn

◦ For risk estimation

⊲ foreach seg Di

⋄ model selection using the training set {Dj 6=i}
⋄ estimate the risk with the empirical risk on the test set Di

⊲ average the risk estimators

◦ For model selection

⊲ foreach set Di

⋄ select the best model on the training set {Dj 6=i} for some given

hyper-parameters

⋄ compute the empirical risk on the validation set Di

⊲ select the hyper-parameters with the best average empirical risk over all the

validation sets

⊲ estimate the model parameters on the complete data set given the optimal

parameters
Data analysis and stochastic modeling – Machine learning and estimation theory. 54
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