Data analysis and stochastic modeling

Lecture 2 - Descriptive and exploratory statistics

Guillaume Gravier

guillaume.gravier@irisa.fr

What are we here for?

1. data from observations

- see what the data looks like
- describe the data: distribution, clustering, etc.
- summarize the data

2. models for decision

- infer more general properties
- make a (stochastic) model of the data
- make decisions: classification, simulation, etc.

\Rightarrow Provide the elementary tools and techniques

What are we gonna talk about today?

- Representing and viewing data
\rightarrow tables and graphics
- Describing 1D data
\rightarrow mean, median, standard deviation, quartiles, mode, etc.
- Measuring the relation between variables
\rightarrow correlations
- Exploring multidimensional data
\rightarrow principal component analysis, correspondence analysis, factor analysis, etc.

In short: have a feeling for a distribution, describe a distribution, identify clusters, identify important factors.

What data and where from?

Data come from various sources: Physical measures, experimental results, descriptive features, etc.

1. they happen to be here
\rightarrow may not be representative
2. you design their collect
\rightarrow sample representative data
\rightarrow database design

Data come in various flavors

- categorical: ordered or no, coded or not
- numerical (sum has a meaning)
- scalar or not

DESCRIBING 1-DIM DATA

Representing 1D data

From a single variable X observed on n samples, we want to

- describe the variable
- summarize the information

Data are usually organized as tables.
Example. Number of suicides per year and per state observed in 14 states over 14 years [Source: Saporta, reporting Von Bortkiewicz 1898])

Nombre de suicides x_{i}	0	1	2	3	4	5	6	7	8	9	$\geqslant 10$
Effectif n_{i}	9	19	17	20	15	11	8	2	3	5	3

Total $n=112$

Representing 1D data (contd)

\rightarrow for continuous data, group into classes!

$\begin{gathered} \text { Tranche des revenus } \\ \text { en francs } \\ \ln (R-2500) \end{gathered}$	$\%$ du nombre total de contribuables	\% cumulés
2500		
	0.67	0.67
$5000-3.39$	30.18	
$10000-3.87$		30.85
	27.50	
15000 - 4.10	17.09	58.35
$20000-4.24$		75.44
$30000-4.44$	14.45	
	7.01	39.89
$50000-4.68$		96.90
	1.66	
70000 - 4.83	0.81	98.56
$100000-4.99$		99.37
	0.51	
	0.10	99.88
$400000-5.60$		99.98
	0.02	

[Source: Saporta 2002, p. 117]

Viewing empirical frequencies

Categorical data

- bar graph
- pie chart

Discrete data

- empirical distribution

Empirical distributions: Histograms

Histograms are used to display the empirical distribution of the variable so as to

- have an idea of the underlying distribution
- check the behavior of the data
\rightarrow outliers, number of modes, etc.
Histogram of arrivals but
- how many classes?
- equal class amplitudes or not?
\rightarrow if not then how?

Note: The area of each rectangle is proportional to f_{i}.

Empirical distributions: Histograms (contd)

Smoother histograms can be obtained from wiser techniques:

- Use of a sliding window
\rightarrow count the population in all intervals

$$
\left[x-\frac{\Delta}{2}, x+\frac{\Delta}{2}[\right.
$$

- possibly with a kernel to weight differently samples in the interval

$$
f(x)=\frac{1}{n \Delta} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{\Delta}\right)
$$

Empirical distributions: Stem and leaf plots

Empirical distributions: Pareto diagrams

[Illustration: Metacomet (wikipedia)]
\rightarrow highlight the most important factors (e.g., main source of defects, the most frequent reasons for customer complaints. etc.)
\rightarrow aka 20% of the causes generates 80% of the outcome

Scatter plots for numerical variables

Scatterplot for quality characteristic $X X X$

[Illustration: Metacomet (wikipedia)]

Numerical summaries

It is often practical to describe a distribution by a few numbers summarizing

1. central characteristics
\rightarrow mean, median, mode, etc.
2. deviation around the central point
\rightarrow extrema, standard deviation, quantiles, etc.
3. overall shape
\rightarrow skewness, kurtosis, etc.

A single value is not sufficient to describe a distribution!

Yule's condition

A good statistical summary should

- be defined objectively
- be dependent on all the observations
- have a concrete and clear meaning
- be simple to compute
- be insensitive to sampling fluctuations
- be easily handled and support algebraic transformations

Georges U. Yule
1871-1951

Central characteristics of a variable

- empirical mean ... but sensitive to outliers!
- α-truncated mean: empirical mean after discarding the ($\alpha \%$) extremum value

- median: value of the middle sample after sorting

$$
\begin{gathered}
x_{1} \leq x_{2} \leq x_{3} \leq \ldots \leq \underbrace{x_{20} \leq x_{21}} \leq \ldots \leq x_{38} \leq x_{39} \leq x_{40} \\
\bar{X}=\frac{x_{20}+x_{21}}{2}
\end{gathered}
$$

- mode: local extremum of the histogram

For perfectly symmetric distributions, mean $=$ median $=$ mode .

CAUTION

These statistics are not to be confused with the theoretical expectations!

Dispersion and shape of a variable

Fortunately, not all individuals are the same and, hence, mean isn't everything! Dispersion

- minimum, maximum and range
- variance and standard deviation
- quantiles
\triangleright bounds of the intervals dividing the data in equal parts

$$
x_{1} \leq \ldots \leq \underbrace{x_{10}}_{Q_{1}} \leq x_{1} 1 \leq \ldots \leq \underbrace{x_{20}}_{Q_{2}} \leq x_{21} \leq \ldots \leq \underbrace{x_{30}}_{Q_{3}} \leq x_{31} \leq \ldots \leq x_{40}
$$

\rightarrow median (2), quartile (4), deciles (10), percentile (100)
\triangleright interquartile range $\mathrm{IQR}=Q_{3}-Q 1$

Shape

- skewness and kurtosis

Box and whisker plots

Compact representation of the mean and dispersion

- outliers

[John W. Tukey (1915-2000)]

Box and whisker plots (contd)

MEASURING RELATIONS

About correlation

There exists various types of correlations between two variables X and Y.

(a)

(b)

(c)

(d)
(a) no correlation
(b) no correlation in mean (but correlation in dispersion)
(c) positive linear correlation
(d) non linear correlation

Correlation coefficients

Pearson's linear correlation coefficient

$$
r_{X Y}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{x}\right)\left(y_{i}-\widehat{\mu}_{y}\right)}{\widehat{\sigma}_{x}^{2} \widehat{\sigma}_{y}^{2}}
$$

\rightarrow measures the strength and direction of the relationship
\rightarrow only for linear dependencies

Spearman's rank correlation coefficient

$$
\rho_{X Y}=1-\frac{6 \sum_{i=1}^{n}\left(r\left(x_{i}\right)-r\left(y_{i}\right)\right)^{2}}{n\left(n^{2}-1\right)}
$$

\Rightarrow non linear monotonous dependencies
\Rightarrow less sensitive to outliers

Pearson's linear correlation coefficient

Kendall's τ rank correlation

- Measure if two random variables X and Y vary in the same direction
- Idea: look at the sign of the product $\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)$
- For all pairs $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$
\triangleright count 1 if same order (i.e., $x_{i}<x_{j}$ and $y_{i}<y_{j}$)
\triangleright count -1 otherwise

$$
\tau_{X Y}=\frac{2 S}{n(n-1)}
$$

x_{i}	1	2	3	4	5	6	7	8	9	10
y_{i}	3	1	4	2	6	5	9	8	10	7
10 wines ranked by two experts										

$$
\rho=0.84 \quad \tau=0.64
$$

Correlation ratio

For mixed situations where X is categorical and Y numerical

$$
\eta_{Y \mid X}^{2}=\frac{\frac{1}{n} \sum_{i} n_{i}\left(\bar{\mu}_{Y \mid X=i}-\bar{\mu}_{Y}\right)^{2}}{\sum_{y}\left(y-\bar{\mu}_{Y}\right)^{2}}=\frac{\sigma_{\overline{\mu_{Y \mid X=i}}}^{2}}{\sigma_{Y}^{2}}
$$

$\eta=0 \Rightarrow$ no dispersion of the mean across categories
$\eta=1 \Rightarrow$ no dispersion within the respective categories

Measure of association for categorical variables

Contingency table for two categorical variables X and Y

	Right-handed	Left-handed	Total
Male	43	9	52
Female	44	4	48
Total	87	13	100

Deviation from independency

- empirical independence if all line and column profiles are identical

$$
\Rightarrow n_{i j}=\frac{n_{i \cdot} n_{\cdot j}}{n}
$$

- χ^{2} independence test statistics

$$
\chi^{2}=\sum_{i} \sum_{j} \frac{\left(n_{i j}-\frac{n_{i \cdot n} n_{\cdot j}}{n}\right)^{2}}{\frac{n_{i \cdot n}}{n}}
$$

MULTIDIMENSIONAL DATA ANALYSIS

Projection vs. Clustering

We observe variables $X \in \mathbb{R}^{p}$. What to do if p is large?

- either display variables in \mathbb{R}^{q}, with $q \ll p$
\triangleright PCA
\triangleright LDA \& the likes
\triangleright correspondence analysis
- factor analysis
- clustering
\triangleright k-means \& the likes
\triangleright bottom-up clustering

\triangleright spectral clustering

The general idea of factor analysis

Explain observed variables in terms of a smaller number of unobserved, or latent, variables.

$$
x_{i}=\mu+l_{i 1} f_{1}+\ldots+l_{i k} f_{k}+\epsilon_{i} \quad i=1, \ldots, n
$$

Principal Component Analysis = linear projection

In PCA, we rescrict ourselves to linear transformations, i.e.

1. the new reference \mathbf{u} is a linear combination of \mathbf{v}
2. \mathbf{x}_{u} is a linear combination of \mathbf{x}_{v}, possibly with dimensionality reduction

$$
\begin{array}{rlc}
\mathbf{y}_{q \times 1} & =\mathbf{U}_{q \times p} & \mathbf{x}_{p \times 1} \\
\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{q}
\end{array}\right) & =\left(\begin{array}{ccc}
u_{11} & \cdots & u_{1 p} \\
\vdots & \ddots & \vdots \\
u_{q 1} & \cdots & u_{q p}
\end{array}\right) \quad\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{p}
\end{array}\right)
\end{array}
$$

What's a good linear projection

- keep distances unchanged

O maximize variance

- maximize inertia
- least square error

The algorithmics of PCA (1)

Consider n observations with p variables each

$$
\mathbf{X}=\left(\begin{array}{ccccc}
x_{11} & \ldots & x_{1 i} & \ldots & x_{1 p} \\
\vdots & \ddots & \vdots & & \vdots \\
x_{j 1} & \ldots & x_{i j} & \ldots & x_{j p} \\
\vdots & & \vdots & \ddots & \vdots \\
x_{n 1} & \ldots & x_{n i} & \ldots & x_{n p}
\end{array}\right)
$$

- for sake of simplification, we will assume that

1. the data exhibit a null empirical mean (centered)
2. all observations are equally important with a wieght $1 / n$

- $\mathbf{V} \propto \mathbf{X}^{\prime} \mathbf{X}$ and $\mathbf{R} \propto \tilde{\mathbf{X}}^{\prime} \tilde{\mathbf{X}}$

The algorithmics of PCA (2)

- Good projection = keep unaltered (as much as possible) the distances between individuals
- Maximize the inertia of the projected data

$$
\operatorname{Trace}\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)=\operatorname{Trace}(\mathbf{V P})
$$

- PCA derives from the two following theorems:
\triangleright Theorem 1: If F_{k} is the subspace of dimension k with maximal inertia, the subspace of dimension $k+1$ with maximal inertia is the direct sum of F_{k} and of the 1-dimensional subspace orthogonal to F_{k} with maximal inertia. \Rightarrow the solutions are intricated
\triangleright Theorem 2: The subspace F_{k} is the subspace generated by the k eigen vectors of V associated with the k highest eigen values of V.

The algorithmics of PCA (3)

1. Compute the covariance matrix $\mathbf{V}_{p \times p}=\frac{1}{n} \mathbf{X}^{\prime} \mathbf{X}$ (or the correlation matrix R)
2. Compute eigen system

$$
\mathbf{V}_{p \times p}=\mathbf{U}_{p \times p} \boldsymbol{\Lambda}_{p \times p} \mathbf{U}_{p \times p}^{-1}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\prime}
$$

- NIPALS algorithm for very high dimension data

3. Sort eigen values and retain the highest ones, sorting $\mathbf{U}_{p \times p}$ accordingly to yield $\overline{\mathbf{U}}_{q \times p}$
4. Reconstruct or project \mathbf{X}

$$
\mathbf{Y}_{q \times n}=\overline{\mathbf{U}}_{q \times p} \mathbf{X}_{p \times n}
$$

The guys behind PCA

Karl Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, Series 6, 2(11):559-572, 1901.

Karl Pearson

Harold Hotteling
1895-1973

Observation and variable spaces

	Var 1	Var 2
A	4	2
B	7	6
C	10	4
	$\overline{x_{1}}=7$	$\overline{x_{2}}=4$
	$s_{j}^{2}=6$	$s_{\boldsymbol{j}}^{2}=8 / 3$

\(\left.\begin{array}{|cc|}\hline-\sqrt{\frac{3}{2}} \& -\sqrt{\frac{3}{2}}

0 \& \sqrt{3}

\sqrt{\frac{3}{2}} \& 0\end{array}\right]=\)| $-1,22$ | $-1,22$ |
| :---: | :---: |
| 0 | 1,22 |
| 1,22 | 0 |

Observation and variable spaces (contd)

\(\left.\begin{array}{|cc|}\hline-\sqrt{\frac{3}{2}} \& -\sqrt{\frac{3}{2}}

0 \& \sqrt{3}

\sqrt{\frac{3}{2}} \& 0\end{array}\right]=\)| $-1,22$ | $-1,22$ |
| :---: | :---: |
| 0 | 1,22 |
| 1,22 | 0 |

$\xrightarrow[0]{\text { Axis } 3}$ var 2
Axis 2

Axis
1

Projection = creating new variables

$$
v_{1}^{\prime}\left(\begin{array}{lll}
y_{1}(1) & y_{2}(1) & y_{3}(1)
\end{array}\right)=\left(\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right)\left(\begin{array}{lll}
x_{1}(1) & x_{2}(1) & x_{3}(1) \\
x_{1}(2) & x_{2}(2) & x_{3}(2)
\end{array}\right)
$$

The vocabulary of PCA

- $\mathbf{u}_{i}=i$ th principal axis or factor $=$ linear combination of descriptive variables
\triangleright Note that there actually is a difference between axis and factor if a metric $\mathbf{M} \neq \mathbf{I}$ is used.
${ }^{\circ} \mathbf{c}_{i}=\mathbf{X} \mathbf{u}_{i}$ is the i th principal components (homogeneous to a variable)
$\triangleright V\left[\mathbf{c}_{i}\right]=\lambda_{i}$
\triangleright principal components are the eigen vectors of the (n, n) matrix $\mathbf{X X}^{\prime}$ (\Rightarrow relation to the variable space)

In summary: PCA replaces the correlated variables $\mathbf{x}_{1} \ldots \mathbf{x}_{p}$ with new variables, the principal components $\mathbf{c}_{1} \ldots \mathbf{c}_{q}$, uncorrelated linear combination of the variables \mathbf{x}_{i} with maximum variance.

Result interpretation and quality

First principal plane

Variable map

$$
\begin{aligned}
& \quad \Psi_{h}=\sum_{j=1}^{p} u_{h j} X_{j} . \\
& \text { (uncorrelated) }
\end{aligned}
$$

Result interpretation and quality

- Interpretation
\triangleright correlation between components and variables

Fig. 8.5

\triangleright contribution of each sample to an axis

- Measure of quality
\triangleright Global measurement: Fraction of the total inertia retained $=\frac{\lambda_{1}+\ldots+\lambda_{q}}{I_{g}}$
\triangleright Local measurement: angle between the principal plan and a sample \rightarrow small angle \Rightarrow good representation

Example

- Data table

		$\begin{gathered} \text { Pain } \\ \text { ordinaire } \\ \text { PAO } \end{gathered}$	$\begin{gathered} \text { Autre } \\ \text { pain } \\ \text { PAA } \end{gathered}$	$\begin{gathered} \text { Vin } \\ \text { ordinaire } \\ \text { VIO } \end{gathered}$	$\begin{array}{\|c\|} \text { Autre } \\ \text { vin } \\ \text { VIA } \end{array}$	Pommes de terre POT	$\begin{gathered} \text { Légumes } \\ \text { secs } \\ \text { LEC } \end{gathered}$	Raisin de table RAI	Plats préparés PLP
Exploitants agricoles	AGRI	167	1	163	23	41	8	6	6
Salariés agricoles	SAAG	162	2	141	12	40	12	4	15
Professions indépendantes	PRIN	119	6	69	56	39	5	13	41
Cadres supérieurs	CSUP	87	11	63	111	27	3	18	39
Cadres moyens	CMOY	103	5	68	77	32	4	11	30
Employés	EMPL	111	4	72	66	34	6	10	28
Ouvriers	OUVR	130	3	76	52	43	7	7	16
Inactifs	INAC	138	7	117	74	53	8	12	20

(Source : A. Villeneuve, «La consommation alimentaire des Français», Collections de l'INSEE, M 34.)

- Correlation matrix

	PAO	PAA	VIO	VIA	POT	LEC	RAI	PLP
	100							
PAO	-75	100						
PAA	83	-57	100					
VIO	-89	90	-73	100				
VIA	66	-30	52	-40	100			
POT	90	-66	80	-84	61	100		
LEC	-82	96	-65	91	-42	-82	100	100
RAI	-85	78	-82	72	-55	-73	85	100
PLP								

[Source: Saporta 2002, pp. 180-183]

Example (contid)

λ	6.21	0.89	0.42	0.32	0.14	0.01	0.005
Inertia (in \%)	77.57	11.21	5.26	3.99	1.74	0.11	0.06
Cumulated	77.57	88.78	94.04	98.0	99.8	99.9	100

Projection of the observations

Principal components

Eigenfaces

- Face images are represented as a vector of pixels
- PCA is used to find the principal components/faces
\Rightarrow consider the parameter space (size M) rather than the image space (of size N^{2})
- Each face is represented by a linear combination of the eigenfaces

[M. Turk and A. Pentland. Face recognition using eigenfaces, in CVPR 91]

Latent semantic analysis/indexing

- each observation/document is a bag of words in \mathbb{R}^{d}
- d is the number of index terms
- $x_{j i}$ is proportional to the frequency of term j in document i
\Rightarrow documents are better represented in the concept subspace obtained by PCA on the term / document matrix.
[S. Deerwater et al. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6):391-407, 1990.]

PCA with data from several classes

PCA disregard the information on the class of each sample!

Linear discriminant analysis

Find a linear projection of the data \mathbf{X} into a subspace of smaller dimension which

1. maximizes the dispertion across classes
2. minimizes the dispertion within classes

Fisher's linear discriminant

- Observations \mathbf{x}_{i} from two classes with means μ_{0} and μ_{1} and covariance matrices $\boldsymbol{\Sigma}_{0}$ and $\boldsymbol{\Sigma}_{1}$
- Projection along the line \mathbf{w} will result in a separation defined as

$$
S=\frac{\sigma_{\text {across }}}{\sigma_{\text {within }}}=\frac{\left(\mathbf{w}\left(\mu_{1}-\mu_{0}\right)\right)^{2}}{\mathbf{w}^{\prime}\left(\Sigma_{0}+\Sigma_{1}\right) \mathbf{w}}
$$

- Maximum separation occurs when

$$
\mathbf{w}=\left(\Sigma_{0}+\Sigma_{1}\right)^{-1}\left(\mu_{1}-\mu_{0}\right)
$$

Two-class LDA is equivalent to Fisher's linear discriminant with the assumptions that the posterior distribution $p\left(\mathbf{x}_{i} \mid\right.$ classe $)$ is Gaussian and that they are homoscedastic ($\Sigma_{0}=\Sigma_{1}=\Sigma$)
http://www.youtube.com/watch?v=fkGpzbXnOOc

Multiclass linear discriminant analysis

- Assume K classes of n_{i} samples each with respective mean μ_{i}
- Whithin-class scatter matrix: $\mathbf{S}_{w}=\sum_{i=1}^{K} \sum_{j=1}^{n_{i}}\left(x_{i j}-\mu_{i}\right)\left(x_{i j}-\mu_{i}\right)^{\prime}$
- Across-class scatter matrix $\mathbf{S}_{b}=\sum_{i=1}^{K}\left(\mu_{i}-\mu\right)\left(\mu_{i}-\mu\right)^{\prime}$
- search for the projection $\mathbf{y}=\mathbf{U x}$ which maximizes

$$
\max _{\mathbf{U}} \frac{\left|\mathbf{U}^{\prime} \mathbf{S}_{b} \mathbf{U}\right|}{\left|\mathbf{U}^{\prime} \mathbf{S}_{w} \mathbf{U}\right|}
$$

- solution is given by the generalized eigen system

$$
\mathbf{S}_{b} \mathbf{u}_{k}=\lambda_{k} \mathbf{S}_{w} \mathbf{u}_{k}
$$

LDA front-end for audiovisual ASR

[Potamianos et al.. Recent advances in the automatic recognition of audio-visual speech. IEEE Proc., 2003.]

Beyond linear projections

- Use a linear projection $\mathbf{y}=\mathbf{U x}$ via the eigen system to
\triangleright PCA: maximize the variance of the projected data
\triangleright LDA: maximize discrimination between classes
- More complex forms of U can be used
\triangleright NMF: non-negative matrix factorization
\triangleright ICA: independent component analysis
- Non linear transformations are also possible
\triangleright use of kernels (\rightarrow the kernel trick)
\triangleright artifical neural network (Multi Layer Perceptron)
- Self-organizing maps

Beyond linear projections

Factor analysis for images

Factor analysis for images (contd)

Factor analysis for images (conta)

Factor analysis for images (contd)

Additional readings

- R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd edition, Wiley-Interscience. (See in particular Chapter 3)
- C. M. Bishop. Pattern recognition and machine learning, Springer, 2006. (See in particular Chapter 12)
- Pattern recognition course of George Bebis (http://www.cse.unr.edu/ bebis/CS679/)

