Data analysis and stochastic modeling

Lecture 2 – Descriptive and exploratory statistics

Guillaume Gravier

guillaume.gravier@irisa.fr

1

What are we here for?

1. data from observations

- $^{\circ}$ see what the data looks like
- ° describe the data: distribution, clustering, etc.
- summarize the data
- 2. models for decision
 - infer more general properties
 - make a (stochastic) model of the data
 - make decisions: classification, simulation, etc.

\Rightarrow Provide the elementary tools and techniques

What are we gonna talk about today?

- Representing and viewing data
 - ightarrow tables and graphics
- Describing 1D data
 - \rightarrow mean, median, standard deviation, quartiles, mode, etc.
- Measuring the relation between variables
 - ightarrow correlations
- Exploring multidimensional data
 - ightarrow principal component analysis, correspondence analysis, factor analysis, etc.

In short: have a feeling for a distribution, describe a distribution, identify clusters, identify important factors.

What data and where from?

Data come from **various sources**: Physical measures, experimental results, descriptive features, etc.

- 1. they happen to be here
 - \rightarrow may not be representative
- 2. you design their collect
 - \rightarrow sample representative data
 - $ightarrow\,$ database design

Data come in various flavors

- categorical: ordered or no, coded or not
- numerical (sum has a meaning)
- scalar or not

DESCRIBING 1-DIM DATA

Representing 1D data

From a single variable X observed on n samples, we want to

- ° describe the variable
- summarize the information

Data are usually organized as tables.

Example. Number of suicides per year and per state observed in 14 states over 14 years [Source: Saporta, reporting Von Bortkiewicz 1898])

Nombre de suicides x_i	0	1	2	3	4 ·	5	6	7	8	9	≥ 10
Effectif n _i	9	19	17	20	15	11	8	2	3	5	3
Total $n = 11$	2										

Representing 1D data (cont'd)

\rightarrow for continuous data, group into classes!

Tranche des revenus en francs $\ln (R - 2500)$	% du nombre total de contribuables	% cumulés		
2 500				
5000 2.20	0.67	0.67		
5 000 3.39	30.18	0.67		
10 000 3.87		30.85		
15,000 4,10	27.50	58 35		
15000 4.10	17.09	56.55		
20 000 4.24		75.44		
30,000 4.44	14.45	39.89		
30 000	7.01			
50 000 4.68	1.00	96.90		
70,000 4.83	1.00	98.56		
10000	0.81	20000		
100 000 4.99	0.51	99.37		
200 000 5.30	0.51	99.88		
	0.10	00.00		
400 000 5.60	0.02	99.98		
	0.02	100		

[Source: Saporta 2002, p. 117]

Data analysis and stochastic modeling – Descriptive and Exploratory Statistics 7

Viewing empirical frequencies

10.0 -

7.5

Categorical data

- bar graph
- $^{\circ}$ pie chart

3

4

2

Discrete data

° empirical distribution

Empirical distributions: Histograms

Histograms are used to **display the empirical distribution** of the variable so as to

- have an idea of the underlying distribution Ο
- check the behavior of the data Ο
 - outliers, number of modes, etc. \rightarrow

Histogram of arrivals

9

Empirical distributions: Histograms (cont'd)

- Use of a sliding window
 - $\rightarrow \ {\rm count} \ {\rm the \ population} \ {\rm in \ all \ intervals} \ [x-\frac{\Delta}{2},x+\frac{\Delta}{2}[$
- possibly with a kernel to weight differently samples in the interval

$$f(x) = \frac{1}{n\Delta} \sum_{i=1}^{n} K\left(\frac{x - x_i}{\Delta}\right)$$

Smoother histograms can be obtained from wiser techniques:

Empirical distributions: Stem and leaf plots

[CEliazar]

Empirical distributions: Pareto diagrams

[Illustration: Metacomet (wikipedia)] \rightarrow highlight the most important factors (e.g., main source of defects, the most frequent reasons for customer complaints. etc.)

 \rightarrow aka 20% of the causes generates 80% of the outcome

Scatter plots for numerical variables

Scatterplot for quality characteristic XXX

[Illustration: Metacomet (wikipedia)]

Numerical summaries

It is often practical to describe a distribution by a few numbers summarizing

1. central characteristics

 \rightarrow mean, median, mode, *etc*.

2. deviation around the central point

 \rightarrow extrema, standard deviation, quantiles, *etc*.

3. overall shape

 \rightarrow skewness, kurtosis, *etc*.

A single value is <u>not</u> sufficient to describe a distribution!

Yule's condition

A good statistical summary should

- $^{\circ}$ be defined objectively
- $^{\circ}~$ be dependent on all the observations
- $^{\circ}~$ have a concrete and clear meaning
- ° be simple to compute
- ° be insensitive to sampling fluctuations
- be easily handled and support algebraic transformations

Georges U. Yule 1871–1951

Central characteristics of a variable

- **empirical** mean ... but sensitive to outliers!
- $^{\rm o}~\alpha\text{-truncated mean}$: empirical mean after discarding the (α %) extremum value

$$\underbrace{x_1 \times x_2}_{\text{arithmetic mean}} \leq \underbrace{x_3 \leq \ldots \leq x_{20} \leq x_{21} \leq \ldots \leq x_{38}}_{\text{arithmetic mean}} \leq \underbrace{x_{39} \leq x_{40}}_{\text{arithmetic mean}}$$

- **median**: value of the middle sample after sorting $x_1 \le x_2 \le x_3 \le \ldots \le \underbrace{x_{20} \le x_{21}}_{\overline{X} = \frac{x_{20} + x_{21}}{2}} \le \ldots \le x_{38} \le x_{39} \le x_{40}$ $\overline{X} = \frac{x_{20} + x_{21}}{2}$
- mode: local extremum of the histogram

For perfectly symmetric distributions, mean = median = mode.

These statistics are not to be confused with the theoretical expectations!

WATCH

OUR STEP

Dispersion and shape of a variable

Fortunately, not all individuals are the same and, hence, mean isn't everything! **Dispersion**

- minimum, maximum and range
- variance and standard deviation
- quantiles
 - bounds of the intervals dividing the data in equal parts

$$x_1 \le \dots \le \underbrace{x_{10}}_{Q_1} \le x_1 1 \le \dots \le \underbrace{x_{20}}_{Q_2} \le x_{21} \le \dots \le \underbrace{x_{30}}_{Q_3} \le x_{31} \le \dots \le x_{40}$$

 \rightarrow median (2), quartile (4), deciles (10), percentile (100)

 \triangleright interquartile range IQR = $Q_3 - Q1$

Shape

skewness and kurtosis

Box and whisker plots

Compact representation of the mean and dispersion

- ° 1st and 3rd quartiles
- ° higher value $\leq Q_3 + 1.5(Q_3 Q_1)$
- $^{\circ}$ smaller value $\geq Q_1 1.5(Q_3 Q_1)$
- $^{\circ}$ outliers

Box and whisker plots (cont'd)

MEASURING RELATIONS

About correlation

There exists various types of correlations between two variables X and Y.

- (a) no correlation
- (b) no correlation in mean (but correlation in dispersion)
- (c) positive linear correlation
 - (d) non linear correlation

Correlation coefficients

Pearson's linear correlation coefficient

$$r_{XY} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \widehat{\mu}_x)(y_i - \widehat{\mu}_y)}{\widehat{\sigma}_x^2 \widehat{\sigma}_y^2}$$

ightarrow measures the strength and direction of the relationship

 \rightarrow only for $\underline{\text{linear}}$ dependencies

Spearman's rank correlation coefficient

$$\rho_{XY} = 1 - \frac{6\sum_{i=1}^{n} (r(x_i) - r(y_i))^2}{n(n^2 - 1)}$$

 \Rightarrow non linear <u>monotonous</u> dependencies

 \Rightarrow less sensitive to outliers

Pearson's linear correlation coefficient

Kendall's τ rank correlation

- $^{\circ}\,$ Measure if two random variables X and Y vary in the same direction
- $^{\circ}~$ Idea: look at the sign of the product $(X_1-X_2)(Y_1-Y_2)$
- $^{\circ}~$ For all pairs (x_i,y_i) and (x_j,y_j)
 - ▷ count 1 if same order (i.e., $x_i < x_j$ and $y_i < y_j$)
 - count -1 otherwise

$$\tau_{XY} = \frac{2S}{n(n-1)}$$

10 wines ranked by two experts

$$\rho = 0.84 \qquad \qquad \tau = 0.64$$

Correlation ratio

For mixed situations where \boldsymbol{X} is categorical and \boldsymbol{Y} numerical

$$\eta_{Y|X}^{2} = \frac{\frac{1}{n} \sum_{i} n_{i} (\overline{\mu}_{Y|X=i} - \overline{\mu}_{Y})^{2}}{\sum_{y} (y - \overline{\mu}_{Y})^{2}} = \frac{\sigma_{\overline{\mu}_{Y|X=i}}^{2}}{\sigma_{Y}^{2}}$$

 $\eta=0 \Rightarrow$ no dispersion of the mean across categories $\eta=1 \Rightarrow$ no dispersion within the respective categories

Measure of association for categorical variables

Contingency table for two categorical variables \boldsymbol{X} and \boldsymbol{Y}

	Right-handed	Left-handed	Total
Male	43	9	52
Female	44	4	48
Total	87	13	100

Deviation from independency

• empirical independence if all line and column profiles are identical

$$\Rightarrow n_{ij} = \frac{n_{i} \cdot n_{j}}{n}$$

 $\circ \chi^2$ independence test statistics

$$\chi^2 = \sum_{i} \sum_{j} \frac{\left(n_{ij} - \frac{n_{i} \cdot n_{j}}{n}\right)^2}{\frac{n_{i} \cdot n_{j}}{n}}$$

Data analysis and stochastic modeling – Descriptive and Exploratory Statistics 26

MULTIDIMENSIONAL DATA ANALYSIS

Projection vs. Clustering

We observe variables $X \in \mathbb{R}^p$. What to do if p is large?

- $^\circ\;$ either display variables in \mathbb{R}^q , with $q\ll p$
 - ⊳ PCA
 - LDA & the likes
 - correspondence analysis
 - ▷ factor analysis
- ° clustering
 - k-means & the likes
 - bottom-up clustering
 - spectral clustering

The general idea of factor analysis

Explain observed variables in terms of a smaller number of unobserved, or latent, variables.

$$x_i = \mu + l_{i1}f_1 + \ldots + l_{ik}f_k + \epsilon_i \qquad i = 1, \ldots, n$$

Principal Component Analysis = linear projection

In PCA, we rescrict ourselves to linear transformations, i.e.

- 1. the new reference ${\bf u}$ is a linear combination of ${\bf v}$
- 2. \mathbf{x}_u is a linear combination of \mathbf{x}_v , possibly with dimensionality reduction

$$\mathbf{y}_{q \times 1} = \mathbf{U}_{q \times p} = \mathbf{x}_{p \times 1}$$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_q \end{pmatrix} = \begin{pmatrix} u_{11} & \cdots & u_{1p} \\ \vdots & \ddots & \vdots \\ u_{q1} & \cdots & u_{qp} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$

What's a good linear projection

- keep distances unchanged
- ^o maximize variance
- ^o maximize inertia
- least square error

The algorithmics of PCA (1)

Consider n observations with p variables each

$$\mathbf{X} = \begin{pmatrix} x_{11} & \dots & x_{1i} & \dots & x_{1p} \\ \vdots & \ddots & \vdots & & \vdots \\ x_{j1} & \dots & x_{ij} & \dots & x_{jp} \\ \vdots & & \vdots & \ddots & \vdots \\ x_{n1} & \dots & x_{ni} & \dots & x_{np} \end{pmatrix}$$

- $^{\circ}~$ for sake of simplification, we will assume that
 - 1. the data exhibit a null empirical mean (centered)
 - 2. all observations are equally important with a wieght 1/n
- $\circ~V\propto X'X$ and $R\propto \tilde{X}'\tilde{X}$

The algorithmics of PCA (2)

- Good projection = keep unaltered (as much as possible) the distances between individuals
- Maximize the inertia of the projected data

$$\mathsf{Trace}(\mathbf{Y'Y}) = \mathsf{Trace}(\mathbf{VP})$$

- PCA derives from the two following theorems:
 - Theorem 1: If F_k is the subspace of dimension k with maximal inertia, the subspace of dimension k + 1 with maximal inertia is the direct sum of F_k and of the 1-dimensional subspace orthogonal to F_k with maximal inertia. ⇒ the solutions are intricated
 - ▷ Theorem 2: The subspace F_k is the subspace generated by the k eigen vectors of V associated with the k highest eigen values of V.

The algorithmics of PCA (3)

- 1. Compute the covariance matrix $V_{p \times p} = \frac{1}{n} X' X$ (or the correlation matrix R)
- 2. Compute eigen system

$$\mathbf{V}_{p \times p} = \mathbf{U}_{p \times p} \mathbf{\Lambda}_{p \times p} \mathbf{U}_{p \times p}^{-1} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}'$$

- $^{\circ}$ NIPALS algorithm for very high dimension data
- 3. Sort eigen values and retain the highest ones, sorting $\mathbf{U}_{p \times p}$ accordingly to yield $\overline{\mathbf{U}}_{q \times p}$
- 4. Reconstruct or project ${\bf X}$

$$\mathbf{Y}_{q imes n} = \overline{\mathbf{U}}_{q imes p} \mathbf{X}_{p imes n}$$

The guys behind PCA

Karl Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, Series 6, 2(11):559–572, 1901.

Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6–7):417–441,498–520, 1933.

Karl Pearson

Harold Hotteling 1895–1973

Observation and variable spaces

Observation and variable spaces (cont'd)

Projection = creating new variables

The vocabulary of PCA

- $\mathbf{u}_i = i$ th **principal axis** or factor = linear combination of descriptive variables
 - $^{\triangleright}\;$ Note that there actually is a difference between axis and factor if a metric $M\neq I$ is used.
- $\mathbf{c}_i = \mathbf{X}\mathbf{u}_i$ is the *i*th **principal components** (homogeneous to a variable) • $V[\mathbf{c}_i] = \lambda_i$
 - $^{\triangleright}\,$ principal components are the eigen vectors of the (n,n) matrix $\mathbf{X}\mathbf{X}'\,$ (\Rightarrow relation to the variable space)

In summary: PCA replaces the correlated variables $\mathbf{x}_1 \dots \mathbf{x}_p$ with new variables, the principal components $\mathbf{c}_1 \dots \mathbf{c}_q$, uncorrelated linear combination of the variables \mathbf{x}_i with maximum variance.

Result interpretation and quality

Result interpretation and quality

- Interpretation
 - correlation between components and variables

- contribution of each sample to an axis
- Measure of quality
 - ▷ Global measurement: Fraction of the total inertia retained = $\frac{\lambda_1 + ... + \lambda_q}{I_q}$
 - Local measurement: angle between the principal plan and a sample
 - \rightarrow small angle \Rightarrow good representation

Example

• Data table

		Pain ordinaire PAO	Autre pain PAA	Vin ordinaire VIO	Autre vin VIA	Pommes de terre POT	Légumes secs LEC	Raisin de table RAI	Plats préparés PLP
Exploitants agricoles Salariés agricoles Professions indépen-	AGRI SAAG	167 162	1 2	163 141	23 12	41 40	8 12	6 4	6 15
dantes	PRIN	119	6	69	56	39	5	13	41
Cadres supérieurs	CSUP	87	11	63	111	27	3	18	39
Cadres moyens	CMOY	103	5	68	77	32	4	11	30
Employés	EMPL	111	4	72	66	34	6	10	28
Ouvriers	OUVR	130	3	76	52	43	7	7	16
Inactifs	INAC	138	7	117	74	53	8	12	20

(Source : A. Villeneuve, « La consommation alimentaire des Français », Collections de l'INSEE, M 34.)

• Correlation matrix

	PAO	PAA	VIO	VIA	POT	LEC	RAI	PLP
PAO PAA VIO VIA POT LEC RAI PLP	$ \begin{array}{r} 100 \\ -75 \\ 83 \\ -89 \\ 66 \\ 90 \\ -82 \\ -85 \\ \end{array} $	$ \begin{array}{r} 100 \\ - 57 \\ 90 \\ - 30 \\ - 66 \\ 96 \\ 78 \\ \end{array} $	$ \begin{array}{r} 100 \\ - 73 \\ 52 \\ 80 \\ - 65 \\ - 82 \end{array} $	100 40 84 91 72	100 61 42 55	100 - 82 - 73	100 85	100

[Source: Saporta 2002, pp. 180-183]

Data analysis and stochastic modeling – Descriptive and Exploratory Statistics 42

Example (cont'd)

λ	6.21	0.89	0.42	0.32	0.14	0.01	0.005
Inertia (in %)	77.57	11.21	5.26	3.99	1.74	0.11	0.06
Cumulated	77.57	88.78	94.04	98.0	99.8	99.9	100

Projection of the observations

Eigenfaces

- Face images are represented as a vector of pixels
- PCA is used to find the principal components/faces
 - \Rightarrow consider the parameter space (size M) rather than the image space (of size N^2)
- Each face is represented by a linear combination of the eigenfaces

[M. Turk and A. Pentland. Face recognition using eigenfaces, in CVPR 91]

Latent semantic analysis/indexing

- $^\circ\,$ each observation/document is a bag of words in \mathbb{R}^d
- $\circ \ d$ is the number of index terms
- $\circ x_{ji}$ is proportional to the frequency of term j in document i

 \Rightarrow documents are better represented in the *concept* subspace obtained by PCA on the term / document matrix.

[S. Deerwater *et al.* Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6):391–407, 1990.]

PCA with data from several classes

PCA disregard the information on the class of each sample!

Linear discriminant analysis

Find a linear projection of the data ${\bf X}$ into a subspace of smaller dimension which

- 1. maximizes the dispertion across classes
- 2. minimizes the dispertion within classes

Fisher's linear discriminant

- $^\circ~$ Observations x_i from two classes with means μ_0 and μ_1 and covariance matrices Σ_0 and Σ_1
- $^\circ~$ Projection along the line w will result in a separation defined as

$$S = \frac{\sigma_{\text{across}}}{\sigma_{\text{within}}} = \frac{(\mathbf{w}(\mu_1 - \mu_0))^2}{\mathbf{w}'(\Sigma_0 + \Sigma_1)\mathbf{w}}$$

Maximum separation occurs when

$$\mathbf{w} = (\Sigma_0 + \Sigma_1)^{-1} (\mu_1 - \mu_0)$$

Two-class LDA is equivalent to Fisher's linear discriminant with the assumptions that the posterior distribution $p(\mathbf{x}_i | \text{classe})$ is Gaussian and that they are homoscedastic $(\Sigma_0 = \Sigma_1 = \Sigma)$

http://www.youtube.com/watch?v=fkGpzbXnO0c

Multiclass linear discriminant analysis

- ° Assume K classes of n_i samples each with respective mean μ_i
- Whithin-class scatter matrix: $\mathbf{S}_w = \sum_{i=1}^K \sum_{j=1}^{n_i} (x_{ij} \mu_i)(x_{ij} \mu_i)'$

• Across-class scatter matrix
$$\mathbf{S}_b = \sum_{i=1}^{K} (\mu_i - \mu)(\mu_i - \mu)'$$

 $^{\circ}~$ search for the projection $\mathbf{y}=\mathbf{U}\mathbf{x}$ which maximizes

$$\max_{\mathbf{U}} \frac{|\mathbf{U}' \mathbf{S}_b \mathbf{U}|}{|\mathbf{U}' \mathbf{S}_w \mathbf{U}|}$$

solution is given by the generalized eigen system

$$\mathbf{S}_b \mathbf{u}_k = \lambda_k \mathbf{S}_w \mathbf{u}_k$$

LDA front-end for audiovisual ASR

[Potamianos *et al.*. Recent advances in the automatic recognition of audio-visual speech. IEEE Proc., 2003.]

Data analysis and stochastic modeling – Descriptive and Exploratory Statistics 50

Beyond linear projections

- $^\circ~$ Use a linear projection $\mathbf{y}=\mathbf{U}\mathbf{x}$ via the eigen system to
 - PCA: maximize the variance of the projected data
 - LDA: maximize discrimination between classes
- $^{\circ}~$ More complex forms of U can be used
 - NMF: non-negative matrix factorization
 - ICA: independent component analysis
- Non linear transformations are also possible
 - $\,\,\triangleright\,\,$ use of kernels ($\,\,
 ightarrow\,$ the kernel trick)
 - artifical neural network (Multi Layer Perceptron)
- Self-organizing maps

Beyond linear projections

Factor analysis for images

Factor analysis for images (cont'd)

Factor analysis for images (cont'd)

Factor analysis for images (cont'd)

Additional readings

- R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd edition, Wiley-Interscience. (See in particular Chapter 3)
- C. M. Bishop. Pattern recognition and machine learning, Springer, 2006. (See in particular Chapter 12)
- Pattern recognition course of George Bebis (http://www.cse.unr.edu/ bebis/CS679/)

