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What are we here for?

1. data from observations
◦ see what the data looks like

◦ describe the data: distribution, clustering, etc.

◦ summarize the data

2. models for decision
◦ infer more general properties

◦ make a (stochastic) model of the data

◦ make decisions: classification, simulation, etc.

⇒ Provide the elementary tools and techniques

Data analysis and stochastic modeling – Descriptive and Exploratory Statistics 2



What are we gonna talk about today?

◦ Representing and viewing data

→ tables and graphics

◦ Describing 1D data

→ mean, median, standard deviation, quartiles, mode, etc.

◦ Measuring the relation between variables

→ correlations

◦ Exploring multidimensional data

→ principal component analysis, correspondence analysis, factor analysis, etc.

In short: have a feeling for a distribution, describe a distribution, identify

clusters, identify important factors.
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What data and where from?

Data come from various sources: Physical measures, experimental results,

descriptive features, etc.

1. they happen to be here

→ may not be representative

2. you design their collect

→ sample representative data

→ database design

Data come in various flavors

◦ categorical: ordered or no, coded or not

◦ numerical (sum has a meaning)

◦ scalar or not
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DESCRIBING 1-DIM DATA

Data analysis and stochastic modeling – Descriptive and Exploratory Statistics 5



Representing 1D data

From a single variable X observed on n samples, we want to

◦ describe the variable

◦ summarize the information

Data are usually organized as tables.

Example. Number of suicides per year and per state observed in 14

states over 14 years [Source: Saporta, reporting Von Bortkiewicz 1898])

Data analysis and stochastic modeling – Descriptive and Exploratory Statistics 6



Representing 1D data (cont’d)

→ for continuous data, group into classes!

[Source: Saporta 2002, p. 117]
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Viewing empirical frequencies

Categorical data

◦ bar graph

◦ pie chart

Discrete data

◦ empirical distribution
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Empirical distributions: Histograms

Histograms are used to display the empirical distribution of the variable so

as to

◦ have an idea of the underlying distribution

◦ check the behavior of the data

→ outliers, number of modes, etc.

but

◦ how many classes?

◦ equal class amplitudes or not?

→ if not then how?

Note: The area of each rectangle is

proportional to fi.
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Empirical distributions: Histograms (cont’d)

Smoother histograms can be obtained from wiser techniques:

◦ Use of a sliding window

→ count the population in all intervals

[x− ∆

2
, x+ ∆

2
[

◦ possibly with a kernel to weight differently

samples in the interval

f(x) =
1

n∆

n∑

i=1

K

(
x− xi

∆

)
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Empirical distributions: Stem and leaf plots

[ c©Eliazar]
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Empirical distributions: Pareto diagrams

[Illustration: Metacomet (wikipedia)]

→ highlight the most important factors (e.g., main source of defects, the most

frequent reasons for customer complaints. etc.)

→ aka 20 % of the causes generates 80 % of the outcome
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Scatter plots for numerical variables
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[Illustration: Metacomet (wikipedia)]
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Numerical summaries

It is often practical to describe a distribution by a few numbers summarizing

1. central characteristics

→ mean, median, mode, etc.

2. deviation around the central point

→ extrema, standard deviation, quantiles, etc.

3. overall shape

→ skewness, kurtosis, etc.

A single value is not sufficient to describe a distribution!
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Yule’s condition

A good statistical summary should

◦ be defined objectively

◦ be dependent on all the observations

◦ have a concrete and clear meaning

◦ be simple to compute

◦ be insensitive to sampling fluctuations

◦ be easily handled and support algebraic transforma-

tions

Georges U. Yule

1871–1951
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Central characteristics of a variable

◦ empirical mean ... but sensitive to outliers!

◦ α-truncated mean: empirical mean after discarding the (α%) extremum

value

x1 ≤ x2 ≤ x3 ≤ . . . ≤ x20 ≤ x21 ≤ . . . ≤ x38︸ ︷︷ ︸
arithmetic mean

≤ x39 ≤ x40

◦ median: value of the middle sample after sorting
x1 ≤ x2 ≤ x3 ≤ . . . ≤ x20 ≤ x21︸ ︷︷ ︸

X =
x20 + x21

2

≤ . . . ≤ x38 ≤ x39 ≤ x40

◦ mode: local extremum of the histogram

For perfectly symmetric distributions, mean = median = mode.

These statistics are not to be confused with the theoretical expec-

tations!
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Dispersion and shape of a variable

Fortunately, not all individuals are the same and, hence, mean isn’t everything!

Dispersion

◦ minimum, maximum and range

◦ variance and standard deviation

◦ quantiles

⊲ bounds of the intervals dividing the data in equal parts

x1 ≤ . . . ≤ x10︸︷︷︸
Q1

≤ x11 ≤ . . . ≤ x20︸︷︷︸
Q2

≤ x21 ≤ . . . ≤ x30︸︷︷︸
Q3

≤ x31 ≤ . . . ≤ x40

→ median (2), quartile (4), deciles (10), percentile (100)

⊲ interquartile range IQR = Q3 −Q1

Shape

◦ skewness and kurtosis
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Box and whisker plots

Compact representation of the mean and

dispersion

◦ 1st and 3rd quartiles

◦ higher value ≤ Q3 + 1.5(Q3 −Q1)

◦ smaller value ≥ Q1 − 1.5(Q3 −Q1)

◦ outliers

[John W. Tukey (1915–2000)]
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Box and whisker plots (cont’d)
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MEASURING RELATIONS
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About correlation

There exists various types of correlations between two variables X and Y .

(a) no correlation

(b) no correlation in mean (but correlation in

dispersion)

(c) positive linear correlation

(d) non linear correlation
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Correlation coefficients

Pearson’s linear correlation coefficient

rXY =

1

n

n∑

i=1

(xi − µ̂x)(yi − µ̂y)

σ̂2
xσ̂

2
y

→ measures the strength and direction of the relationship

→ only for linear dependencies

Spearman’s rank correlation coefficient

ρXY = 1−

6

n∑

i=1

(r(xi)− r(yi))
2

n(n2 − 1)

⇒ non linear monotonous dependencies

⇒ less sensitive to outliers
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Pearson’s linear correlation coefficient
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Kendall’s τ rank correlation

◦ Measure if two random variables X and Y vary in the same direction

◦ Idea: look at the sign of the product (X1 −X2)(Y1 − Y2)

◦ For all pairs (xi, yi) and (xj, yj)
⊲ count 1 if same order (i.e., xi < xj and yi < yj)
⊲ count -1 otherwise

τXY =
2S

n(n− 1)

xi 1 2 3 4 5 6 7 8 9 10

yi 3 1 4 2 6 5 9 8 10 7

10 wines ranked by two experts

ρ = 0.84 τ = 0.64
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Correlation ratio

For mixed situations where X is categorical and Y numerical

η2Y |X =

1

n

∑

i

ni(µY |X=i − µY )
2

∑

y

(y − µY )
2

=
σ2
µY |X=i

σ2
Y

η = 0 ⇒ no dispersion of the mean across categories

η = 1 ⇒ no dispersion within the respective categories
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Measure of association for categorical variables

Contingency table for two categorical variables X and Y

Right-handed Left-handed Total

Male 43 9 52

Female 44 4 48

Total 87 13 100

Deviation from independency

◦ empirical independence if all line and column profiles are identical

⇒ nij =
ni· n·j

n
◦ χ2 independence test statistics

χ2 =
∑

i

∑

j

(
nij −

ni· n·j

n

)2

ni· n·j

n
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MULTIDIMENSIONAL DATA
ANALYSIS
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Projection vs. Clustering

We observe variables X ∈ R
p. What to do if p is large?

◦ either display variables in R
q, with q ≪ p

⊲ PCA

⊲ LDA & the likes

⊲ correspondence analysis

⊲ factor analysis

◦ clustering

⊲ k-means & the likes

⊲ bottom-up clustering

⊲ spectral clustering
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The general idea of factor analysis

Explain observed variables in terms of a smaller number of unobserved,

or latent, variables.

xi = µ+ li1f1 + . . .+ likfk + ǫi i = 1, . . . , n
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Principal Component Analysis = linear projection

In PCA, we rescrict ourselves to linear transformations, i.e.

1. the new reference u is a linear combination of v

2. xu is a linear combination of xv, possibly with dimensionality reduction

yq×1 = Uq×p xp×1

(
y1
.
.
.

yq

)
=

(
u11 · · · u1p

.

.

.
. . .

.

.

.

uq1 · · · uqp

) (
x1

.

.

.

xp

)
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What’s a good linear projection

◦ keep distances unchanged

◦ maximize variance

◦ maximize inertia

◦ least square error
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The algorithmics of PCA (1)

Consider n observations with p variables each

X =




x11 . . . x1i . . . x1p
...

. . .
...

...

xj1 . . . xij . . . xjp
...

...
. . .

...

xn1 . . . xni . . . xnp




◦ for sake of simplification, we will assume that

1. the data exhibit a null empirical mean (centered)

2. all observations are equally important with a wieght 1/n

◦ V ∝ X′X and R ∝ X̃′X̃
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The algorithmics of PCA (2)

◦ Good projection = keep unaltered (as much as possible) the distances

between individuals

◦ Maximize the inertia of the projected data

Trace(Y′Y) = Trace(VP)

◦ PCA derives from the two following theorems:

⊲ Theorem 1: If Fk is the subspace of dimension k with maximal

inertia, the subspace of dimension k + 1 with maximal inertia is the

direct sum of Fk and of the 1-dimensional subspace orthogonal to Fk

with maximal inertia. ⇒ the solutions are intricated

⊲ Theorem 2: The subspace Fk is the subspace generated by the k
eigen vectors of V associated with the k highest eigen values of V .
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The algorithmics of PCA (3)

1. Compute the covariance matrix Vp×p =
1

n
X′X (or the correlation matrix

R)

2. Compute eigen system

Vp×p = Up×pΛp×pU
−1

p×p = UΛU′

◦ NIPALS algorithm for very high dimension data

3. Sort eigen values and retain the highest ones, sorting Up×p accordingly

to yield Uq×p

4. Reconstruct or project X

Yq×n = Uq×pXp×n
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The guys behind PCA

Karl Pearson. On lines and planes of closest fit to sys-

tems of points in space. Philosophical Magazine, Series

6, 2(11):559–572, 1901.

Karl Pearson

1857–1936

Harold Hotelling. Analysis of a complex of statistical vari-

ables into principal components. Journal of Educational

Psychology, 24(6–7):417–441,498–520, 1933.

Harold Hotteling

1895–1973
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Observation and variable spaces
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Observation and variable spaces (cont’d)
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Projection = creating new variables

v′1
(
y1(1) y2(1) y3(1)

)
=
(
u1 u2

)(x1(1) x2(1) x3(1)

x1(2) x2(2) x3(2)

)
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The vocabulary of PCA

◦ ui = ith principal axis or factor = linear combination of descriptive

variables

⊲ Note that there actually is a difference between axis and factor if a metric

M 6= I is used.

◦ ci = Xui is the ith principal components (homogeneous to a variable)

⊲ V [ci] = λi

⊲ principal components are the eigen vectors of the (n, n) matrix XX′

(⇒ relation to the variable space)

In summary: PCA replaces the correlated variables x1 . . .xp with new

variables, the principal components c1 . . . cq, uncorrelated linear combination

of the variables xi with maximum variance.
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Result interpretation and quality
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Result interpretation and quality

◦ Interpretation

⊲ correlation between components and variables

⊲ contribution of each sample to an axis

◦ Measure of quality

⊲ Global measurement: Fraction of the total inertia retained =
λ1+...+λq

Ig

⊲ Local measurement: angle between the principal plan and a sample

→ small angle ⇒ good representation
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Example
◦ Data table

◦ Correlation matrix

[Source: Saporta 2002, pp. 180–183]
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Example (cont’d)

λ 6.21 0.89 0.42 0.32 0.14 0.01 0.005

Inertia (in %) 77.57 11.21 5.26 3.99 1.74 0.11 0.06

Cumulated 77.57 88.78 94.04 98.0 99.8 99.9 100

Projection of the observations Principal components
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Eigenfaces

◦ Face images are represented as a vector of pixels

◦ PCA is used to find the principal components/faces

⇒ consider the parameter space (size M) rather than the image space (of size N2)

◦ Each face is represented by a linear combination of the eigenfaces

[M. Turk and A. Pentland. Face recognition using eigenfaces, in CVPR 91]
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Latent semantic analysis/indexing

◦ each observation/document is a bag of words in R
d

◦ d is the number of index terms

◦ xji is proportional to the frequency of term j in document i

⇒ documents are better represented in the concept subspace obtained by

PCA on the term / document matrix.

[S. Deerwater et al. Indexing by latent semantic analysis. Journal of the American Society for Information Science,

41(6):391–407, 1990.]

Data analysis and stochastic modeling – Descriptive and Exploratory Statistics 45



PCA with data from several classes

PCA disregard the information on the class of each sample!
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Linear discriminant analysis

Find a linear projection of the data X into a subspace of smaller dimension

which

1. maximizes the dispertion across classes

2. minimizes the dispertion within classes
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Fisher’s linear discriminant

◦ Observations xi from two classes with means µ0 and µ1 and covariance

matrices Σ0 and Σ1

◦ Projection along the line w will result in a separation defined as

S =
σacross

σwithin

=
(w(µ1 − µ0))

2

w′(Σ0 + Σ1)w
.

◦ Maximum separation occurs when

w = (Σ0 + Σ1)
−1(µ1 − µ0)

Two-class LDA is equivalent to Fisher’s linear discriminant with the assumptions that the

posterior distribution p(xi|classe) is Gaussian and that they are homoscedastic

(Σ0 = Σ1 = Σ)

http://www.youtube.com/watch?v=fkGpzbXnO0c
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Multiclass linear discriminant analysis

◦ Assume K classes of ni samples each with respective mean µi

◦ Whithin-class scatter matrix: Sw =

K∑

i=1

ni∑

j=1

(xij − µi)(xij − µi)
′

◦ Across-class scatter matrix Sb =

K∑

i=1

(µi − µ)(µi − µ)′

◦ search for the projection y = Ux which maximizes

max
U

|U′SbU|

|U′SwU|

◦ solution is given by the generalized eigen system

Sbuk = λkSwuk
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LDA front-end for audiovisual ASR

[Potamianos et al.. Recent advances in the automatic recognition of audio-visual speech. IEEE Proc., 2003.]
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Beyond linear projections

◦ Use a linear projection y = Ux via the eigen system to

⊲ PCA: maximize the variance of the projected data

⊲ LDA: maximize discrimination between classes

◦ More complex forms of U can be used

⊲ NMF: non-negative matrix factorization

⊲ ICA: independent component analysis

◦ Non linear transformations are also possible

⊲ use of kernels (→ the kernel trick)

⊲ artifical neural network (Multi Layer Perceptron)

◦ Self-organizing maps
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Beyond linear projections
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Factor analysis for images
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Factor analysis for images (cont’d)
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Factor analysis for images (cont’d)
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Factor analysis for images (cont’d)
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Additional readings

◦ R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd

edition, Wiley-Interscience. (See in particular Chapter 3)

◦ C. M. Bishop. Pattern recognition and machine learning, Springer, 2006.

(See in particular Chapter 12)

◦ Pattern recognition course of George Bebis

(http://www.cse.unr.edu/ bebis/CS679/)
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