Data analysis and stochastic
modeling

Lecture 3 — Cluster analysis

Guillaume Gravier

guillaume.gravier@irisa.fr

with a lot of help from Dr. HOI Chu’s course
https://svn.mosuma.net/r4000/doc/course/ci6227/public/lectures/lecture07cluster.pdf
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What are we gonna talk about today?

© What's cluster analysis?

© Partitioning clustering
— k-means and the likes

© Hierarchical clustering
— bottom-up clustering, linkage methods

© A quick survey of other methods
— density methods, spectral clustering, etc.

© (Case study

In short: an overview of the art of grouping data according to their
similarity.
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What is clustering?

Clustering consists in grouping data together in
“classes” where objects in a class are similar and
objects from different classes are different.
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Intra-cluster
distances are
minimized

Inter-cluster
distances are
maximized
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An ambiguous notion
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What'’s clustering good for?

© (exploratory) data analysis and understanding (data mining)

> Biology: taxonomy of living things

> Information retrieval: grouping similar documents
> Land use: identifying areas with similar properties
> Marketing: discover distinct groups of customers

> City planning, earth quake analysis, etc.

© pre-processing tool

> quantization, coding and compression
> classification, segmentation, etc.

> Kk nearest neighbor search
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Quality

Good clustering

low within-class similarity

high across-class similarity (eventually)

but other factors are to be considered:
© scalability
© dynamic behavior
© ability to deal with noise and outliers
© (in)sensitive to the order of input
° etc.

ueh
A\

Data analysis and stochastic modeling — Cluster analysis 6



Two main philosophies

Clustering = a set of clusters

N . . . , /,/. ) |"\._\\ ) ° \
© partitioning data: divide the entire data set /o N
. [ @ :/ o
> non-overlapping clusters
> each object belongs to one a only one -
cluster i ™~
[;\ . . )

© aggregating data: group similar data
> nested clusters
> hierarchical structure

-—

But other philosophies do exist: density-based, grid-based, model-based,
constraints-based, etc.
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About pairwise distances

similar objects = notion of distance

© Any measure of the similarity d(z;, z;) between two objects can be used
to solve the problem

© The adequate measure highly depends on the nature of the data and on
the nature of the problem

> distance measures
¢ Euclidian, Manhattan, Mahalanobis, XQ, etc.
> similarity (no triangular inequality)
© cosine, template matching, edit distance, generalized likelihood, etc.

> conceptual measures

¢ whatever one can think of...
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Some typology elements

exclusive or not?

> points might belong to several clusters (with or without weights)

fuzzy or not?

> in fuzzy algorithms, a point belong to all clusters with a weight & [O, 1]

partial or not?
> only part of the data is clustered

homogeneous or not?
> clusters of very different shape
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Some typology elements (contq)

well separated clusters
> every point in the cluster is closer to every point in the cluster than to

any point outside the cluster

center clusters

> every point in the cluster is closer to the center of the cluster than to

the center of any other cluster

contiguous cluster

> every point in the cluster is closer to at least one point in the cluster

than to any point in another cluster

density-based cluster

> dense region of points in a cluster separated from other clusters by

low-density regions
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Some typology elements (contq)

well separated center

CG- 00

contiguous dense

) W UEh
UNIVERSITE DE €

RENNES 1 Data analysis and stochastic modeling — Cluster analysis 11



Some typology elements (contq)

To select the most appropriate solution one must look at the following elements
© Type of proximity or density measure
© Sparseness

> Dictates type of similarity; Adds to efficiency

o Attribute type
> Dictates type of similarity
© Type of Data
© Dimensionality
° Noise and Ouitliers

° Type of Distribution
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The k-means algorithm

Idea: Divide some data x; into /K clusters represented by the mean value of
their members c;. (centroids), so as to minimize the overall quantization error

e = Z d(zi, creiy)

Algorithm:

initialize /X centroids cg
while not converged do
forr =1 — N do
assign x; to the closest centroid (f(¢) < arg ming d(z;, cx))
end for
fortr =1 — K do
update centroid c;. from all assigned points
end for
end while

[J. B. McQueen. Some methods for classification and analysis of multivariate observations. Proc. Symposium on

Math., Statistics, and Probability, pp. 281-297, 1967]
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The art of k-means clustering

© the distance is the key
> mean has to have a meaning ...
> ... but we can use the median instead (the k-medians or k-medioids

algorithm)

© convergence = nothing moves anymore!
> convergence is guaranteed
> often in 10 to 20 iterations

© complexity = O(iKNd)

> | = #iterations, d=dimension(x;)
© initialization is tricky!

> random choice

> multiple runs

> hierarchical k-means (LBG)
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Initialization issues
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Initialization issues (contq)
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Initialization issues (contq)
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Initialization issues (contq)
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Initialization issues (contq)

° multiple runs
> but that’s costly!
> have to deal with “dead” clusters (e.g., replace them)

© hierarchical k-means
> the original Linde-Buzo-Gray algorithm (aka bisecting k-means)

initialize centroids c1 (1) to gravity center

14+ 1

while not enough clusters (z < p) do
split each centroids ¢; (j) (along maximum variance line)
run k-means

end while

> and its many variants
¢ split only the biggest cluster — arbitrary number of clusters instead of 27
¢ points stay within their parent cluster — much faster

In any case, local optima!
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Pros and Cons

° Pros

° Cons

>

>

>

>

>

>

>

>

>

simple, clear and popular
decently efficient

guaranteed convergence

can accomodate any shape (with enough
clusters)

initialization and local optima
need to define the number of clusters
convex clusters of roughly the same size

and density
tends to create unbalanced cells
highly sensitive to noise and outliers

Data analysis and stochastic modeling — Cluster analysis
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Hierarchical clustering

Idea: Progressively generate clusters by merging or divising data
© generate nested clusters

© can be visualized as a dendogram
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Agglomerative vs. divisive

° Agglomerative bottom-up clustering

> Bottom-up construction of the dendogram by progressively merging clusters

initialize [V singleton clusters
nclusters < IV
while nclusters > 0 do
merge the two closest clusters
nclusters <— nclusters — 1

end while

© Divisive bottom-up clustering
> top-down construction of the dendogram
> DIANA (Divisive ANAlysis)

ﬂ@ Eue}:
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Proximity matrix and bottom-up clustering
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Proximity matrix and bottom-up clustering (conta)
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“Linkage” types

linkage = how to measure the distance between clusters
o single linkage: D(A, B) = min(d(z,y) V(z,y) € A X B)
— for well-separated classes only
° total linkage: D(A, B) = max(d(z,y) V(x,y) € Ax B)
— favors large clusters

o average linkage = average distance between elements in A and B

— robust to noise and outliers but biased towards globular clusters
° Ward’s linkage = increase in variance for the cluster being merged

© and many others, including distance between mean/median or between
(statistical) models of the data
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“Linkage” types (contdq)
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Pros and Cons

° Pros
> better than k-means with non-metric distances
> can combine metrics and cluster balancing criteria
> possibility to define a posteriori the number of clusters (though not so
easy in practice)
°© Cons
> quite slow and computationally demanding (O(/N?) or O(N? log(N)))

> |ocal optima may not be globally good
¢ cannot undo what was done previously
¢ require relocation methods

© cutting the dendogram is not as easy as it seems to be
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Bottom-up clustering for temporal partitioning

© detect boundaries of segments —» see hypothesis testing

© group together segments with similar characteristics

> model based representation of clusters (Gaussian densities and mixtures)
> Kullback-Leibler divergence, generalized likelihood ratio

© find out where to cut the dendogram

> model selection approaches: Bayesian information criterion
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Mining TV sequences with bottom-up clustering

visual
clustering

audlc_)wsual > ever_1t > SVM e\_/ent
consistency selection detection

clt?sutgir(i)ng I ‘—ﬁ—l
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Similarity graphs for spectral clustering

© data point = node in a graph
© edges encode the similarity between two nodes with weights w, ;

> E_neighbor graphS Data points epsilonfgiaph, epsilon=0.3
> k-nearest neighbor graphs
> fully connected graphs

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416, 2007]
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Graph Laplacian

The unnormalized graph Laplacian is the n X n matrix defined as
L=D-W
with D a diagonal matrix with elements d; = Zj W

Important properties of L:
o L as n non-negative, real valued eigenvalues
o the smallest eigenvalue is 0 and corresponds to the unit eigen vector ¥

° the multiplicity of the eigenvalue 0 is the number of connected
components

—> exploit the eigenvalues of the Laplacian of the similarity graph to
perform clustering

»

| Normalized versions of the Laplacian are often used in practice.
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The algorithmics of spectral clustering

Input: similarity matrix S € R™*"™, number of clusters £

Algorithm:

construct a similarity graph from S with adjacency matrix W
compute the Laplacian L

compute the k eigenvectors uq, ..., u; of L associated with the & lowest
eigenvalues
define U € R™* with ug, . .., uy as columns

define y; € R” the i-th row of U for i € [1, n]
run k-means clustering (or other) on the vector y;

Strong links with
© graph cut algorithms (NCut, RatioCut, MinMaxCut)

© random walks theory (Markov clustering)
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Spectral clustering: Toy example

Histogram of the sample
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Density-based clustering in a nutshell

© Track density-connected points = neighborhood analysis
© arbitrary shaped clusters, robustness to noise, one pass over the data
© Typical algorithms: DBSCAN, OPTICS, DENCLUE
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Density-based clustering in a nutshell (contq)

1. label points

© core points: enough points around
© border points: not enough points around

but close to a core point
© noise points: none of the above

2. eliminate noise points
3. create clusters from core points

4. assign border points to core clusters
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Clustering with obstacles
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Clustering in high dimension space

© many applications require high-dimension spaces: text documents,
images, DNA data, efc.

© high dimensions raises new challenges

> many irrelevant dimensions might mask clusters
> distance measure becomes meaningless (curse of dimensionality)
> cluster may exist only in some subspaces

o several workarounds

> feature transformation

¢ PCA/SVD if features are correlated/redundant

> feature selection
¢ select feature where nice clusters appear

> subspace clustering

¢ find clusters in all possible subspaces (CLIQUE, Proclus)
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A fun (and practical) use of text clustering

rollina stone

Tree Visualization

= All Topics (98)

4 Rolling Stones News (19)

S Rolling Stones Biography (8)

4 Rolling Stones Lyrics (8
4 Rolling Stones are an
English (7)

1= Mick Jagger (6)
- Rolling Stone Magazine (6)

{1 Rolling Stones Began (6)

2 Rolling Stones Tickets (5}
2 Links (4)
= MP3 Downloads (4)

< more | show all

ralling stone --
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ter Rolling Stones Biography with 8 documents (search for more like this)
The Rolling Stones - WolfgangsVault.com * &

... with The Rolling Stones hiography, detailed summary of the shows and related The Rolling Stones memorabilia items, including vintage tees, poster..,

Rt A

volfgangsvault.com/the-rolling-stones/

6 The History of Rock Music. Relling Stones: biography ... = &

A guide to Rolling Stones: biography, discography, reviews, links

. http:/)

-aruffi.comivell/stones html

. The Rolling Stones Biography - Biography.com &

- A look at the legendary group The Rolling Stones on Biography.com.

http/ w.biography.com/articles/The-Rolling-Stone:

 Find the Rolling Stones Lyrics to 'Satisfaction’ and Many More Here! ... The Rolling Stones are & British rock band who rose to prominence during the mid-1960s. ...

 http

-9462754

The Rolling Stones Lyrics - Lyrics, Video, Biography = &

W

rolling-stones-lyric

61 The Rolling Stones - VH1l.com * &
- Rolling Stones biography, interviews, news, tour dates, and a discography with album information and audio clips.
hittpfhaanae vh 1 .comfartis lling_stones/artist.jktml

76 Rolling Stones - rock and roll music at the RockSite “ &
- The Rolling Stones at The RockSite - biography, links, discography, albums, bio FAQ, pics, concerts, tour dates, tickets
http fhannwe rocksite.info/r-rolling-stones .htm

79 Rolling Stones Discography and Music at CD Universe * &
Low prices on Rolling Stones discography of music albums at CD Universe, with top rated service, Rolling Stones songs, discography, biography, cover ...
http-f cduniverse.com/sresult.asp?style=music&HT_Search_|nfo=Rolling+Stones&HT_Search=ARTIST&frm=lk_s

6: The Rolling Stones - Discography, biography, music, MP3s .., * &

The Rolling Stones is a group formed in 1962. Their discography includes Hot Rocks 1964-1971, Exile on Main St., Sticky Fingers, Forty Licks and Let It Bleed. ...

i htp

undunwound.com/music/ihe-rolling-stone

http://search.carrot2.org/stable/search

New features!

Download
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Another example mixing all you’ve seen
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About the evaluation of clustering

© subjective evaluation by inspecting clusters
© within cluster distortion (if a meaningful metric exists)
© any oritrary objective quality criterion (but none out of the shelf)

© special case with temporal segmentations
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To get to know more ...

© So many textbooks (look for clustering and data mining)!

© So many resources on the Web (not in Wikipedia this time)
> free code available everywhere

> lot’s of tutorials/lessons
¢ Dr. HOI Chu’s course:
https://svn.mosuma.net/r4000/doc/course/ci6227/public/lectures/lecture07cluster.pdf
¢ Prof. Jiawei Han courses: http://www.cs.uiuc.edu/ hanj
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