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What are we here for?

1. data from observations
© see what the data looks like
© describe the data: distribution, clustering, etc.
© summarize the data

2. models for decision
© infer more general properties
© make a (stochastic) model of the data
© make decisions: classification, simulation, etc.

—> Provide the elementary tools and techniques
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What are we gonna talk about today?

© Representing and viewing data
— tables and graphics

© Describing 1D data
— mean, median, standard deviation, quartiles, mode, etc.

© Measuring the relation between variables
— correlations

© Exploring multidimensional data

— principal component analysis, correspondence analysis, factor analysis, etc.

In short: have a feeling for a distribution, describe a distribution, identify
clusters, identify important factors.
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What data and where from?

Data come from various sources: Physical measures, experimental results,
descriptive features, etc.

1. they happen to be here
— may not be representative

2. you design their collect

— sample representative data
— database design

Data come in various flavors
© categorical: ordered or no, coded or not

© numerical (sum has a meaning)

© gcalar or not

ﬂ@ Eu’e}
Data analysis and stochastic modeling — Descriptive and Exploratory Statistics 4



DESCRIBING 1-DIM DATA
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Representing 1D data

From a single variable X observed on n samples, we want to
© describe the variable

o summarize the information

Data are usually organized as tables.

Example. Number of suicides per year and per state observed in 14
states over 14 years [Source: Saporta, reporting Von Bortkiewicz 1898])

T T

Nombre W F | ’ K | | |

de suicides || 0 1 | 2 | 3B 4 > 5 | 6 7 | 8 ' 9 | =10
# L | ' L \ | | I \
= 1 | |

Fpest | 91 9 | 17120 | 15 | 11 | 8 f 2 | 3| s ‘ 3
N w — l | | l l l
Total n = 112
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Representing 1D data (conta)

— for continuous data, group into classes!

Tranche des revenus o
en francs / 21 du n‘;‘%’é’ rebtlo tal % cumulés
In (R — 2 500) e contribuables
2 500

0.67

5000 —— 3.39 0.67
30.18

10000 ——+—— 3.87 30.85
27.50

15000 ———— 4.10 58.35
17.09

20000 ——— 4.24 75.44
14.45

30000 — 444 39.89
7.01

50000 —————— 4.68 96.90
1.66

70000 ——— 4.83 98.56
0.81

100000 ——— 4.99 99.37
0.51

200000 —— 5.30 99.88
0.10

400000 —— 35.60 9998 ——
0.02
100
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[Source: Saporta 2002, p. 117]
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Viewing empirical frequencies

Categorical data
© bar graph

© pie chart

Discrete data

© empirical distribution
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Empirical distributions: Histograms

Histograms are used to display the empirical distribution of the variable so
as to

© have an idea of the underlying distribution
© check the behavior of the data

— outliers, number of modes, etc.

Histogram of arrivals

but
© how many classes?

© equal class amplitudes or not?

Freguency

— if not then how?

Note: The area of each rectangle is i
proportional to f;. —

o 2 4 E g 10 12
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Empirical distributions: Histograms (conta)

Smoother histograms can be obtained from wiser techniques:

© Use of a sliding window

— count the population in all intervals

[ZU—%,QU—I-%[

Fic. 6.3

© possibly with a kernel to weight differently
samples in the interval

o=k (57
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Empirical distributions: Stem and leaf plots
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Empirical distributions: Pareto diagrams

Pareto Chart of Late Arrivals by Reported Cause

168.0 100.0%
151.2 90.0%
134.4 80.0%
117.6 70.0%
100.8 60.0%
84.0 50.0%
67.2 40.0%
50.4 30.0%
33.6 20.0%
16.8 10.0%
0.0 4 0.0%

Traffic Child care Public Weather Overslept Emergency
transportation

[lllustration: Metacomet (wikipedia)] )
— highlight the most important factors (e.g., main source of defects, the most

frequent reasons for customer complaints. etc.)
— aka 20 % of the causes generates 80 % of the outcome
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Cluality characteristic XxX
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Scatter plots for numerical variables

Scatterplot for quality characteristic X%
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[lllustration: Metacomet (wikipedia)]
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Numerical summaries

It is often practical to describe a distribution by a few numbers summarizing

1. central characteristics

— mean, median, mode, efc.

2. deviation around the central point
— extrema, standard deviation, quantiles, etc.

3. overall shape
— skewness, kurtosis, efc.

Yo"l‘nggyEP A single value is not sufficient to describe a distribution!
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Yule’s condition

A good statistical summary should
© be defined objectively
© be dependent on all the observations
© have a concrete and clear meaning
© be simple to compute
© be insensitive to sampling fluctuations

© be easily handled and support algebraic transforma-
tions

Georges U. Yule

1871-1951

, @
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Central characteristics of a variable

© empirical mean ... but sensitive to outliers!

° a~truncated mean: empirical mean after discarding the (a %) extremum
value

° median: value of the middle sample after sorting
T1 S x2S 23 ... X0 S ®To1 ... S X338 S w39 < Ty

~~

< _ 20 —;—@1

° mode: local extremum of the histogram

For perfectly symmetric distributions, mean = median = mode.

These statistics are not to be confused with the theoretical expec-

YOURSTEP.  tations!

ueh
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Dispersion and shape of a variable

Fortunately, not all individuals are the same and, hence, mean isn’t everything!
Dispersion

© minimum, maximum and range
© variance and standard deviation
© quantiles
> bounds of the intervals dividing the data in equal parts
21 <...< 20 STl < ... < w99 Cx21 < ... < w30 <31 <. < Ty
—~—~ —~—~ —~—~
Q1 Q2 Q3

— median (2), quartile (4), deciles (10), percentile (100)
> interquartile range IQR = (Y3 — ()1

Shape

© skewness and kurtosis

ueh
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Box and whisker plots

Compact representation of the mean and 1
dispersion PR A e e
© 1st and 3rd quartiles
© higher value < @3 + 1.5(Q3 — Q1)
°© smaller value > Q; — 1.5(Q3 — Q1) CE ® o »
© outliers
[John W. Tukey (1915-2000)]
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Box and whisker plots (contq)
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MEASURING RELATIONS
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About correlation

There exists various types of correlations between two variables X and Y.

I
» 4

o o Ipe- ol
X X X ! X
(b) (c) (d)
(a) no correlation (c) positive linear correlation
(b) no correlation in mean (but correlation in ~ (d) non linear correlation
dispersion)
- 7&@
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Correlation coefficients

Pearson’s linear correlation coefficient

1 — R N
- ;(w — i) (yi — Tiy)

rxy — 9~

050,

— measures the strength and direction of the relationship

— only for linear dependencies

Spearman’s rank correlation coefficient

6> (1) = r(yi)?

n(n® —1)

pxy =1—

—> non linear monotonous dependencies

—> |less sensitive to outliers

uek
)
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Pearson’s linear correlation coefficient
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Kendall’'s 7 rank correlation

© Measure if two random variables X and Y vary in the same direction
° |dea: look at the sign of the product (X7 — X5)(Y; — Y5)

o For all pairs (x;,%;) and (ﬂfja yj)
> count 1 if same order (i.e., z; < x; and y; < y;)
> count -1 otherwise

25
n(n —1)

TXY —

2 3 4 5 6 7 8 9 10
1 4 2 6 5 9 8 10 7

10 wines ranked by two experts

1
Yi | 3

p=0.84 7 =0.64
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Correlation ratio

For mixed situations where X is categorical and Y numerical

1 — — 2
- Z ni(MY\X:z‘ — Tiy) 52

() My x=q

2
My x = _ — 2
> (y—ny)? Ty
Yy

1 = 0 = no dispersion of the mean across categories

1 = 1 = no dispersion within the respective categories

Data analysis and stochastic modeling — Descriptive and Exploratory Statistics
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Measure of association for categorical variables

Contingency table for two categorical variables X and Y

Right-handed Left-handed | Total

Male 43 9 52
Female 44 4 48
Total 87 13 100

Deviation from independency

° empirical independence if all line and column profiles are identical

— Nij = - /
n
o y? independence test statistics
n;. n.j 2
(mis = =)
ZZ ni .
T
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MULTIDIMENSIONAL DATA
ANALYSIS
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Projection vs. Clustering

We observe variables X € R”. What to do if p is large?

o either display variables in R?, with ¢ < p

> PCA ;
> LDA & the likes ]
> correspondence analysis
> factor analysis of
© clustering ) O
> k-means & the likes B
> bottom-up clustering B B

> gpectral clustering

F 7\' N Data analysis and stochastic modeling — Descriptive and Exploratory Statistics
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The general idea of factor analysis

Explain observed variables in terms of a smaller number of unobserved,
or latent, variables.

v = p+lpfi+.. +lgpfe+e 1=1,...,n

Data analysis and stochastic modeling — Descriptive and Exploratory Statistics 29



Principal Component Analysis = linear projection

In PCA, we rescrict ourselves to linear transformations, i.e.
1. the new reference u is a linear combination of v

2. X, is a linear combination of X,,, possibly with dimensionality reduction

Ygx1 — Uq><p Xpx1
Y1 Uixz - Ulp Iq
Yq Ugl 1+ Ugp Lp

Data analysis and stochastic modeling — Descriptive and Exploratory Statistics 30



What's a good linear projection

b Second principal component © keep diStanceS UnChanged
\/ _ ©  maximize variance
o . First principal component ®)

maximize inertia

o~

© least square error

uen
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The algorithmics of PCA (1)

Consider n observations with p variables each

(51311 oo L1 .. ZClp\
X = ri1 ... Ty .- Tjp
Kwnl oo Tpg .- xnp)

o for sake of simplification, we will assume that
1. the data exhibit a null empirical mean (centered)
2. all observations are equally important with a wieght 1 / n

o Vox X'Xand R xx X'X
&I{e}
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The algorithmics of PCA (2)

© Good projection = keep unaltered (as much as possible) the distances
between individuals

© Maximize the inertia of the projected data
Trace(Y'Y) = Trace(VP)

© PCA derives from the two following theorems:

> Theorem 1: If F}, is the subspace of dimension k with maximal
inertia, the subspace of dimension k + 1 with maximal inertia is the
direct sum of F}, and of the 1-dimensional subspace orthogonal to F},
with maximal inertia. = the solutions are intricated

> Theorem 2: The subspace F}, is the subspace generated by the k
eigen vectors of V' associated with the k highest eigen values of V.
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The algorithmics of PCA (3)

. Compute the covariance matrix V., = %X’ X (or the correlation matrix
R)

. Compute eigen system

Vosp = UpspAp,Us s, = UAU

pXp

© NIPALS algorithm for very high dimension data
. Sort eigen values and retain the highest ones, sorting U ,,, accordingly

to yield Uy,

. Reconstruct or project X

Yan — UqXpoXn
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The guys behind PCA

Karl Pearson. On lines and planes of closest fit to sys-
tems of points in space. Philosophical Magazine, Series
6, 2(11):559-572, 1901.

;
L o
s 4

_f-J

Karl Pearson

Harold Hotelling. Analysis of a complex of statistical vari-
ables into principal components. Journal of Educational
Psychology, 24(6—7):417-441,498-520, 1933.

Harold Hotteling
1895-1973
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Observation and variable spaces

Var 1 Var 2
A 4
B 7 6
C 10 4
=7 x4
2 2
51—6 sj—8/3

-1,22 -1,22
= 0 1,22

3 1,22 0
P )

UNIVERS “6@
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Observation and variable spaces (contd)

_ 3 - f 1,22 1,22
2 2
3
— 0 1,22
o0
3 1,22 0
2 0

A
Axis 2 * / \ AXis 3
var 1
4
i
B e
VA Z var 2
|C > 0 / >
G Axis 1 / Axis 2
A Axis
1

UNIVERSITE I‘,QP Sl{e}
VERST lf S 1 Data analysis and stochastic modeling — Descriptive and Exploratory Statistics

37



Projection = creating new variables

N
\
\
N
N
\
N
N I

new axis in observation space

new point in variable space

uen
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The vocabulary of PCA

° u; = 1th principal axis or factor = linear combination of descriptive
variables

> Note that there actually is a difference between axis and factor if a metric
M =+ 1is used.

o ¢; = Xu, is the ith principal components (homogeneous to a variable)
> V[CZ] — >\z
> principal components are the eigen vectors of the (12, n) matrix XX’
(= relation to the variable space)

In summary: PCA replaces the correlated variables X . . . X, with new
variables, the principal components C; . . . C,, uncorrelated linear combination
of the variables x; with maximum variance.
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Result interpretation and quality

&

b )y

X i X W Yo 0 w,@®

_ First principal plane
1| Xpj «oo Xpi | = | Wi | W2i] «o

: CDT[EI,YE} _________________ Nij
n 1
i L
ﬂ CD[—[EJEY])
e TR e
Data aray | | Principal components
b Variable map
b = ZH uhIXJ‘
(uncorrelated)
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Result interpretation and quality

° |Interpretation
> correlation between components and variables

I Axe 2 §c2

Fic. 8.5

> contribution of each sample to an axis

© Measure of quality

)\1—|—...—|—>\q
[g

> Local measurement: angle between the principal plan and a sample
— small angle = good representation

ugh
RS

> Global measurement: Fraction of the total inertia retained =
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© Data table

Example

Exploitants agricoles

Salariés agricoles

Professions indépen-
dantes

Cadres supérieurs

Cadres moyens

Employes

Ouvriers

Inactifs

AGRI
SAAG

PRIN
CSUP
CMOY
EMPL
OUVR
INAC

Pain |Autre| Vin [|Autre|Pommes Légumes Raisin | Plats
ordinaire pain |ordinaire| vin | deterre | secs | detable |préparés
PAO PAA| VIO |VIA | POT LEC RAI PLP
167 1 163 23 41 8 6 6
162 2 141 12 40 12 4 15
119 6 69 56 39 5 13 41
87 11 63 111 27 3 18 39
103 5 68 77 32 4 11 30
111 4 72 66 34 6 10 28
130 3 76 52 43 7 7 16
138 7 117 74 53 8 12 20

(Source : A. Villeneuve, « La consommation alimentaire des Frangais », Collections de 'INSEE, M 34)

© Correlation matrix

, ek
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PAO
PAA
VIO
VIA
POT
LEC
RAI
PLP

PAO PAA VIO VIA POT LEC RAI PLP
100
— 175 100
83 - 57 100
— 89 90 - 173 100
66 — 30 52 —40 100
90 — 66 80 — 84 61 100
— 82 96 - 65 91 — 42 — 82 100
— 85 78 — 82 72 — 355 — 73 85 100

[Source: Saporta 2002, pp. 180—183]

Data analysis and stochastic modeling — Descriptive and Exploratory Statistics
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Example (conta)

A
Inertia (in %)

Cumulated

77.57 88.78 94.04 98.0 99.8 999

6.21 0.89 042 032 0.14 0.01 0.005
77.57 11.21 526 399 1.74 0.1 0.06

100

Projection of the observations

|

‘ Axe 2
X
PD
INAC PAA
x RAl
*VIA

Principal components

Vio

LEC
X PAO’_ ¢

CSUP PRIN
X X
CMOY
X x
EMPL
- 7&@

A
PLP
AGRI Axe
” .
*QUVR x
SAAG

Data analysis and stochastic modeling — Descriptive and Exploratory Statistics
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Eigenfaces

© Face images are represented as a vector of pixels

© PCA is used to find the principal components/faces
= consider the parameter space (size M) rather than the image space (of size [V 2)

© Each face is represented by a linear combination of the eigenfaces

[M. Turk and A. Pentland. Face recognition using eigenfaces, in CVPR 91]

@
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Latent semantic analysis/indexing

© each observation/document is a bag of words in R4

o d is the number of index terms

° x4; is proportional to the frequency of term 7 in document 2

Xa’.Xn
( ... 0
4...1
g...7
Q... 2
\ 1---3

—> documents are better represented in the concept subspace obtained by

o
s

&

U{.‘EX?‘

( 0.4 ... -0.001
0.8--- 0.03
0.01--- 0.04
0.002--- 2.3

\o.oo3m 1.9

PCA on the term / document matrix.

[S. Deerwater et al. Indexing by latent semantic analysis. Journal of the American Society for Information Science,

41(6):391-407, 1990.]

ugh
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|
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PCA with data from several classes

PCA disregard the information on the class of each sample!

@
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Linear discriminant analysis

Find a linear projection of the data X into a subspace of smaller dimension
which

1. maximizes the dispertion across classes

2. minimizes the dispertion within classes

UNI\
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Fisher’s linear discriminant

© Observations x; from two classes with means (1 and (; and covariance
matrices Xy and i

© Projection along the line w will result in a separation defined as

S _ O across _ (W(,ul - ,LLO))2
O within w/ (X + X)W

© Maximum separation occurs when

w = (3o + 1) (111 — fo)

Two-class LDA is equivalent to Fisher’s linear discriminant with the assumptions that the
posterior distribution p(x;|classe) is Gaussian and that they are homoscedastic
(2o = 21 = )

htto.//www. youtube.com/watch ?v=tkGpzbXnOO0c
&I{e}
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O

O

Multiclass linear discriminant analysis

Assume K classes of n; samples each with respective mean (i,

K (473

Whithin-class scatter matrix: Sy, = Y Y “(wi; — i) (wij — i)’

Across-class scatter matrix S, =) ~(u; — 1) (11 — p1)

i=1 j=1

K
/

1=1

search for the projection y = Ux which maximizes

'U’'S, U]
max
u |US,U|

solution is given by the generalized eigen system

Sbuk = )\kSwuk

Data analysis and stochastic modeling — Descriptive and Exploratory Statistics
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LDA front-end for audiovisual ASR

/ AUDIO FRONT END .
AUDIO -bed— 25 msec / t % 1 - |
K MFECCl g1 .[FEATURE ! g L 216
. . EXTRA . | MEAN ‘H24 |0 — L
i melaingi * .1 |NORMALL] B.* . LDA o
CTION 24| | zation S I AN PR
- L 10 msec 2 T_ 9 4B MLLT]gp 60
shift (100 Hz) E [o] frames I
216
VIDEO — i
11 1 ... 4096 . I 1
1
1
—’ E_’ DCT . :— . Oav, ¢t
: 1 4096 -
. FACE DETECTION , ﬂ
\ & ROI EXTRACTION / 101
PROCESSING AT 60 Hz T
l ... 100 / ﬂl 1
. 1 : —p
INTER- FEATURE A =
POLATION *ﬂ MEAN }_’ L 9 A :_bﬂ{‘ n 1 ... 450 | 1
FROM 60 NORMALI- : : . 11 . LDA
1010011, | H100 ZATION 100 ML L T]zg S i _>|] Oy :
T— > : MLLT|,ll
E o] frames
450
N VISUAL FRONT END

[Potamianos et al.. Recent advances in the automatic recognition of audio-visual speech. |IEEE Proc., 2003.]
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Beyond linear projections

Use a linear projection y = Ux via the eigen system to
> PCA: maximize the variance of the projected data

> LDA: maximize discrimination between classes

More complex forms of U can be used
> NMF: non-negative matrix factorization
> |CA: independent component analysis

Non linear transformations are also possible
> use of kernels (— the kernel trick)
> artifical neural network (Multi Layer Perceptron)

Self-organizing maps

ueh
A\
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Beyond linear projections
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Factor analysis for images
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Factor analysis for images (contq)
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Factor analysis for images (contq)
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Factor analysis for images (contq)
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Additional readings

° R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd
edition, Wiley-Interscience. (See in particular Chapter 3)

© C. M. Bishop. Pattern recognition and machine learning, Springer, 2006.
(See in particular Chapter 12)

© Pattern recognition course of George Bebis
(http://www.cse.unr.edu/ bebis/CS679/)
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