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What are we here for?

1. data from observations
◦ see what the data looks like

◦ describe the data: distribution, clustering, etc.

◦ summarize the data

◦ compare data

2. models for decision
◦ infer more general properties

◦ make a (stochastic) model of the data

◦ make decisions: simulation, classification, prediction, etc.

⇒ Provide the elementary tools and techniques
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What are we here for?

[Source: D. Dacunha & M. Duflo, Probabilités et statistiques, Ed. Masson]

Data analysis and stochastic modeling – Introduction to probability 3



What are we here for?

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

4

Data analysis and stochastic modeling – Introduction to probability 4



Why probabilities and statistics will help?

What’s the difference between probability and statistics?

◦ Probability is a field theoretical mathematics

→ rely on axioms and is autonomous from physical reality

◦ Statistics is the art of collecting, analyzing and interpreting (real) data

⊲ exploratory statistics → describe, analyze and interpret

⊲ inferential statistics → generalize, decide and interpret

Probability and statistics will help because most phenomena are hardly

considered as deterministic

◦ because there is an inherent random part (e.g., user behavior)

◦ because of physical phenomenon too complex to be accurately modeled
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What are we gonna talk about?

C01 A gentle introduction to probability (warming up)

C02 Numerical summaries, PCA and the likes

C03 Cluster analysis

C04 Hypothesis testing and variance analysis

C05 From Machine learning to estimation theory and practice

C06 Mixture models and the EM algorithm

C07 Random processes, Markov chains

C08 Hidden Markov chains, continuous time Markov processes

C09 Bayesian networks

C10 Maximum entropy models and conditional random fields

Material available at http://people.irisa.fr/Guillaume.Gravier/ADM
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Usefull pillow books

Any introductory book on probabilities and statistics will do the job but I highly

recommend the following (some are in French):

◦ Gilbert Saporta. Probabilités, analyse de données et statistiques. Ed.

Technip. 1990, 2006.

◦ Kishor S. Trivedi. Probability ad Statistics with reliability, queing and

computer science applications. Ed Wiley. 2002.

Wikipedia, whether in French or in English, has also great resources regarding

statistics (e.g., http://en.wikipedia.org/wiki/Statistics).
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FUNDAMENTALS OF

PROBABILITY
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Basic vocabulary

Study equivalent objects on which we observe variables:

◦ object = coins; variable = side on which it falls

◦ object = manufactured good; variables = dimensions, weight

◦ object = classification experiment; variable = error rate

Population: a group of equivalent objects

Individual: an object within the group

Sample: a subset of the entire population (given or chosen)

Variable: characteristics describing an individual

Different types of variables:

◦ numerical: discrete or continuous

◦ categorical: nominal or ordinal
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Basic vocabulary (cont’d)

◦ Sample space or the universe of possibilities (Ω)

⊲ not defined by the experiment but rather by its usage (e.g., throwing a

dice)

◦ Event

⊲ logical assertion with respect to the experiment

e.g., the result will be greater than 10

⊲ can often be seen as a subset of Ω
⊲ an elementary event is a subset containing one element

◦ Some definitions

⊲ Two events A and B are incompatible if the occurence of one

exclude the occurence of the other (i.e., if A ∩ B = ∅).

⊲ A set of events {A1, . . . , An} is said to be complete if ∪iAi = Ω
and Ai ∩ Aj = ∅ ∀i 6= j.
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Axioms and properties

The probability theory associates to each a event a number ∈ [0, 1], the

probability of the event , satisfying the following Kolmogorov’s axioms:

◦ P [Ω] = 1

◦ each finite set of incompatible events, Ei, satisfies P [∪Ei] =
∑

P [Ei]

Consequences:

P [∅] = 0

P [E] = 1− P [E]

P [A] ≤ P [B] if A ⊂ B

P [A ∪ B] = P [A] + P [B]− P [A ∩ B]

P [∪Ai] ≤
∑

P [Ai]

lim
Ai→∅

P [Ai] = 0

P [A] = 0 (resp. P [A] = 1) does not imply that A never

(resp. always) occurs!
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Theorem of total probabilities

Theorem of total probabilities

If Bi is a complete system of events then, ∀ event A,

P [A] =
∑

i P [A ∩ Bi]
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Example

Consider a wireless cell with 5 channels, where each channel is in one of two

states: busy (0) or available (1). We are interested in the probability that a conf

call is not blocked (X = 1), knowing that at least 3 channels are required.

Step 1. Define a sample space → 5-tuples of 0s and 1s

Step 2. Assign probabilities → assume equal probability for each event

Step 3. Identify the events of interest E → the event is that “three or more

channels are available”, represented by the set of 5-tuples that have at least

three 1s (16 / 32)

Step 4. Compute the desired probability → E is a union of mutually exclusive

elementary events Ei with probability 1/32 each, and hence

P [X = 1] =
∑

i

P [Ei] =
∑

i

1

32
=

16

32

[Trivedi 2002, p. 18]
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Conditional probabilities

The conditional probability is defined as

P [A|B] =
P [A ∩ B]

P [B]

if P [B] 6= 0 and undefined otherwise.

A

B

A ∩ B

Ω

This definition leads to the multiplication rule

P [A ∩ B] =







P [A|B]P [B] if P [B] 6= 0

P [B|A]P [A] if P [A] 6= 0

0 otherwise
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Independence

Definition

Two events A and B are independent if and only if P [A|B] = P [A].

The following definition of independence is equivalent:

Two events A and B are independent if P [A ∩ B] = P [A]P [B].

Some points worth noting:

◦ A and B independent ⇒ A and B independent, A and B independent,

A and B independent

◦ A and B independent and B and C independent does not guarantee

that A and C independent
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Independence (cont’d)

Three events A, B and C are mutually independent if

1. P [A ∩ B ∩ C] = P [A]P [B]P [C]

2. P [A ∩ B] = P [A]P [B]

3. P [A ∩ C] = P [A]P [C]

4. P [B ∩ C] = P [B]P [C]

This can be extended:

n events A1, . . . , An are mutually independent if and only if for each set

of k ∈ [2, n] distinct indices i1, . . . , ik (ij ∈ [1, n]∀j)

P [Ai1 ∩ Ai2 ∩ . . . ∩ Aik ] = P [Ai1 ]P [Ai3 ] . . . P [Aik ]
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Independence: Tricky examples

Let’s throw 2 (fair) dices. The sample space is Ω = {(i, j) ; 1 ≤ i, j ≤ 6}
Example 1.

A first dice is 1, 2 or 3 → P [A] = 3
6

B first dice is 3, 4 or 5 → P [B] = 3
6

C the sum is 9 → P [C] = 4
36

We clearly have

P [A ∩B ∩ C] =
1

36
= P [A]P [B]P [C]

but

(
6

36
=)P [A ∩B] 6= P [A]P [B](=

9

36
) .

The inequality also holds for A ∩ C and B ∩ C .
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Independence: Tricky examples (cont’d)

Example 2.

A first dice is 1, 2 or 3 → P [A] = 3
6

B second dice is 4, 5 or 6 → P [B] = 3
6

C the sum is 7 → P [C] = 6
36

It is easy to verify that events A, B, C are pairwise independent but

(
1

12
=)P [A ∩B ∩ C] 6= P [A]P [B]P [C](=

1

24
) .
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Independence: Application to system reliability

Consider a system with several connected components; event Ai =

“component i is functioning properly”; define the reliability of a component i as

Ri = P [Ai], the probability that the component is functioning properly.

Assumption: failure events of components are mutually independent

◦ Series system: the system fails if any one of its components fails

→ Rs = P [∩iAi] =
∏

i

Ri

◦ Parallel systems: the system fails if all of its components fail

→ Rs = 1− P [∩iAi] = 1−
∏

i

(1−Ri)

or, using unreliability instead,

→ Fs =
∏

i

Fi
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Application to system reliability (cont’d)

Let’s consider the following system combining series and parallel components

R4

R5

R4

R1 R2

R3

R3

R3

The system’s reliability is given by

Rs = R1R2(1− (1−R3)
3)(1− (1−R4)

2)R5
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Baye’s rule

P [B|A] = P [A|B]P [B]

P [A]

Thomas Bayes

(c. 1702–1761)

Other form of Bayes’ rule assuming a mutually exclusive and collectively

exhaustive set of events B1, . . . , Bn:

P [Bj |A] =
P [Bj ∩A]

P [A]

=
P [A|Bj ]P [Bj ]
∑

i

P [A|Bi]
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Baye’s rule: Application

Three machines M1, M2 and M3 produce bolts. M1 produces on average

0.3 % of faulty bolts, M2 0.8 % and M3 1 %. We mix 1000 bolts in a bag, 500

from M1, 350 from M2 and 150 from M3. We randomly pick one bolt from the

bag: It is faulty! What is the probability that it was produced by M1?

◦ P[M1] = 0.5 P[M2] = 0.35 P[M3] = 0.15

◦ P[D|M1] = 0.003 P[D|M2] = 0.008 P[D|M3] = 0.15

P [M1|D] =
P [D|M1]P [M1]

P [D|M1]P [M1] + P [D|M2]P [M2] + P [D|M3]P [M3]
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Important conditional probabilities equations

◦ Joint probability

P [A ∩ B] = P [A,B] = P [A|B]P [B] = P [B|A]P [A]

◦ Marginal probability

P [A] =
∑

i

P [A|Bi]

if the Bi’s are mutually exclusive and collectively exhaustive events.

P [A|B] =
P [A|B]P [B]

P [B]
=

P [A,B]

P [B]
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Bayes’ rule for non parallel/series systems

R4R1

R2

R3 R5

A = (A1 ∩A4) ∪ (A2 ∩A4) ∪
(A2 ∩A5) ∪ (A3 ∩A5)

From what we have learnt on conditional probabilities, we have

P [A] = P [A|A2]P [A2] + P [A|A2]P [A2]

Two distinct cases

A2 → A1 and A3 are irrelevant and P [A|A2] simplifies to a parallel system

A2 → two series system in parallel

Rs = [1− (1−R4)(1−R5)]R2 + [1− (1−R1R4)(1−R3R5)](1−R2)

[Trivedi 2002, p. 42]
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On the limit of combinatorial approaches

Combinatorial approaches can sometimes be tricky:

◦ Monty Hall paradox

Check http://en.wikipedia.org/wiki/Monty_Hall_problem for a (lengthy) discussion

◦ Two children paradox

Mr. Smith has two children. At least one of them is a boy. What is the

probability that both children are boys?

◦ Bertrand’s box paradox (same as Monty Hall)

◦ etc.
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Random variables

Definition. A random variable X on a sample

space Ω is a funcion X : Ω → R that assigns a

real number X(ω) to each sample point ω ∈ Ω.

S(ω)

E

Ω

ω

S

In other words, a random variable is a function mapping the sample space to

some values which can be either discrete or continuous.

Examples:

◦ randomly selecting between 0 and 1 three times and observing the

number of 1s in the result

ω ∈ Ω 111 110 101 100 011 010 001 000

P (ω) 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

X(ω) 3 2 2 1 2 1 1 0

◦ lifetime of a component

→ hard to imagine the sample space!
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Random variables: why?

The inverse image of a random variable is defined as

Ax = {ω ∈ Ω such that X(ω) = x} with the following properties

◦ Ax ∩ Ay = ∅ if x 6= y

◦ ∪x∈RAx = Ω

It is often most convenient to work in the event space defined by the collection

of events Ax if our interest is solely in the resulting experimental value of

random variable X .

In the previous example

A0 = {(0, 0, 0)};A1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
A2 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)};A3 = {(1, 1, 1)}

which reduces the sample space of dimension 8 to an event space of

dimension 4.

→ with n trials: 2n sample points to n+ 1 events!
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Probability mass and distribution functions

The probability mass function (pmf) is defined a function defined as

pX(x) = P [X = x] = P [Ax] = P [{ω ∈ Ω such that X(ω) = x}
=

∑

X(ω)=x

P [ω]

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0 1 2 3

p(
x)

x

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 0 1 2 3

probability mass function (pmf) cumulative distribution function (cdf)

P [X = x] P [−∞ < X < x]
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Classical discrete distributions

◦ Uniform: a priori distribution when nothing is known

◦ Bernoulli: X = 1 with probability p and 0 with probability 1− p

◦ Binomial law : probability that an event that has an occurence probability

of p appears k times over n independent trials

◦ Poisson: probability of observing n events occuring at a rate c during a

lapse of time T

◦ Geometric: probability of the number of Bernoulli trials before the first

“success”

◦ Negative binomial: probability of the number of Bernoulli trials before the

rth “success”

◦ Hypergeometric: probability of choosing k defective components among

m samples chosen without replacement from a total of n of which d are

defective

◦ etc.
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Continuous random variables

◦ for a continuous variable, P [X = x] = 0 !!!!!!!

◦ probability defined over an interval P (x < X < x+ dx) = f(x)dx

◦ f(x) is the probability density function (pdf)

◦ F (x) =

∫ x

−∞

f(x)dx is the cumulative distribution function (cdf)

P (a < X < b) =

∫ b

a

f(x)dx

= F (b)− F (a)

[Source: G. Sapporta (1990), p. 22]
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Classical continuous distributions

◦ Uniform: a priori distribution when nothing is known

◦ Exponential: lifetime of a component or a service

◦ Gamma: somehow equivalent to Poisson in the continous case

◦ Normal or Gaussian: almost everything

◦ Weibull: reliability

◦ etc.
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Function of a random variable

Let X be a continuous random variable of density fX and φ a differentiable

monotone funcion. Y = φ(X) is a continuous random variable with density

fY given by

fY (y) =
fX(φ

−1(y))

|φ′(φ−1(y)| .

Example. For y = exp(x), we have

fY (y) =
fX(x)

exp(x)
=

fX(ln(y))

y

⇒ not as simple for non monotonous functions
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Two random variables

The joint distribution of two random variables X and Y is defined as

FX,Y (x, y) = P (X ≤ x ∩ Y ≤ y) .

If both variables are coutinuous, there often exist a function such that

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞

f(u, v)dudv

and, if partial derivative exists,

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
.

Independence ⇒ FX,Y (x, y) = FX(x)FY (y).
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Expectation of a random variable

◦ The expectation of a random variable X is defined as

⊲ discrete case

E[X] =
∑

x∈X(Ω)

xP [X = x]

⊲ continous case

E[X] =

∫ ∞

−∞

xf(x)dx (if the integral converges)

◦ The expectation measures the “gravity center” of the distrubtion

◦ Properties

E[a] = a

E[aX] = aE[X]

E[X + a] = E[X] + a

E[X1 +X2] = E[X1] + E[X2]
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Expectation of a random variable (cont’d)

◦ Expectation of a function of X

E[φ(X)] =

∫

φ(x)f(x)dx

◦ Expectation of the product XY

E[XY ] =

∫ ∫

xyf(x, y)dxdy

⊲ X and Y independent ⇒ E[XY ] = E[X]E[Y ]
⊲ but the inverse is not true
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Variance and standard deviation

◦ The variance of a random variable X is defined as

V [X](= σ2) = E[(X − E[X])2] = E[X2]− E[X]2

◦ The square roots of the variance, σ, is known as the standard deviation

◦ Properties

⊲ E[(X − a)2] = V [X] + (E[X]− a)2

⊲ V [X − a] = V [X]
⊲ V [aX] = a2V [X]

⊲ Inequality of Bienaymé-Tchebyshev: P [|X − E[X]| > kσ] ≤ 1
k2
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Variance and covariance

◦ Variance of a sum of variables

V [X + Y ] = V [X] + V [Y ] + 2(E[XY ]− E[X]E[Y ]
︸ ︷︷ ︸

COV (X,Y )

)

⊲ X and Y independent ⇒ V [X + Y ] = V [X] + V [Y ]
⊲ but the inverse is not true
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Moments

◦ the moment of order k is defined as

µk = E[(X − E[X])k]

◦ moments are eventually normalized by σk

◦ typical normalized moments

⊲ skewness γ1 = µ3/σ
3

→ symmetric distributions ⇒ γ1 = 0
→ heavier tail on the left (resp. right) ⇒ γ1 < 0 (resp. γ1 > 0)

⊲ kurtosis γ2 = µ4/σ
4

→ tall and skinny vs.. short and squat

→ importance of the tails in the distribution
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Moments (cont’d)

[Source: Saporta 1990, p. 29]
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Discrete distributions: Bernoulli and binomial

Bernoulli

◦ Law of a binary random variable X , taking value 1

with probability p and 0 with probability 1− p

◦ Typically used as an indicator function for an event

occuring with a probability p
⊲ P [X = k] = pk(1− p)1−k

⊲ E[X] = p and V [X] = p(1− p)
Jacob Bernoulli

1654–1705
Binomial

◦ Probability that an event that has an occurence probability of p appears k
times over n independent (Bernoulli) trials

◦ X  B(n, p) if X is the sum of n independent Bernoulli variables

P [X = k] = Ck
np

k(1− p)n−k

E[X] = np and V [X] = np(1− p)
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Classical discrete distributions: Poisson

◦ A Poisson P(α) is defined as

P [X = k] =
αke−α

k!
◦ Probability of k events occuring at a rate λ over an

interval of duration t (α = λt)

◦ Approximation of the binomial for small p and large n
(n ≥ 20, p ≤ 0.05)

◦ E[X] = V [X] = α

Siméon D. Poisson

1781–1840

[Illustration: Skbkekas (from wikipedia.org)]
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Continuous laws: the exponential law

The exponential law models lifetimes such as

◦ time between two successive job arrivals

◦ service time at a server in queing network

◦ time to failure of a component

F (x) = 1− e−λx f(x) = λe−λx E[X] = λ−1 V [X] = λ−2

[Illustration: Skbkekas (from wikipedia.org)]
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Memoryless property of the exponential law

◦ In reliability, R(t) is the probability that an individual lives past t, i.e.,

R(t) = P [X > t]

◦ From Baye’s rule, the probability that an individual dies between t1 and t2
knowing that he is alive at t1 is given by

P [t1 ≤ X < t2|X > t1] =
R(t1)−R(t2)

R(t1)

◦ Using the exponential law P [X > t] = e−ct

P [t1 ≤ X < t2|X > t1] = 1− e−c(t2−t1) = P [X < t2 − t1]

◦ No aging of the individual!
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Failure rate and mean time to failure

Some definitions in the domain of reliability

◦ reliability of a component: R(t) = P [X > t] = 1− F (t)

◦ f(t)∆t is the (unconditional) probability of failure in [t, t+∆t[

◦ h(t) = f(t)/R(t) is the conditional probability of failure in [t, t+∆t[,
knowing that the component has survived until t

◦ mean time to failure (MTTF): E[X] =
∫∞

0
R(t)dt

For an exponentially distributed lifetime, R(t) = e−ct

◦ h(t) = c

◦ MTTF = c−1

◦ for a series system

⊲ R(t) = exp (− (
∑

i λi) t)

⊲ MTTF = (
∑

i λi)
−1

(≤ miniE[Xi])
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Gaussian law

f(x) =
1√
2πσ

exp

{

−1

2

(
(x− µ)

σ

)2
}

E[X] = µ and V [X] = σ2

Carl Friedrich Gauss

1777–1855

 0
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sigma=1
sigma=2
sigma=2

P [m− 1.64σ < X < m+ 1.64σ] = 0.90

P [m− 1.96σ < X < m+ 1.96σ] = 0.95

P [m− 3.09σ < X < m+ 3.09σ] = 0.998
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Gaussian law: advantages

Entirely defined by the two parameters µ and σ.

Central-limit theorem If Xn is a set of random variables from the same law with mean µ and

standard deviation σ, then

1√
n

(
X1 +X2 + . . .+Xn − nµ

σ

)

−→ N (0, 1)

Theorem of Lindeberg Let X1, . . . , Xn be independent random variables of means µi and

standard deviations σi. Under certain coniditions

∑

i

Xi −mi

√∑

i σ
2

i

−→ N (0, 1)

Interpretation: if a variable results from a large number of small additive

causes, its law is a Gausian law.
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Properties of the Gaussian law

Changing variable

If X −→ N (µ, σ2), then

U = (X − µ)/σ  N (0, 1)

Additivity

If X1 and X2 are two independent variables with respective laws

N (µ1, σ
2
1) and N (µ2, σ

2
2), then the law of X1 +X2 is Gaussian with

mean µ1 + µ2 and variance σ2
1 + σ2

2 .

Warning: the property of additivity only applies if the variables are

independent!
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A practical use of the Gaussian law

4 5 6 7 8 9 10 11 12
0
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high energy Gaussian threshold = m1 - a * s1 

a * s1 
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Multivariate Gaussian density

Definition

X is a Gaussian vector of dimension p if any linear combination of its

components a′X is a Gaussian in dimension 1.

f(x) =
1

(2π)n/2|Σ|1/2 exp
{

−1

2
(x− µ)′Σ−1(x− µ)

}
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Example of a multivariate Gaussian with m = [21] and θ = π/6.
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Properties of the covariance matrix

The covariance matrix is symmetric, definite positive,

Σ = V D V ′

where

V are the eigen vectors defining the principal axes (orientation of the

density) and

D are the eigen values defining the dispertion along the axes.

Theorem

The components of a Gaussian vector are independent if and only if Σ is

a diagonal matrix, i.e. if the components are not correlated.
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Illustration of 2D Gaussians

From the correlation point of view

Σ =

(
σ2
1 ρσ1σ2

ρσ2σ1 σ2
2

)

From the geometric point of view

V =

(
cos(θ) sin(θ)

sin(θ) cos(θ)

)
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Isodensity ellipsoids

Isodensity curves are (hyper)ellipsoids whose equation is given by

(x− µ)′Σ−1(x− µ) = c
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