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What are we gonna talk about today?

◦ What’s cluster analysis?

◦ Partitioning clustering

→ k-means and the likes

◦ Hierarchical clustering

→ bottom-up clustering, linkage methods

◦ A quick survey of other methods

→ density methods, spectral clustering, etc.

◦ Case study

In short: an overview of the art of grouping data according to their

similarity.
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What is clustering?

Clustering consists in grouping data together in
“classes” where objects in a class are similar and
objects from different classes are different.
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An ambiguous notion
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What’s clustering good for?

◦ (exploratory) data analysis and understanding (data mining)

⊲ Biology: taxonomy of living things

⊲ Information retrieval: grouping similar documents

⊲ Land use: identifying areas with similar properties

⊲ Marketing: discover distinct groups of customers

⊲ City planning, earth quake analysis, etc.

◦ pre-processing tool

⊲ quantization, coding and compression

⊲ classification, segmentation, etc.

⊲ k nearest neighbor search
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Quality

Good clustering

= low within-class similarity

= high across-class similarity (eventually)

but other factors are to be considered:

◦ scalability

◦ dynamic behavior

◦ ability to deal with noise and outliers

◦ (in)sensitive to the order of input

◦ etc.
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Two main philosophies

Clustering⇒ a set of clusters

◦ partitioning data: divide the entire data set

⊲ non-overlapping clusters

⊲ each object belongs to one a only one

cluster

◦ aggregating data: group similar data

⊲ nested clusters

⊲ hierarchical structure

But other philosophies do exist: density-based, grid-based, model-based,

constraints-based, etc.
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About pairwise distances

similar objects⇒ notion of distance

◦ Any measure of the similarity d(xi, xj) between two objects can be used

to solve the problem

◦ The adequate measure highly depends on the nature of the data and on

the nature of the problem

⊲ distance measures

⋄ Euclidian, Manhattan, Mahalanobis, χ2, etc.

⊲ similarity (no triangular inequality)

⋄ cosine, template matching, edit distance, generalized likelihood, etc.

⊲ conceptual measures

⋄ whatever one can think of...
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Some typology elements

◦ exclusive or not?

⊲ points might belong to several clusters (with or without weights)

◦ fuzzy or not?

⊲ in fuzzy algorithms, a point belong to all clusters with a weight ∈ [0, 1]

◦ partial or not?

⊲ only part of the data is clustered

◦ homogeneous or not?

⊲ clusters of very different shape
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Some typology elements (cont’d)

◦ well separated clusters

⊲ every point in the cluster is closer to every point in the cluster than to

any point outside the cluster

◦ center clusters

⊲ every point in the cluster is closer to the center of the cluster than to

the center of any other cluster

◦ contiguous cluster

⊲ every point in the cluster is closer to at least one point in the cluster

than to any point in another cluster

◦ density-based cluster

⊲ dense region of points in a cluster separated from other clusters by

low-density regions
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Some typology elements (cont’d)

well separated center

contiguous dense
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Some typology elements (cont’d)

To select the most appropriate solution one must look at the following elements

◦ Type of proximity or density measure

◦ Sparseness

⊲ Dictates type of similarity; Adds to efficiency

◦ Attribute type

⊲ Dictates type of similarity

◦ Type of Data

◦ Dimensionality

◦ Noise and Outliers

◦ Type of Distribution
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The k-means algorithm

Idea: Divide some data xi into K clusters represented by the mean value of

their members ck (centroids), so as to minimize the overall quantization error

e =
∑

i

d(xi, cf(i))

Algorithm:

initialize K centroids ck
while not converged do

for i = 1→ N do

assign xi to the closest centroid (f(i)← argmink d(xi, ck))
end for

for i = 1→ K do

update centroid ck from all assigned points

end for

end while

[J. B. McQueen. Some methods for classification and analysis of multivariate observations. Proc. Symposium on

Math., Statistics, and Probability, pp. 281-297, 1967]
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The art of k-means clustering

◦ the distance is the key

⊲ mean has to have a meaning ...

⊲ ... but we can use the median instead (the k-medians or k -medioids

algorithm)

◦ convergence = nothing moves anymore!

⊲ convergence is guaranteed

⊲ often in 10 to 20 iterations

◦ complexity = O(iKNd)

⊲ i = #iterations, d=dimension(xi)

◦ initialization is tricky!

⊲ random choice

⊲ multiple runs

⊲ hierarchical k-means (LBG)
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Initialization issues
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Initialization issues (cont’d)
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Initialization issues (cont’d)
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Initialization issues (cont’d)
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Initialization issues (cont’d)

◦ multiple runs

⊲ but that’s costly!

⊲ have to deal with “dead” clusters (e.g., replace them)

◦ hierarchical k-means

⊲ the original Linde-Buzo-Gray algorithm (aka bisecting k-means)

initialize centroids c1(1) to gravity center

i← 1

while not enough clusters (i < p) do

split each centroids ci(j) (along maximum variance line)

run k-means

end while

⊲ and its many variants
⋄ split only the biggest cluster→ arbitrary number of clusters instead of 2p

⋄ points stay within their parent cluster→ much faster

In any case, local optima!
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Pros and Cons

◦ Pros

⊲ simple, clear and popular

⊲ decently efficient

⊲ guaranteed convergence

⊲ can accomodate any shape (with enough

clusters)

◦ Cons

⊲ initialization and local optima

⊲ need to define the number of clusters

⊲ convex clusters of roughly the same size

and density

⊲ tends to create unbalanced cells

⊲ highly sensitive to noise and outliers
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Pros and Cons illustrated

Data analysis and stochastic modeling – Cluster analysis 21



Hierarchical clustering

Idea: Progressively generate clusters by merging or divising data

◦ generate nested clusters

◦ can be visualized as a dendogram
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Agglomerative vs. divisive

◦ Agglomerative bottom-up clustering

⊲ Bottom-up construction of the dendogram by progressively merging clusters

initialize N singleton clusters

nclusters← N

while nclusters > 0 do

merge the two closest clusters

nclusters← nclusters− 1

end while

◦ Divisive bottom-up clustering

⊲ top-down construction of the dendogram

⊲ DIANA (Divisive ANAlysis)
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Proximity matrix and bottom-up clustering
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Proximity matrix and bottom-up clustering (cont’d)
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“Linkage” types

linkage = how to measure the distance between clusters

◦ single linkage: D(A,B) = min(d(x, y) ∀(x, y) ∈ A× B)

→ for well-separated classes only

◦ total linkage: D(A,B) = max(d(x, y) ∀(x, y) ∈ A× B)

→ favors large clusters

◦ average linkage = average distance between elements in A and B

→ robust to noise and outliers but biased towards globular clusters

◦ Ward’s linkage = increase in variance for the cluster being merged

◦ and many others, including distance between mean/median or between

(statistical) models of the data
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“Linkage” types (cont’d)
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Pros and Cons

◦ Pros

⊲ better than k-means with non-metric distances

⊲ can combine metrics and cluster balancing criteria

⊲ possibility to define a posteriori the number of clusters (though not so

easy in practice)

◦ Cons

⊲ quite slow and computationally demanding (O(N3) or O(N2 log(N)))
⊲ local optima may not be globally good
⋄ cannot undo what was done previously
⋄ require relocation methods

◦ cutting the dendogram is not as easy as it seems to be
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Bottom-up clustering for temporal partitioning

◦ detect boundaries of segments→ see hypothesis testing

◦ group together segments with similar characteristics

⊲ model based representation of clusters (Gaussian densities and mixtures)

⊲ Kullback-Leibler divergence, generalized likelihood ratio

◦ find out where to cut the dendogram

⊲ model selection approaches: Bayesian information criterion
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Mining TV sequences with bottom-up clustering
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Similarity graphs for spectral clustering

◦ data point = node in a graph

◦ edges encode the similarity between two nodes with weights wij

⊲ ǫ-neighbor graphs

⊲ k-nearest neighbor graphs

⊲ fully connected graphs

[Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416, 2007]
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Graph Laplacian

The unnormalized graph Laplacian is the n× n matrix defined as

L = D−W

with D a diagonal matrix with elements di =
∑

j wij .

Important properties of L:

◦ L as n non-negative, real valued eigenvalues

◦ the smallest eigenvalue is 0 and corresponds to the unit eigen vector 1

◦ the multiplicity of the eigenvalue 0 is the number of connected

components

⇒ exploit the eigenvalues of the Laplacian of the similarity graph to

perform clustering

Normalized versions of the Laplacian are often used in practice.
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The algorithmics of spectral clustering

Input: similarity matrix S ∈ R
n×n, number of clusters k

Algorithm:

construct a similarity graph from S with adjacency matrix W
compute the Laplacian L
compute the k eigenvectors u1, . . . ,uk of L associated with the k lowest

eigenvalues

define U ∈ R
n×k with u1, . . . ,uk as columns

define yi ∈ R
k the i-th row of U for i ∈ [1, n]

run k-means clustering (or other) on the vector yi

Strong links with

◦ graph cut algorithms (NCut, RatioCut, MinMaxCut)

◦ random walks theory (Markov clustering)
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Spectral clustering: Toy example
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Density-based clustering in a nutshell

◦ Track density-connected points = neighborhood analysis

◦ arbitrary shaped clusters, robustness to noise, one pass over the data

◦ Typical algorithms: DBSCAN, OPTICS, DENCLUE
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Density-based clustering in a nutshell (cont’d)

1. label points

◦ core points: enough points around

◦ border points: not enough points around

but close to a core point

◦ noise points: none of the above

2. eliminate noise points

3. create clusters from core points

4. assign border points to core clusters
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Clustering with obstacles
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Clustering in high dimension space

◦ many applications require high-dimension spaces: text documents,

images, DNA data, etc.

◦ high dimensions raises new challenges

⊲ many irrelevant dimensions might mask clusters

⊲ distance measure becomes meaningless (curse of dimensionality)

⊲ cluster may exist only in some subspaces

◦ several workarounds

⊲ feature transformation

⋄ PCA/SVD if features are correlated/redundant

⊲ feature selection
⋄ select feature where nice clusters appear

⊲ subspace clustering

⋄ find clusters in all possible subspaces (CLIQUE, Proclus)
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A fun (and practical) use of text clustering

http://search.carrot2.org/stable/search
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Another example mixing all you’ve seen

MediaEval 2013 Social Event Detection Task
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About the evaluation of clustering

◦ subjective evaluation by inspecting clusters

◦ within cluster distortion (if a meaningful metric exists)

◦ any oritrary objective quality criterion (but none out of the shelf)

◦ special case with temporal segmentations

A B C A
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To get to know more ...

◦ So many textbooks (look for clustering and data mining)!

◦ So many resources on the Web (not in Wikipedia this time)

⊲ free code available everywhere

⊲ lot’s of tutorials/lessons
⋄ Dr. HOI Chu’s course:

https://svn.mosuma.net/r4000/doc/course/ci6227/public/lectures/lecture07cluster.pdf

⋄ Prof. Jiawei Han courses: http://www.cs.uiuc.edu/ hanj
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