
2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2983402, IEEE
Transactions on Cloud Computing

1

Stream Processing on Clustered Edge Devices
Rustem Dautov∗, Salvatore Distefano†‡
∗ SINTEF Digital, Oslo, Norway

rustem.dautov@sintef.no
† Università di Messina, Messina, Italy

‡ Kazan Federal University, Kazan, Russian Federation
sdistefano@unime.it, s distefano@it.kfu.ru

Abstract—The Internet of Things continuously gener-
ates avalanches of raw sensor data to be transferred to
the Cloud for processing and storage. Due to network
latency and limited bandwidth, this vertical offloading
model, however, fails to meet requirements of time-
critical data-intensive applications which must act upon
generated data with minimum time delays. To address
such a limitation, this paper proposes a novel dis-
tributed architecture enabling stream data processing
at the edge of the IoT network, broadening the principle
of enabling processing closer to data sources adopted by
Fog and Edge Computing. Specifically, this architecture
extends the Apache NiFi stream processing middleware
with support for run-time clustering of heterogeneous
edge devices, such that computational tasks can be
horizontally offloaded to peer devices and executed in
parallel. As opposed to vertical offloading on the Cloud,
the proposed solution does not suffer from increased
network latency and is thus able to offer 5-25 times
faster response time, as demonstrated by the experi-
ments on a run-time license plate recognition system.

Index Terms—Internet of Things; Edge Computing;
Big Data; Stream Processing; Horizontal and Vertical
Offloading; Apache NiFi; License Plate Recognition.

I. Introduction, Motivation, and Contribution

THE traditional Cloud-centric data processing model
adopted by the Internet of Things (IoT) is only

suitable for scenarios with rather relaxed time constraints,
as it fails to meet pressing requirements in terms of reaction
time and network latency, especially in the presence of con-
siderably big data streams. As time-critical IoT applications
and services demand for near real-time data processing and
reaction, they cannot rely on (potentially outdated) results
obtained by sending data over the network to a remote
processing location. This becomes particularly challenging
in the context of bandwidth-constrained wireless connec-
tions ubiquitously present at the edge of IoT networks,
thus limiting the disruptive potential of the IoT. Aiming
to address this challenge, the Fog computing paradigm
still remains limited in its capacity to support processing
of extreme amounts of continuously flowing data in a
ubiquitous manner similar to the Cloud, whereas network
latency (albeit much lower) is still present. Supported
by the ever-growing processing capabilities of devices at
the network edge, the Edge Computing paradigm aims at
pushing intelligence to devices that not only provide sensing

and actuation resources, but also act as computational
nodes in their own right. This way, execution of processing
tasks immediately after data are generated and reduction
of network traffic and latency, can be enabled by exploiting
own processing capabilities of edge devices.

In this light, this paper further extends the scope of
Edge Computing towards a wider range of data-intensive
IoT application scenarios, where computational tasks can
be offloaded to collocated edge devices. Specifically, it
proposes a novel distributed Stream Processing architecture
to enable horizontal offloading at the edge, by clustering
devices and utilizing a shared pool of their contributed
resources to process computational tasks offloaded by
peers, i.e. Clustered Edge Computing, as apposed to the
traditional vertical offloading to Fog/Cloud nodes. By
pushing intelligence to the very edge of the network
as close to the data source as possible, the proposed
architecture aims to minimize the amount of data sent to
a remote server, reduce network latency, and thus achieve
faster processing results. Furthermore, considering storage
limitations of edge devices, the proposed architecture also
benefits from in-memory (stream) processing to minimize
the number of disk I/O operations.

This proposed approach is implemented as the Edge Clus-
ter Stream Processing (ECStream Processing) middleware
enabling time-constrained data-intensive applications to be
entirely deployed and executed at the edge. Accordingly,
the contribution of this paper is three-fold: i) a dynamic
horizontal offloading pattern for distributed data processing
on clustered edge devices able to deal with the node
churn at run-time; ii) a decentralized Stream Processing
architecture, extending the Apache NiFi middleware with
new clusterization services for in-memory processing of data
streams on clustered edge devices, distributing modules
among clustered nodes. The proposed approach goes
beyond the traditional data parallelism model (e.g. MapRe-
duce) towards a task parallelism (pipeline) model, wherein
atomic tasks are offloaded to peer edge devices, rather than
the full workflow, as in the traditional data parallelism;
iii) a comparison of stand-alone local processing against
Cloud (vertical offloading) and Clustered Edge Computing
(horizontal offloading) through a case study, to demonstrate
the viability of the approach and its potential exploitation
in cluster capacity planning.

The remainder of the paper describes the ECStream

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 17,2020 at 04:01:34 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2983402, IEEE
Transactions on Cloud Computing

2

Processing approach, by first outlining the research context
resorting to a motivating video processing application
domain and then reviewing the literature to highlight
main limitations of existing solutions (Section II). As
a potential way of addressing such limitations, Section
III presents the main aspects of ECStream Processing,
including the stack architecture and the corresponding
clusterization workflow. Section IV describes preliminary
clusterization stages, while core activities are detailed
in Section V (discovery and selection) and Section VI
(deployment and operation). A preliminary implementation
of the ECStream Processing Cluster middleware is proposed
in Section VII, while Section VIII describes a case study
on a run-time license plate recognition system, deployed on
clustered edge devices available on-board a vehicle. This
way, ECStream Processing is compared to Cloud-based
horizontal offloading models through experiments with
promising results and feedback. Section IX concludes the
paper with final remarks and an outlook for future work.

II. Research Context and Related Works
Delayed data analysis and feedback generation often

cannot be tolerated by critical systems, which rely on timely
(i.e. quasi real-time) operation. These limitations primarily
affect application domains involving, e.g., live video analysis
where multiple image sensors, independently or combined,
continuously capture video streams for online processing
at the intersection of IoT and Fog/Edge computing [1].
Examples include intelligent surveillance systems (e.g.
object/face detection and recognition), smart mobility (e.g.
dashcams and infotainment systems), Industry 4.0 (e.g.
machine vision for product/equipment surface inspection
and staff tracking), emergency management, robotics, etc.

Object Tracking Object Classification

Behaviour AnalysisAlarm Generation Video Indexing

Image frame

Object Foreground & Features

Object TypeObject Trajectory

Object Detection

Fig. 1: A generic video processing workflow [2].
A typical video processing workflow can be conceptually

split into several steps, as depicted in Fig. 1. Various
objects, present in input frames, are first detected and
then classified (i.e. recognized) according to a background
knowledge base. At the same time, detected objects might
be tracked through a sequence of frames to analyze
object behavior and actions. Another element of such
systems is some kind of notification/alarming, as well
as storing of intermediate processing results and video
indexing. Depending on the system architecture, different
processing steps can take place at various physical and
logical locations. For example, the initial object detection
can take place immediately at the source, whereas more
complex operations are undertaken on a remote server.

Raw video streams, continuously recorded by relatively
modern capture devices, constitute a rather big data set
from a perspective of an edge device and, consequently, can

be treated as a Big Data challenge, hardly manageable by
the device on its own (unless specifically conceived for that),
thus becoming a perfect motivating scenario for the present
work. A common technological trend to address such a
limitation is to resort to vertical offloading, also looking for
a right balance between low network latency of the Fog [3],
[4], [5] and high computing capabilities of the Cloud [6],
[7], [8] by hierarchical resource allocation and orchestration
architectures that transparently provision containerized
resources. These are often coupled with some optimization
techniques and algorithms as in [9], [10], where the resource
allocation problem for optimal placement of video analytics
queries in such a hierarchy is formulated. However, the
performance of such client-server architectures is affected
by the network connection, worsening with the number of
hops – a limitation hardly addressable by vertical offloading
approaches due to the inevitable requirement to send
data remotely. In these circumstances, minimization of
the amount of data transferred over the network comes
as a natural fit and is acknowledged as one of the main
concerns for the IoT research community [11].

As a next step towards keeping computation locally,
Edge Computing enabled data filtering and aggregation,
as well as relatively simple processing to be executed on
edge devices themselves as part of a more complex data
processing workflow, the rest of which is expected to be
accomplished by Fog and Cloud nodes [12]. Until recently,
a shortcoming of the existing approaches focusing on data
processing at the edge [13], [14] was the lack of support
for pooling computing resources of multiple collocated
edge devices, which only became possible with the recent
advances in hardware and networking technologies. As a
result, there are existing works [15], [16], demonstrating
how edge devices can be clustered and managed through
middleware at run-time, thereby achieving even lower
latency. Similar to the Cloud- and Fog-level coordination,
these approaches rely on equipping edge nodes with agent-
like virtual containers to enable orchestration and manage-
ment. This way, edge devices are able to communicate with
each other to split, delegate, and share processing tasks.

Existing initial attempts to enable collaborative process-
ing among edge devices by means of horizontal offloading
typically rely on a central (Fog) coordinator [8], [17], which
is in charge of cluster establishment and management.
Clustering and orchestration of edge devices using hybrid,
hierarchical Cloud-Fog-Edge offloading techniques are also
proposed in [8], [18], [19], still via centralized Fog/Cloud-
based coordination. This limitation is partially addressed
by recent works focusing on Mobile Cloud Computing [20],
Mobile Ad-hoc Clouds [2], [17], Mobile Edge Computing [21]
and Cyber Foraging [22], which are able to pool resources of
collocated mobile phones and IoT devices into cloudlets [17]
or fog colonies [8], to support distributed processing. Similar
to their centralized predecessor Mobile Grid Computing,
such approaches do not address the heterogeneity of edge
IoT devices restricting their scope only to mobile devices,
providing basic infrastructure clustering mechanisms (e.g.
pooling), not able to dynamically connect, discover, select,

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 17,2020 at 04:01:34 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2983402, IEEE
Transactions on Cloud Computing

3

and orchestrate devices. In more generic IoT contexts,
Multi-access Edge Computing [21] addresses networking
issues by extending Mobile Edge Computing with support
for wireless (radio) connectivity at the edge.

As opposed to these existing approaches, the research
effort presented in this paper aims at enabling a decen-
tralized architecture, where participating clustered edge
devices can act as both cluster initiators/coordinators
and worker nodes. This architecture takes into account
the mobile and heterogeneous nature of edge devices and
enables dynamic discovery, selection and management of
suitable nodes at run-time. Similar ideas are proposed
and discussed, albeit at a more conceptual level, in [23],
[24], where the authors motivate for horizontal offloading
at the edge and outline a high-level architecture of a
future system. As explained below, the proposed approach
builds upon an existing Stream Processing middleware for
in-memory data analytics, currently designed for static
cluster configurations, and extends it with mechanisms
for dynamic clustering and task offloading at system run-
time. This approach goes beyond the traditional data-
parallel processing model (i.e. MapReduce) and is able
to ‘unpack’ Stream Processing workflows into finer-grained
atomic tasks, thereby adopting a task-parallel processing
model on clustered edge devices.

III. ECStream Processing

Edge
Devices
(billions)

Fog Nodes
(millions)

Data
Center/
Cloud

(thousands)

Fig. 2: IoT data offloading and processing patterns.

The challenges raised by data-intensive and time-critical
IoT scenarios, such as online video processing, call for
a solution bridging infrastructure and software layers.
Such a solution is expected to foster the convergence of
multiple paradigms, spanning across Edge, Fog, and Cloud
Computing in a computing continuum (see Fig. 2) coupled
with Big Data (batch/stream) processing techniques. To
involve edge devices in this continuum, Edge Computing
has to be enhanced with clustering techniques extending
its application domain towards Clustered Edge Computing
(CEC). Combined with in-memory Stream Processing, CEC
paves the way for the proposed Edge Cluster Stream (EC-
Stream) Processing approach, resulting in a flexible solution
for time-constrained IoT data processing on a cluster of
collocated edge devices. This way, data processing is no
longer Fog/Cloud-centric, but is rather Edge-centric – i.e.
the workload is distributed among clustered edge nodes to
avoid network latency and improve performance, while the
Fog/Cloud servers remain as secondary processing/storage

Application & Services
Cluster Middleware

OS & Execution Environment
IoT Infrastructure

Processing
(CPU+RAM) Storage Networking Sensing &

Actuation

Load Balancing

Networking &
Communication

AAA & Incentive
Mechanisms

Node Discovery

Node Selector

Task Partitioner

New
component

Extended
component

Default
componentTask Scheduling &

Synchronisation

Data Provenance,
Backup & Recovery

Legend:

ZooKeeper Placement
& Orchestration

Fig. 3: ECStream Processing stack.
locations. This is highlighted in Fig. 2, where traditional
vertical offloading to Fog and Cloud nodes (black dashed
lines) are extended with horizontal offloading (white dashed
lines) enabled by CEC.

A. Stack Architecture
The envisioned ECStream Processing has to deal with

run-time clusterization, task decomposition, distribution,
scheduling and orchestration, resource and data manage-
ment, serialization and synchronization. Furthermore, since
edge devices are usually resource-constrained, specifically
in terms of storage facilities, a light-weight solution based
on in-memory, online data processing of continuously
streaming raw data has to be adopted. To this purpose,
among multiple available open-source options,1 we opt
for Apache NiFi2 – a light-weight, customizable, fault-
tolerant Stream Processing framework. As opposed to
more widely used implementations, such as Apache Storm,
Spark, or Flink, the main advantage of NiFi is its low
footprint – i.e. the smallest NiFi agent, written in C++
and specifically tailored to IoT devices, consumes as little as
5MB of memory. Based on the concept of Flow-Based Pro-
gramming, NiFi allows defining control logic as a workflow
composed of multiple interconnected processing steps (i.e.
processors). The built-in set of NiFi processors ranges from
simple mathematical operations, data translation or format
conversion, to more complex analytical operations, and
can be further extended with user-customized processors.
NiFi features also include support for cluster management
(i.e. ZooKeeper), scheduling algorithms, data serialization,
backup and replication, network communication, monitor-
ing, accounting, authentication and authorization (AAA),
security and privacy using TLS encryption, and improved
usability (e.g. IDE for visual workflow design).

To implement the ECStream Processing stack, we aimed
to build upon existing functionality, making use of available
NiFi features wherever possible, extending built-in or
developing new ones, specifically conceived for clustering
and management of edge devices. Fig. 3 shows the resulting
four-layer ECStream Processing stack architecture, differ-
entiating between i) completely novel (darker boxes with
bold italic labels), ii) existing and extended (yellow boxes
with italic labels), and iii) existing and taken as-is (white
boxes) components (bottom-up):
1) IoT Infrastructure is no longer restricted to traditional
servers, but also includes edge devices with their sensing

1https://github.com/manuzhang/awesome-streaming
2https://nifi.apache.org/

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 17,2020 at 04:01:34 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2983402, IEEE
Transactions on Cloud Computing

4

and actuation facilities. In the video processing context
taken as a reference, cameras and other smart devices
(e.g. smartphones) with processing, networking and sensing
capabilities can be part of the infrastructure.
2) OS & Execution Environment serve as a unified platform
for deploying and running middleware and software on
top of the heterogeneous infrastructure. IoT heterogeneity
is still an open issue, since edge devices can differ in
both hardware and software capabilities. A well-established
solution is containerization [25] – i.e. a light-weight form
of virtualization, allowing to run multiple independent
applications in ‘sandboxed’, isolated environments, thus
achieving interoperability, while ensuring security and
privacy crucial for the IoT.
3) Cluster Middleware is the core of the ECStream Pro-
cessing stack. It is deployed on the resulting (homoge-
neous) execution environment and provides clusterization
functionality. It extends the original NiFi architecture
with six components, three of which are brand new (Task
Partitioner, Node Discovery and Node Selector, while the
rest are existing modules enhanced with CEC-oriented
features. Specifically, Networking & Communication is
extended with support for overlay networking, ZooKeeper
Placement & Orchestration is enhanced with functionality
for deploying and orchestrating distributed tasks in edge
clusters, and AAA & Incentive Mechanisms include new
primitives for subscription management (e.g. user contri-
bution profiles) and incentive mechanisms (e.g. reputation
systems, gamification, social incentives, financial rewards).
4) Applications & Services benefit from ECStream Process-
ing results according to their business logic, even issuing
downstream feedback actuation commands, thus promptly
closing the loop to meet application time constraints.

B. ECStream Processing Workflow

Initiator /
Coordinator Node 1 Node n

Offloading requests

Ack

Node 2

NAck
Ack

Configure (& Elect)

Ack (| Coordinator)

Return

Run Run

Return

Reduce

Selection

Orchestration
& Lifecycle

Management
Processing

Discovery

Loop

Select

Partitioning
Task
decomposition

Placement
and

Configuration

Task mapping
and allocation

Loop

Cluster Enabling

Network
Manager

Join NetworkJoin NetworkJoin NetworkJoin Network
Network Setup Network Setup Network Setup Network Setup

~~ ~~ ~~ ~~
Networking and
Communication

Task Partitioner

Node Discovery

Node Selector

ZooKeeper
Placement

ZooKeeper
Orchestration

Ack (| Coordinator)

Fig. 4: Sequence diagram of the clusterization process.

The clusterization workflow is depicted in Fig. 4 and
is executed by the ECStream Processing stack shown in
Fig. 3. It continuously loops to dynamically adapt the
edge cluster configuration to potential issues (due to the
node churn) at run-time, thus requiring to perform all
the activity steps online, demanding for a light-weight,
low-latency implementation.

Clusterization is initiated by an edge node, the Initiator,
willing to offload computational task to peers. To this
purpose, it may be required to first establish a connection
between nodes through a Cluster Enabling operation per-
formed by a bootstrap node, the Network Manager. Once
the connection is established, clusterization is triggered by
the Initiator, broadcasting offloading requests to edge nodes
as part of the ECStream Processing Discovery service. In a
video processing application, the camera usually acts as the
Initiator, delivering offloading requests to nearby network
nodes. Upon receiving a request, eligible devices in the
Initiator range can decide whether to support it. If so, they
will then go through the Selection stage driven by various
factors, such as mobility patterns, potential security issues,
physical and network distances, etc. Then, it assigns tasks
to selected nodes by sending them configuration parameters
at the Placement and Configuration step. If there are at
least 3 nodes in the cluster (i.e. a minimum sufficient
number to run a leader election protocol), a Coordinator
is elected among the nodes contextually. In case there is
already an elected Coordinator, only an Ack is replied to
the configuration message. For the sake of simplicity, Fig.
4 assumes that the roles of Initiator and Coordinator are
undertaken by the same node. This way, the cluster is
established and configured, ready to run offloaded tasks
in parallel on its nodes (Processing), supervised by the
customized ZooKeeper Placement & Orchestration module
that performs Orchestration & Lifecycle Management. All
these steps are explained below in more details.

IV. Preliminary Stages
A. Cluster Enabling

To support clusterization, networking issues have to
be addressed first. Constituted by multiple mobile and
portable smart devices that can move across different
geophysical and network locations, the IoT ecosystem is
very dynamic in its nature. Since the dynamic nature of
such topologies is underpinned by wireless connectivity
coupled with mobility patterns, possibly inducing the
traversal of different network domains, it is important to
take into account issues such as (sudden) introduction of
address/port translators or security-oriented appliances
(e.g. firewalls) between nodes, which may outright block or
significantly modify inter-node communications, hindering
the process of node discovery and clusterization. To this
end, the built-in Networking & Communication module
(see Fig. 3) is extended with support for ad-hoc topologies
and overlay networking facilities. This further improves
the cluster discovery range, as well as node reliability,
allowing to enroll and keep edge nodes traversing different

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 17,2020 at 04:01:34 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2983402, IEEE
Transactions on Cloud Computing

5

subnets, even in the presence of network barriers that might
otherwise impede their direct interaction.

To implement this, we based on existing work [25],
[26] that enables (transparent) network communications
between nodes in different subnets via overlay networks.
As depicted at the top of Fig. 4, an (overlay) Network
Manager (NM) gets contacted by other nodes aiming to
establish an always-on command-and-control stream of
messages, compliant with WebSocket-based Web Applica-
tion Messaging Protocol. Network barriers are overcome
through WebSocket-based (reverse) tunnelling by piercing
‘middle boxes’ for implementing overlay networks among
edge nodes and transporting node-initiated network tunnels.
Specifically, transparent Layer-3 (L3) networking is enabled
by the NM that instantiates, manages, and routes tunnels
to each node during clusterization, as well as during actual
data processing afterwards.

Referring to the IoT video processing workflow, an exam-
ple of cluster enabling is shown in Fig. 5(a), where nodes
with network restrictions, although Internet-connected,
send a join request to the NM, which replies with a setup
configuration to establish WebSocket reverse tunnelling
and, as a result, enable communication with other nodes.

B. Partitioning
Our target scenario assumes that a running edge node

cannot meet processing requirements of a data-intensive
application due to some resource constraints, and opts for
sharing computational tasks, thereby triggering offloading
at run-time, not at design/deployment time. It is also
assumed that the initial setup and the requirements for the
tasks to be offloaded are known and will further drive the
partitioning activities by the Initiator. From the horizontal
offloading perspective, such tasks can be allocated to nearby
devices composing a cluster. To do so, the original (com-
plex) application logic has to be decomposed into simpler
tasks tailored to edge device capabilities, thus treating the
original application as a sequence of atomic data processing
operations. Furthermore, it is also mandatory to identify
the requirements of partitioned tasks driving the discovery
and selection steps to cluster matching devices.

Admittedly, partitioning is challenging to be imple-
mented in an automated manner, as it cannot be gen-
eralized to any class of problems, since each sequential
algorithm usually requires a specific partitioning model.
Even restricting the scope to our target domain (i.e.
data-intensive video processing applications) could not
be enough, since it is required to go beyond pure data
parallelism to let resource-constrained edge devices be
able to run simpler stream processing tasks, rather than
the full workflow. It is therefore necessary to identify and
split concurrent blocks of the target sequential algorithm,
and then apply a partitioning strategy that can possibly
combine different task decomposition models. Admittedly,
this requires deep knowledge of the target application, and
descriptions of decomposed tasks have to include both
semantic (e.g. information to be exchanged or processed,

functionality to be performed) and syntactic (e.g. data
structure and format) aspects. Taking these self-describing
building blocks, the system can then chain complex work-
flows, validate information flows, input data and output
results automatically. Software composability and task
decomposition are partially explored by literature [27], [28]
and deserve further investigation, since partitioning is still
an open problem, especially in the context of the IoT and
Edge Computing scenarios.

On this premise, a convenient solution for partitioning
a (NiFi) stream processing workflow proposed in this
paper is to first identify atomic tasks in a workflow and
then parallelize them. This is quite a trivial approach,
since a stream processing workflow mainly consists of
task sequences, conditional branches and parallel fork-
join constructs without loops [29]. The resulting workflow
decomposed into a sequence of atomic tasks, will be then
executed by exploiting a pipeline parallel model [30] on
clustered edge devices, thus maximizing the throughput.

In the reference video processing scenario, a complex
workflow can be partitioned as shown in Fig. 1, and a
task to be offloaded could request for devices equipped
with GPUs, optimized for such kind of processing. Further
details on the underlying partitioning algorithm can also
be found in [31].

V. Discovery and Selection
A. Discovery

To integrate edge devices into a common cluster, it
is required to discover them on the network first. The
discovery process should happen dynamically at run-
time, since many edge devices are expected to be mobile
(e.g. smartphones, tablets, and other hand-held portable
devices), i.e. joining and leaving the wireless network
unpredictably. This becomes particularly challenging as
far as edge devices with sensing/actuating capabilities are
concerned – i.e. as opposed to more traditional nodes, these
need to be (semantically) described to be discoverable.

The discovery process can be conceptually split into
two sequential steps: network discovery and functional
discovery. The network discovery mainly focuses on finding
connected nodes reachable by the Initiator. Apart from
the TCP/IP-based networks (i.e. WiFi and Ethernet), it
is also possible to discover peer devices through other
wireless channels, such as Bluetooth, possibly implementing
discovery in parallel and even hierarchical ways [29].

Once an edge node is discovered, the functional discovery
checks whether the node is eligible for running a task among
those identified by partitioning. The presence of a wide
range of heterogeneous edge devices does not guarantee
that all of available-discovered nodes will necessarily be
capable of processing the current workload for a number of
reasons (e.g. missing hardware/software components, low
computational capabilities, high network latency, etc.). In
these circumstances, it is important to check first whether
a particular node is indeed suitable for processing a given
task – that is, to check their functional suitability for a

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 17,2020 at 04:01:34 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2983402, IEEE
Transactions on Cloud Computing

6

NM

2: join

1: setup

2: join

1: setup
Ad-Hoc/Local

Internet

Reverse Tunneling

NM

Initiator

select

a) Cluster Enabling b) Node Discovery d) Placement and Configuration

Init./Coord.

1: Task allocation

and node

configuration

2: Coordinator

1: Task allocation and node

configuration

1: Task allocation and node configuration2: Coord

2: Coordinator

1: Task allocation and
node configuration

c) Node Selection

NM

2: ack

2: nack

Initiator1:
 o

fflo
ad

in
g

re
qu

es
t

2: ack

1: offloading request

2: B.ack, M.nack

1: offloading request

2: nack

1: offloading

request

2:ack

1: offloading
request

2: ack

1: offloading
request

1: o.r.

2: ack

2: ack

2: ack

1:
offloading
request2:ack

1: offloading request

2: Coordinator

Fig. 5: An example of the ECStream Processing algorithm applied to the IoT video processing workflow.

task. To enable such kind of match-making, it is expected
that previously discovered network nodes reply with a self-
description specifying the provided resources and services
(see Listing 1 for an example). Resource properties have
to match with task requirements for proper allocation to
ensure the node can provide expected hardware resources
and software components, e.g. specific sensor/actuator,
type of power supply (power line vs battery), network
connection (wired vs wireless), mobility pattern (static
vs mobile), security and privacy mechanisms, etc. For
example, they may not be equipped with a relevant image
recognition software, a camera, or have sufficient battery
charge, and, therefore, will not acknowledge their suitability
to participate in the given scenario.

The example shown in Fig. 5(b) depicts the discovered
devices in the IoT image processing example. The network
discovery, initiated by a node requiring task offloading
(i.e. the Initiator smart camera), only discovers Internet-
connected devices, exploiting the NM mediation for edge
nodes with network restrictions. Grey nodes include both
not Internet-connected devices and not available ones,
rejecting the discovery request through a Nack.

B. Selection
The functional compliance check performed by potential

cluster nodes during discovery is not yet enough to establish
a cluster. Network nodes have a limited view on the
arrangement of a cluster – that is, they are only able to
evaluate their individual functional capabilities to address
task requirements, but not their suitability to be engaged
in a cluster. For example, a device might be equipped with
sufficient hardware resources, as well as image processing
software (i.e. thus meeting task requirements). However,
it might turn out that, due to its network location and
configuration, network latency between the cluster Initiator
and this node is unacceptably high, which might become a

bottleneck in the future. Admittedly, the node itself is not
expected to be aware of this context-related information,
which becomes known only to the Initiator, once it collects
node acknowledgments.

Accordingly, the selection of edge nodes becomes an
important duty of the Initiator that collects replies from
all the nodes, and, therefore, has a global view on the
system, including context-related information. While dis-
covery takes into account single task requirements when
identifying a node, selection considers global policies to
further filter the previously discovered nodes, aiming to
achieve a balanced and robust topology (see Listing 2
below for an example). The Initiator has to evaluate
available nodes, which acknowledged its offloading requests,
with respect to their suitability to global selection policies.
Upon receiving acknowledgments, the Initiator may follow
a policy to select e.g. only those devices that exhibit
sufficient computing capabilities to process a task, whereas
less powerful ones are to be excluded. Such a selection
procedure also serves to ‘homogenize’ and balance the
future cluster, so that it is composed of nodes relatively
equal in their computing capabilities and network latency
(i.e to avoid delayed processing by weaker nodes and
further dis-synchronization). Selection policies might also
include costs, which are strictly related to the incentive
mechanisms. In this case, the Node Selection component
of the ECStream Processing framework in Fig. 4 also has
to interact with AAA & Incentive Mechanisms to enforce
a selection policy taking into account credits, rewards and
related technologies.

Noteworthy, during the selection process, more than
one node could meet the requirements of a task and,
vice-versa, the same node could meet requirements of
multiple tasks. However, since we need to implement a
pipeline parallelism, at most one task can be assigned
to a node to maximize the pipeline speedup. Allocating

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 17,2020 at 04:01:34 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2983402, IEEE
Transactions on Cloud Computing

7

tasks to nodes is quite challenging – a problem known
as mapping in parallel computing, which, even in the
presence of constraints, falls into the class of NP-hard
generalized assignment problems. To solve the ECStream
Processing mapping of tasks to edge devices subject to the
pipeline constraint, analytical solutions cannot thus be a
valid option, even with a low number of nodes (tens as in
CEC). To this purpose, some heuristics, usually based on
greedy approximation algorithms (e.g. first-/best-/worst-
fit allocation) with polynomial time complexity, already
applied in Edge Computing contexts [32], can be adopted.
Further investigation of this problem can be found in [33].

Fig. 5(c) depicts how the Initiator smart camera applies
selection policies in the reference image processing scenario.
One policy restricts the scope of the cluster to non-battery
powered devices, thus excluding all mobile devices (e.g.
smartphones, tablets and smart vehicles) from the cluster.
Furthermore, since other two cameras are available, another
policy selects the one directly connected to cluster nodes,
while the camera reached by tunneling, due to network
limitations, is discarded to reduce image processing delays.

VI. Deployment and Operation
A. Deployment

The previously identified tasks have to be deployed on
the selected nodes and configured accordingly as part
of Placement and Configuration. This is performed by
the Coordinator, now identified by election among the
selected peers orchestrated by ZooKeeper (usually the
Initiator acting as the driver of the clusterization process).
To inject the application logic into clustered edge nodes
(i.e. the workflow tasks and corresponding configurations),
the following mechanisms were modified or added to the
original NiFi to implement the ECStream Processing
middleware in Fig. 3:

a) Custom prioritizers: a mechanism for specifying the
order of delivering jobs to processors, extending NiFi
default prioritizers (e.g. ‘First In – First Out’, ‘Last In
– First Out’, etc.) with parametric custom prioritizers is
developed. Based on flowfile attributes, a custom processor
can prioritize queueing flowfiles and thus define the process-
ing order. Such prioritizers only act on the task processing
scheduling and do not modify the cluster configuration or
the workflow topology.

b) Parametric flowfiles: in Stream Processing, individual
processors composing a workflow have no direct commu-
nications and the workflow deployment is performed by
forwarding a flowfile from one processor to another through
a queue. Furthermore, this implies that cluster nodes
do not know about downstream processors and nodes,
thus preventing any dynamic run-time flowfile routing
based on characteristics of upcoming processors. This does
not allow to deploy a flowfile with specific requirements,
e.g. containing a video frame, on a node with matching
resources, e.g. a GPU-based node processor. A flowfile
attribute-based compliance check overcomes this issue by
comparing its attributes to the node resource properties. If

there is a match, the node keeps and processes the flowfile,
otherwise it rolls back, placing the flowfile back on the
input queue to be forwarded to a different node.3 Such a
mechanism allows to assign tasks to nodes according to
the mapping schema defined in the previous steps.

c) RESTful interface: NiFi can be accessed and managed
through a RESTful interface (which is also exploited by its
workflow design interface) that allows to programmatically
query and manage cluster nodes, as well as selectively
connect or disconnect nodes according to task requirements
and available node resources. This can be defined as a
script or a custom processor triggered before deploying and
executing the workflow topology so as to avoid inconsistent
and unstable behavior of the cluster at run-time.

Fig. 5(d) depicts how the Initiator, supported by the de-
scribed mechanisms, places and configures video processing
tasks on selected cluster nodes, and is then elected as the
Coordinator by the nodes through ZooKeepers, thus also
acknowledging the assignments before starting execution.

B. Operation
Once the edge cluster is established and configured, the

nodes start running allocated tasks concurrently, sending
results to the Coordinator for reduction and aggregation, as
requested by the original workflow. At the same time, the
Coordinator manages and orchestrates the overall process-
ing, periodically scanning the network to discover and select
new nodes. The selected nodes will then be configured as
new cluster nodes in order to run corresponding workflow
tasks. This process is iterated till completion.

Node churn management mechanisms can be imple-
mented by exploiting NiFi built-in ZooKeeper – a com-
monly present facility in Apache software projects. It allows
keeping track of disconnected/failed nodes and update
the cluster topology with respect to available nodes. This
module (ZooKeeper & Orchestration in Fig. 4) has been
further extended with the described run-time orchestration
functionality tailored to edge clusters, as described below.
In the case some incentives have been negotiated by the
involved parties, this module has to also interact with the
AAA & Incentive Mechanisms to enforce corresponding
policies and finalize pending transactions.

VII. Preliminary Implementation
In the preliminary implementation of the ECStream

Processing middleware,4 the NiFi code baseline has been
extended to implement the described enhanced functional-
ity according to the architecture in Fig. 3. Following the
NiFi distributed philosophy and using embedded ZooKeeper
instances, it is deployed on top of edge devices using
a decentralized zero-master coordination approach. This
means that participating devices are equipped with the

3To prevent a flowfile from being infinitely queued due to the
absence of relevant processing nodes, it is possible to implement a
custom processor that will remove the flowfile from the queue for later
processing, if there are no suitable processing nodes available.

4https://github.com/rdautov/ekstream

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 17,2020 at 04:01:34 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2983402, IEEE
Transactions on Cloud Computing

8

same middleware and equally suitable to act as both
the Initiator/Coordinator of the cluster and usual worker
nodes. Once deployed and configured, each NiFi instance
is responsible for a range of background routine operations,
including the default ones for networking and cluster
communication, security, job scheduling, synchronization,
backup and recovery, distributed coordination, data prove-
nance, as well as the novel features discussed above. The
higher Application & Services level comes with an intuitive
thin client used to define workflows and transformations,
and monitor the run-time cluster operation. This level deals
with the actual flow-based programming, where users are
able to design data flow topologies, made of data sources,
processors, and connections between them.

Task
Partitioner

Port
Scanner

ECSP
Web Server

Node
Selector

ECSP Zoo
Keeper

ECSP Zoo
Keeper

Task Requirement
List Tuples

JSON
WoT TD Node Descriptor/

Task Tuples
JSON

Policies

Repo: Flowfiles,
Topology,

Provenance Cluster
Settings

Selected Node List/
Workflow Topology

Repo:
Flowfiles,
Topology,

Provenance

Cluster
Settings

Cluster Initiator/Coordinator Worker
NodesHTTP

HTTP

REST
API

Fig. 6: ECStream Processing middleware implementation
on top of Apache NiFi.

Fig. 6 schematically represents the design of the EC-
Stream Processing (ECSP) middleware on Apache NiFi,
describing the interactions between the Initiator/Coordina-
tor and worker nodes. As detailed below, in this preliminary
implementation, we primarily focus on the basic features
to implement a minimal, yet viable middleware able to
establish and manage a cluster of edge nodes.

A. Task Partitioner

The preliminary implementation of Task Partitioner
relies on a basic decomposition algorithm, which splits
the original workflow into connected sub-workflows, i.e.
tasks, as discussed in Section IV-B. This way, each task of
the workflow is considered as a NiFi processor represented
by its (functional and non-functional) requirements, and
connected to others according to the original workflow.
These tasks/sub-workflows are described by a list of
requirements and expressed as tuples

(Task ID, Req1, ..., Reqn)

where Task ID is the task identifier, and Reqi =
(Namei, Opi, V aluei) with i = 1, .., n is a requirement
triple representing a constraint applied to a property
(Namei) with a threshold value (V aluei) through a re-
lational operator (Opi). For example, a simplified compu-
tational task expressed by the tuple

(T1, (CP U, >=, 1), (RAM, >=, 1), (Storage, >=, 10), (OS, =, Linux))

requires at least a 1GHz CPU, 1GB of RAM and 10GB of
storage on a Linux-running device.

B. Port Scanner and Web Server
Node Discovery can be implemented in several different

ways, ranging in their complexity based on the network
configuration and constraints. As far as the network discov-
ery of online nodes is concerned, this was implemented by
means of the TCP port scanning facilities and integrated
into the NiFi Web Server initialization code as the Port
Scanner. As a result, the Initiator is able to scan network
hosts on a specific port to detect other nodes running
the ECStream Processing middleware and, therefore, po-
tentially ready to join the cluster. To avoid situations
when some other software occupies the given port, nodes
discovered via the Port Scanner are also expected to report
their unique ID, as part of the JSON heartbeat payload. If
no node ID is reported, the network device is assumed not
to be running the ECStream Processing middleware, and
therefore is no longer considered for clustered processing.

It is important to remark that TCP scanning, a simple,
effective and standardized solution for network topology
discovery, requires that network nodes remain routable
and are not subject to address/port translation (or any
other kind of filtering). As discussed in Section IV-A, this
is achieved via the NM that provides overlay networking
capabilities to establish a virtual network for unhindered
communication among nodes.

Listing 1: Device description in JSON-TD.
{ "id": "SBC_1",

"coordinates": [38.26, 15.60],
"ip": "172.30.127.77",
"properties": {

"CPU": { "type": "number",
"description": "CPU clock in GHz",
"href": "/node/properties/CPU" },

"RAM": { "type": "number",
"description": "RAM capacity in GB",
"href": "/node/properties/RAM" },

"Storage": { "type": "number",
"description": "Storage capacity in GB",
"href": "/node/properties/storage" },

"Power": { "type": "number",
"description": "Power type: -1 Power Line;

0-100 Battery level",
"href": "/node/properties/power" },

... }
}

Listing 1 reports a JSON description of a single-board
computer (SBC), adopting the Web of Things (WoT) Thing
Description (TD) model,5 provided by the worker node
Web Server in response to a request from the Initiator
Port Scanner. A node is characterized by a unique ID,
geographical and network location, available hardware
resources, available software functionality, etc. It is also
able to exchange heartbeats – light-weight JSON messages
carrying all these relevant fields as payload.

C. Node Selector
The next step in the cluster configuration process is

the node selection, wherein the Initiator, based on node
selection policies and task requirements – on the one hand,
and available nodes and resources – on the other, is able to
configure the cluster as required. Node selection policies are
evaluated against collected node self-descriptions and may

5https://www.w3.org/TR/wot-thing-description/

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 17,2020 at 04:01:34 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2983402, IEEE
Transactions on Cloud Computing

9

range from simple rules specifying rather static threshold
values (e.g. a cluster node should have at least 1GB RAM
and 1GHz CPU) to more sophisticated constraints that
take into account how well individual nodes can co-operate
within a cluster. That is, a selection policy might, for
example, restrict nodes with an excessive response time
– a potential shortcoming that might eventually affect
the timely operation of the cluster in the long run. It
is assumed that monitoring of such metrics at run-time is
implemented using standard Linux resource and network
utilization facilities. With system performance as a priority,
the implemented prototype relies on JSON for representing
policies – a simple, yet efficient way of capturing the node
selection logic.

Listing 2: Task selection policy in JSON.
{ "policyId": "policy-1",

"rule": {
"ruleId": "noBatteryDev",
"node:/properties/power": {

"op": "="
"type": [-1] }

},...
}

A simple selection policy expressed in JSON is reported
in Listing 2. If a node description (similar to Listing 1)
satisfies the task requirements of this policy, the node is
selected to run the considered task. To exploit the pipeline
parallelism, only one task can be allocated to a node. This
means that allocation can potentially be unfeasible, if there
are not enough nodes meeting task requirements.

Algorithm 1: Discovery and Selection algorithm
involving Port Scanner (PS) and Node Selector (NS).

Input: Task list tasks and selection policies selP ols
Output: Selected node with allocated task list selNodesT asks

discoveredNodes← PS.scanNetworkPort(8080);
foreach task ∈ tasks do

if discoveredNodes 6= null then
selected← false;
foreach node ∈ discoveredNodes do

devDescription← PS.getDescription(node);
if NS.taskFiltering(devDescription,task.reqs)

then
nodeRes← PS.query(devDescription.URI);
if NS.reqResMatching(task.reqs, nodeRes)

then
if selected← NS.select(selP ols, nodeRes)

then
selNodesT asks.add(node,task);
discoveredNodes.remove(node);
tasks.remove(task);
break; . First fit algorithm.

end
end

end
end

else
exit(-1); . Unfeasible: not enough devices!

end
if selected=false then

exit(-2); . Unfeasible: unallocated tasks!
end

end
return selNodesT asks;

Algorithm 1 illustrates the overall discovery and selection
process triggered by the Initiator, which first scans the
network for online nodes running the NiFi Web Server
on port 8080 (scanNetworkPort(8080)), and then starts
checking if task requirements, expressed as tuples, are

met by the available nodes (discoveredNodes), which are
then then contacted for their JSON descriptions (getDe-
scription()). If the resources in devDescription exposed
by the node match the requirements of the current task
(taskFiltering()), the algorithm queries the node for further
details on the exact resource property values (query()). If
the requirements do not match, the algorithm proceeds
to the next available node in discoveredNodes. Otherwise,
the algorithm compares values of task requirements and
node resources (reqResMatching()) and, if the selection
policies are also satisfied by the considered node (select()),
the node is selected (selNodesTasks.add()) for the current
task. The respective node and tasks will not be further
considered by the algorithm (discoveredNodes.remove()
and tasks.remove()). Finally, if there are not enough nodes
or they are not able to satisfy all task requirements, the
algorithm exits with errors. Otherwise, the assignment is
deemed accomplished, and the list of paired tasks and nodes
is returned. The Port Scanner provides scanNetworkPort(),
getDescription(), and query(), while the Node Selector
exposes taskFiltering(), reqResMattching(), and select().

As stated above, the selection process can be considered
as a mapping problem, which has been demonstrated to
be NP-hard. Algorithm 1 implements a first-fit greedy
approximation heuristic, which allocates tasks one by one
to a first-fitting (discovered) node. This way, the above
algorithm, which is at the core of the overall clusterization
process in Fig. 4, can be solved in polynomial time (O(n2)).
For the sake of feasibility, it is assumed that the number
of discovered nodes m is of the order of magnitude of the
number of tasks to be allocated n (m ∼ n, m ≥ n), since
reqResMatching() and select(), required to process a single
task-node pair, have constant time complexity (O(1)).

D. ZooKeeper
ZooKeeper6 is a service for maintaining configuration

information, naming, providing distributed synchronization
and group services. It also provides basic facilities to imple-
ment consensus, group management, leader election, and
presence protocols. At its core, ZooKeeper is a distributed
file system with so-called ZNodes that store snapshots of
the current system state. ZooKeeper can be configured
to run either as a centralized stand-alone service, or as
multiple embedded instances in a distributed manner. In the
latter case, the available built-in synchronization and state
management facilities allow to synchronize all instances
with minimum delay in a reliable and fault-tolerant manner.
This is especially useful for distributed cluster setups,
where individual nodes may become unavailable due to
failures or network barriers. With multiple embedded
ZooKeeper instances, each node is continuously updated
with the current state of peer nodes and jobs in the
queue, thus ensuring their eventual execution even in
the case of node failures. Distributed ZooKeepers are also
useful during the election of the Coordinator of the cluster
(initially assigned to the Initiator by default), whenever the

6https://zookeeper.apache.org/

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 17,2020 at 04:01:34 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2983402, IEEE
Transactions on Cloud Computing

10

current Coordinator node goes offline. The leader election
is implemented using a reliable and efficient protocol
[34], ensuring that the cluster has its Coordinator at all
times. All nodes in the cluster will then continuously send
heartbeat/status information to the Coordinator, which
may also disconnect non-responsive nodes. Additionally,
when a new node joins the cluster, it must first connect to
the currently-elected Coordinator to obtain the most up-
to-date flow. These activities, executed through ZooKeeper,
have relatively small impact on the Coordinator, and are
comparable to the overheads of the rest cluster nodes.

Once the Initiator knows all nodes and their tasks within
the cluster, it is time to deploy the workflow topology.
This functionality is implemented by NiFi RESTful API
and ZooKeeper, adapted to ECStream Processing purposes.
Among other things, the API provides entry points for
querying and updating the current cluster configuration by,
e.g. connecting/disconnecting nodes or specifying stand-
alone processes (i.e. executed on a single node). Accordingly,
the Initiator first updates its own settings, which are then
synchronized across the cluster by embedded ZooKeepers.

ZooKeeper has also been extended to implement Orches-
tration and Lifecycle Management by running a continuous
looping routine, during which the configured computational
topology is executed on the cluster nodes in parallel. The
Coordinator Port Scanner keeps on scanning the network
for new potential worker nodes. Whenever a new node
appears on the network, it needs to go through the same
initial steps and, if successful, will be added to the cluster
in a seamless and transparent way – i.e. there is no need
to stop and restart the already running cluster in order
for a new node to be integrated. This is also facilitated by
ZooKeeper that handles the node churn and synchronizes
topology changes across all cluster nodes.

VIII. Proof of Concept
To fully demonstrate viability of the proposed approach,

a pilot scenario had to meet the following requirements:
a) The amount of data generated by the pilot and the

application logic are large and complex enough to require
Stream Processing techniques for their management.

b) Data processing, involved in the target scenario, is
computationally intensive and goes beyond the capabilities
of a single edge device, thereby requiring offloading.

c) The pilot application logic can be decomposed into
simpler, ‘parallelizable’ tasks.

d) The pilot scenario has strict time constraints.
e) The surrounding urban IoT environment, composed

of various edge devices, is dynamic – that is, different
connected devices may randomly appear in close proximity
to the source of data at unpredictable rates. On the other
hand, the environment should not be too dynamic either,
as it happens, for example, in vehicular ad-hoc networks
characterized by very short-lasting connections.

f) Collocated edge devices, albeit resource-constrained
and/or mobile, are powerful enough to run Linux OS and
have an executable environment, such as JRE. This means

that target devices are equipped with a microprocessor and
a wireless networking interface.

Based on these requirements, a target scenario can be
identified in the domain of relatively complex image/video
processing in an urban environment, where mobile/portable
nodes can share their idle resources. In this context,
among a number of public surveillance and monitoring
applications, a particularly novel and challenging topic is
run-time license plate recognition. At present, a network
of traffic monitoring cameras typically covers only road
junctions and intersections to detect speed limit violations,
whereas most of the roads are not monitored at all.
Moreover, such cameras are usually only involved in off-
line image recognition – i.e. they transfer captured images
(together with the violating speed values) to a server,
responsible for the actual recognition of license plates.

This limitation could be potentially addressed by a
pervasive network of personal image capturing devices,
such as vehicle dashcams and personal smartphones. In-
deed, there are millions of drivers worldwide who use on-
board cameras to continuously record the surrounding
environment. The current use, however, is limited to offline
manual analysis of the recorded video in case of various
incidents (accidents, car break-ins, ‘hit-and-go’, etc.), since
run-time automated image analysis is currently beyond the
capabilities of a single device. The situation might change
with the ubiquitous presence of increasingly powerful edge
devices, either personal hand-held gadgets or smart road-
side infrastructure. These vast processing capabilities open
up opportunities for using on-board dashcams to perform
run-time situation assessment by pooling computing re-
sources of edge devices and distributing the workload in
an ECStream Processing fashion.

Limiting the scope of the generic video processing work-
flow depicted in Fig. 1, the envisaged scenario, therefore,
is the following. The dashcam installed in a vehicle acts as
the source of the video stream (and possibly as the WiFi
access point in the case there is no built-in access point
in the vehicle), whereas other WiFi-enabled smart devices
available within the car, including personal smartphones,
tablets and an on-board infotainment system, can connect
to the network and communicate with each other. The
dashcam is then able to sample the video stream into
individual frames and distribute them among participating
nodes for parallel license plate recognition.

A. Testbed Setup
To compare and evaluate the proposed approach to

the existing technological baseline, below we present and
explain how the challenge of automated run-time license
plate recognition can be potentially faced. We thus identify
three possible setups, in addition to a fourth setup running
on clustered edge devices. In all setups, OpenALPR7 is
used as the underlying license plate recognition software.

1) Stand-alone OpenALPR on a single device (EC) - This
setup represents a situation when an onboard dashcam has

7http://www.openalpr.com/

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 17,2020 at 04:01:34 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2983402, IEEE
Transactions on Cloud Computing

11

to perform license plate recognition against the captured
video stream on its own, in a typical Edge Computing
(EC) fashion. Admittedly, the dashcam market is saturated
with different types of devices, varying in their hardware
specs and architectures. A common practice is to use a
smartphone with a special app to act as a dashcam. As an
average representation of this plethora of dashcam models,
this setup employs a Raspberry Pi board running Raspbian
OS with OpenALPR, thus sampling the video stream and
immediately feeding the resulting images to OpenALPR.

2) Stand-alone OpenALPR on Google Compute Cloud
(IaaS) - Cloud-based functionality can be implemented by
deploying the free OpenALPR API on a public IaaS Cloud
platform and making it available as a RESTful Web service.
This will receive and process incoming images and return
the results back to the user. In our experiments we used a
Google Compute Engine8 virtual machine deployed in the
EU to implement this setup.

3) Stand-alone OpenALPR Cloud API (SaaS) - Apart
from a freely available software library to be installed
on-premises, OpenALPR also offers a commercial Cloud
SaaS service9 (deployed in the US) providing a RESTful
API for license plate recognition. Client applications can
either stream video or transfer a single image and receive
notifications on the recognized license plate.

4) OpenALPR on an Edge Cluster (CEC) - This
setup implements the proposed ECStream Processing
architecture, in which video frames from a dashcam are
distributed among a cluster of edge devices (e.g. passenger
smartphones) for Stream Processing in a CEC fashion.

TABLE I: Testbed hardware specs and network speed test.

Setup Hardware Uplink,
Mbit/s

Downlink,
Mbit/s

Round
Trip

Time,
ms

EC Raspberry Pi 3 (1.2GHz ARM
Cortex-A53, 1GB RAM) n/a n/a n/a

IaaS n1-standard-1 (located in EU,
2.52 GHz vCPU, 3.75GB RAM) 1.24 1.63 482

SaaS Amazon EC2 (located in US) 0.77 0.93 524

CEC
Raspberry Pi 3 + 1-6 Samsung

Galaxy J5 (1.2GHz Cortex-A53,
1.5GB RAM)

16.58 26.9 144

The configuration of all four testbeds is summarized in
Table I, which covers both hardware and network specifi-
cation. At its current stage, the prototype implementation
relies on a pre-recorded dashcam stream as the input
video source,10 captured during a ride through London
downtown in HD quality of 1,920 × 1,080 pixels, resulting
in 1,350 KB aggregate payload transferred on average,
at the frequency of 30 frames per second. Each device is
assumed to be running Debian-based Linux OS (Linux
Deploy11 was used to emulate the Linux environment on
top of Android OS on smartphones) and a pre-deployed
instance of the ECStream Processing Cluster middleware
with customized NiFi processors. Target license plates can

8https://cloud.google.com/compute/
9https://www.openalpr.com/cloud-api.html
10https://youtu.be/MM3W3FS-W8Q
11https://github.com/meefik/linuxdeploy

be dynamically pushed to vehicles involved in the run-
time license plate recognition, which then re-configure their
internal cluster nodes to the new plates. Upon detection, a
notification with a corresponding screenshot, GPS location,
and a timestamp is issued to interested parties (e.g. police).

Image
Sampling

License Plates
Recognition

License Plates
Recognition

License Plates
Recognition AlertingAlertingAlerting

Stand-alone node Cluster nodes (Parallel execution)

Fig. 7: The streaming workflow in the context of the license
plate recognition scenario.

To be processed in parallel on the edge cluster, the license
plates recognition workflow is partitioned into three custom
NiFi processors, as shown in Fig. 7. Image Sampling takes
an input video stream, samples it into separate frames,
and transfers the resulting images to an output port for
recognition. License Plates Recognition is responsible
for detecting and recognizing license plates in incoming
images by invoking the OpenALPR library. As an output, it
provides a list of license plates with a matching confidence
value. Alerting notifies interested parties whenever target
license plates are recognized. It can be configured for using
various channels, such as API, e-mail, or SMS.

To trigger the ECStream Processing clusterization pro-
cess shown in Fig. 4, on-board devices have to be located
on the same WLAN. This way, the dashcam (i.e. Raspberry
Pi), acting as the Initiator, is able to scan the network to
discover worker nodes through its Port Scanner. Recipient
nodes reply to the incoming request with their JSON-TD
self-descriptions, as explained in Section VII. Then, the
Initiator, now becoming the Coordinator, is able to select
suitable nodes. In the considered scenario, all nodes are
suitable for task offloading (both license plates recognition
and alerting) and there are no selection policies to be
enforced by the Coordinator. ZooKeeper thus allocates
the tasks to the available nodes, replicating them to run
in parallel. As a result, the dashcam is tasked with a
stand-alone operation of sampling the video stream and
broadcasting frames, whereas the worker nodes perform
license plate detection/recognition and alerting in parallel.

B. Experiments and Benchmarking
The main benchmarking metric for the license plate

recognition experiments is the response time – i.e. the
time difference between the instant when an image is
first sampled by the dashcam and the instant when the
system accomplishes the license plate recognition task. This
metric is two-fold, and includes i) time delays associated
with network latency and data (de-)serialization when
transferring images (overhead), and ii) time spent on
actual data processing (processing time). Further metrics
of interests for our case study are the throughput – i.e. the
number of frames each setup is able to process in a second,
and the speedup – i.e. the ratio between the response times
obtained by the sequential processing of the license plate
recognition workflow on the different setups and the ones
obtained by parallel execution on the edge cluster varying

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 17,2020 at 04:01:34 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2983402, IEEE
Transactions on Cloud Computing

12

the number of nodes. To achieve statistically significant
results, the experiments were conducted over several days
with more than 1,000 iterations per setup.

EC SaaSIaaS

0
10

,
00

0
2 0

,
00

0

3, 132

18, 595

15, 195

T
im

e
(m

s)

Overhead Processing time

(a) Response time (per frame - ms)

EC IaaS SaaS

0
0.

2
0.

4
0.

6
0.

8
1

0.319

0.066 0.054

T
hr

ou
gh

pu
t

(b) Throughput (frames per second)

Fig. 8: Benchmarking results on traditional setups.

2 3 4 5 6

0
1,

00
0

2,
00

0
3,

00
0

1, 980

1, 182

933
815 746

Number of cluster nodes

T
im

e
(m

s)

Overhead Processing time

(a) Response time (per frame - ms)

2 3 4 5 6

0
0.

5
1

1.
5

2

0.505

0.846

1.072
1.227

1.34

Number of cluster nodes

T
hr

ou
gh

pu
t

(b) Throughput (frames per second)

Fig. 9: Benchmarking results on a CEC edge cluster.

2 3 4 5 6

0

10

20

30

1.58
2.65 3.36 3.84 4.2

7.67

12.86

16.29

18.64
20.37

9.39

15.73

19.93

22.82

24.93

Number of cluster nodes

Sp
ee

du
p

EC

IaaS

SaaS

Fig. 10: Speedup of the CEC setup parallel processing vs
EC, IaaS and SaaS stand-alone processing.

The experimental results for all four setups are sum-
marized in Fig. 8 (traditional setups) and Fig. 9 (edge
cluster). The 95% confidence interval is negligible due
to the high number of experiments (>1,000) and thus
is not shown in the figures. Fig. 8a depicts average time
delay for the traditional setups. As it follows from the
chart, running license plate recognition in a stand-alone
mode on a single node (i.e. dashcam) takes 3,132 ms
with almost no overheads. On contrary, in the vertical
Cloud-enabled setups, the main delay is caused by the
image transfers, whereas the actual image processing is
relatively fast due to the excessive hardware resources

of the Cloud. Fig. 8b presents the same results in terms
of throughput. Admittedly, the Cloud-enabled setups fail
to provide continuous support for run-time license plate
recognition, whereas the stand-alone OpenALPR node can
process 0.319 frames per second.

Fig. 9a refers to CEC and illustrates how the performance
improves as more nodes join the cluster. That is, starting
from two nodes in the cluster (the dashcam and one
smartphone), where the average response time for a single
frame is 1,980 ms, the cluster grows up to 6 nodes (e.g.
more passengers get in the car and contribute to the edge
cluster with their devices) that are able to process incoming
images in parallel with a response time of 746 ms (533
ms for processing and 213 ms of overhead) per frame.
Please note the slight increase in the overhead (due to
more intensive data serialization, scheduling, and network
transferring requirements), as the number of cluster nodes
grows. Fig. 9b refers to throughput and suggests that within
a fully-loaded car (4 passengers and the driver), the pooled
resources of 6 edge devices are enough to process 1.34
frames per second – a sufficiently high rate for run-time
license plate recognition. A lower number of devices could
be still acceptable (∼1-1.227 frames per second for 4-5
nodes), while Cloud-based solutions, with delays higher
than 15-18 seconds, cannot be considered for run-time
license plate recognition.

By looking at the histogram charts, it becomes clear
that local processing (either in a stand-alone local mode
or in a cluster) is already able to outperform the Cloud-
enabled architectures by avoiding the congested network
communication and the related overheads. Admittedly,
the results refer to this specific license plate recognition
task and the corresponding experimental setup (i.e. image
size, sampling frequency, available cluster nodes, network
bandwidth, etc.). Nevertheless, it is expected that for
similar data-intensive tasks (suitable for the proposed
ECStream Processing) there will be a threshold number
of nodes to share the workload horizontally, sufficient to
substitute the remote vertical offloading. The increase in
performance is best depicted by the speedup graph in Fig.
10, which compares the three stand-alone setups against
the edge cluster composed of 2-6 nodes.

C. Threats to Validity and Discussion
In the conducted experiments, smartphones fully con-

tribute their available computing resources to the cluster,
whereas in reality they are expected to be running some
user applications and related background jobs. Potentially,
the minimum share of contributed resources can also be
defined as a non-functional requirement, such that, for
example, devices not able to guarantee at least 50% of
their hardware capacities are not selected. This can also
apply to battery charge – e.g. devices with insufficient
charge levels are not allowed (although in the presented
in-vehicle scenario, there is a possibility to charge a device).
Given the finite bandwidth of the wireless network, the
increased number of cluster nodes and associated inter-
node data exchange may potentially lead to saturation of

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 17,2020 at 04:01:34 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2983402, IEEE
Transactions on Cloud Computing

13

the network, as well as to quickly drain the device battery.
Albeit beyond the scope of this paper, these issues will
need to be explored in the future, potentially applying
intelligent estimation techniques, as proposed in [35].

It is also worth benchmarking the clusterization process
as well, to provide a fair overview of the viability of
the presented solution. As it was explained, the current
implementation of node discovery and selection is based
on broadcast network scanning, which makes this process
relatively fast (i.e. up to 3 seconds to scan up to 256 LAN
addresses, collect acknowledgments, and reconfigure device
settings accordingly). The performance drops, however,
with restarting the devices – that is, after each node has
overwritten its cluster settings, it is required to reboot in
order for the new configuration to take place. This process
might take up to 1 min (depending on the number of
cluster nodes and deployed NiFi processors). Same applies
to a situation, when a node joins an already running
cluster – i.e. having received new cluster settings, it needs
to update its configuration taking up to 1 minute. This
lack of support for ‘hot deployment’ is seen as a limitation
of the current version of Apache NiFi, albeit this feature is
already proposed to be included in one of the future releases.
The clusterization process is anyway a one-off process that
is not expected to affect the system performance in the
long run. Furthermore, the clusterization overheads are
comparable to or even lower than the ones of the Cloud
setups, where only the time required to launch a virtual
machine, depending on multiple criteria, typically takes at
least 50 seconds [36].

At last, speaking of the scalability of the proposed
solution, the experiments do not yet demonstrate significant
results, and this aspect needs to be further investigated.
However, the main goal of the proposed edge clustering is to
improve the performance by reducing network latency. As
shown in Fig 9a, the overhead increases proportionally to
the number of cluster nodes. By interpolating these values,
it is assumed that an edge cluster of about 100 nodes
should have an overhead similar to the Cloud (∼15 sec). It
is also necessary to consider the overhead to manage the
cluster for a resource-constrained edge device acting as the
Coordinator, as well as security issues, all increasing linearly
with the number of nodes. For these reasons, the proposed
approach is suitable for clustering and managing few nodes
in the neighborhood, in the order of tens, thus minimizing
overhead and security issues. In the case of more complex
computational task to offload, it is recommended to resort
to Fog and Cloud computing. In this light, the scale of the
above experiments can be considered appropriate to show
feasibility and effectiveness of ECStream Processing.

IX. Conclusion and Future Work
This paper presented a novel approach to perform data

processing at the very edge of IoT. As opposed to the
established practice to offload computation to a Cloud
in a vertical manner, the proposed approach relies on
enabling local clusters of edge devices on top of the NiFi
Stream Processing middleware. This way, edge devices,

belonging to the cluster, are able to spread workload among
themselves – that is, implement a horizontal offloading
pattern – and minimize the amount of data sent over po-
tentially congested network. As demonstrated by the proof-
of-concept implementation and benchmarking experiments,
the proposed approach outperforms Cloud-centric setups.
This way, traditional on-board video recording systems
can be turned into online video analytics platforms to
support a wide range of situation assessment scenarios in
urban environments. These might range from simple object
detection of vehicles and people to more sophisticated
tracking of subjects and reaction to critical situations.

Along with the generally positive results demonstrated
by the prototype implementation, there are some potential
enhancements to be taken into account and addressed
as part of future work. The histogram charts in Fig.s
8 and 9 suggest an interesting and challenging problem
of generalizing the experimental observations across a
wider scope of processing tasks to identify an optimal
configuration for a specific task at hand. That is, there
are expected to be a minimum and a maximum number
of cluster nodes that will underpin a balanced clustered
architecture. The minimum number of nodes justifies
establishing a cluster that will outperform the remote
offloading, whereas the maximum number ensures that
no unnecessary/redundant nodes are added to the cluster.
This allows to plan and adjust the edge cluster to the
problem at hand – e.g. as shown in Fig. 9b, it is possible
to tune the cluster throughput and achieve the required
video frame rate by adding new nodes accordingly (e.g. 5
nodes for processing 1.2 frames per second).

M2M operation via Bluetooth, LoRa, Zigbee, or some
other Personal Area Network (PAN)/Ad-Hoc (MANET)
related protocols also deserve to be investigated. Such
protocols are mainly based on Master-Slave role profiles
(i.e. one-to-one links), thus not immediately ready to
support the zero-master, many-to-many cluster topologies
(including NiFi). Indeed, any such solution should aim to
establish a (full) mesh to enable the cluster middleware
to work as intended, albeit with unavoidable configuration
overheads. Moreover, the constrained bandwidth of existing
wireless technologies also limits their potential utilization
for data-intensive scenarios. As discussed above, network
discovery is also worth to be investigated in this respect.

Another relevant aspect is security and privacy. Edge
clustering could be a way of securing computational task
offloading by enforcing security properties during node
selection by, for example, filtering remote or not trusted
nodes. Such policies should be properly designed and
evaluated, thus calling for specific techniques and tools.

References

[1] R. Dautov, S. Distefano, D. Bruneo, F. Longo, G. Merlino,
A. Puliafito, and R. Buyya, “Metropolitan intelligent surveillance
systems for urban areas by harnessing iot and edge computing
paradigms,” Software: Practice and Experience, vol. 48, no. 8,
pp. 1475–1492, 2018.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 17,2020 at 04:01:34 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.2983402, IEEE
Transactions on Cloud Computing

14

[2] M. Jang, M.-S. Park, and S. C. Shah, “A mobile ad hoc cloud
for automated video surveillance system,” in 2017 International
Conference on Computing, Networking and Communications
(ICNC). IEEE, 2017, pp. 1001–1005.

[3] S. Yang, “IoT Stream Processing and Analytics in the Fog,”
IEEE Communications Magazine, vol. 55, no. 8, pp. 21–27, 2017.

[4] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos,
“Fog orchestration for internet of things services,” IEEE Internet
Computing, vol. 21, no. 2, pp. 16–24, 2017.

[5] F. Haider, D. Zhang, M. St-Hilaire, and C. Makaya, “On the
planning and design problem of fog computing networks,” IEEE
Transactions on Cloud Computing, pp. 1–1, 2018.

[6] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen,
K. Ha, W. Hu, and B. Amos, “Edge analytics in the internet of
things,” IEEE Pervasive Comp., vol. 14, no. 2, pp. 24–31, 2015.

[7] R. Vilalta, A. Mayoral, D. Pubill, R. Casellas, R. Mart́ınez,
J. Serra, C. Verikoukis, and R. Muñoz, “End-to-End SDN
orchestration of IoT services using an SDN/NFV-enabled edge
node,” in Optical Fiber Comm. Conf. IEEE, 2016, pp. 1–3.

[8] O. Skarlat, S. Schulte, M. Borkowski, and P. Leitner, “Resource
provisioning for IoT services in the fog,” in 2016 IEEE 9th
International Conference on Service-Oriented Computing and
Applications (SOCA). IEEE, 2016, pp. 32–39.

[9] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik,
M. Yu, P. Bahl, and M. Philipose, “VideoEdge: Processing
camera streams using hierarchical clusters,” in 2018 IEEE/ACM
Symposium on Edge Computing. IEEE, 2018, pp. 115–131.

[10] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal
operator placement for distributed stream processing appli-
cations,” in ACM Int. Conf. on Distributed and Event-based
Systems, 2016, pp. 69–80.

[11] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet
of things: A vision, architectural elements, and future directions,”
Future Gen. Comp. Sys., vol. 29, no. 7, pp. 1645–1660, 2013.

[12] R. Dautov, S. Distefano, D. Bruneo, F. Longo, G. Merlino, and
A. Puliafito, “Pushing Intelligence to the Edge with a Stream
Processing Architecture,” in The 2017 IEEE International
Conference on Internet of Things (iThings 2017). IEEE, 2017.

[13] R. Roman, J. Lopez, and M. Mambo, “Mobile edge comput-
ing, fog et al.: A survey and analysis of security threats and
challenges,” Future Generation Computer Systems, 2016.

[14] M. R. Rahimi, J. Ren, C. H. Liu, A. V. Vasilakos, and N. Venkata-
subramanian, “Mobile cloud computing: A survey, state of art
and future directions,” Mobile Networks and Applications, vol. 19,
no. 2, pp. 133–143, 2014.

[15] A. Manzalini and N. Crespi, “An edge operating system enabling
anything-as-a-service,” IEEE Comm. Mag., vol. 54, no. 3, pp.
62–67, 2016.

[16] N. Fernando, S. W. Loke, and W. Rahayu, “Computing with
nearby mobile devices: A work sharing algorithm for mobile
edge-clouds,” IEEE Transactions on Cloud Computing, vol. 7,
no. 2, pp. 329–343, 2019.

[17] M. Chen, Y. Hao, Y. Li, C.-F. Lai, and D. Wu, “On the
computation offloading at ad hoc cloudlet: architecture and
service modes,” IEEE Communications Magazine, vol. 53, no. 6,
pp. 18–24, 2015.

[18] H. Guo and J. Liu, “Collaborative Computation Offloading for
Multiaccess Edge Computing Over Fiber–Wireless Networks,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 5, pp.
4514–4526, 2018.

[19] R. Dautov, S. Distefano, and R. Buyya, “Hierarchical data fusion
for smart healthcare,” Journal of Big Data, vol. 6, no. 19, 2019.

[20] C. Zhu, H. Wang, X. Liu, L. Shu, L. T. Yang, and V. C. M. Leung,
“A novel sensory data processing framework to integrate sensor
networks with mobile cloud,” IEEE Systems Journal, vol. 10,
no. 3, pp. 1125–1136, 2016.

[21] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and
D. Sabella, “On multi-access edge computing: A survey of the
emerging 5G network edge cloud architecture and orchestration,”
IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp.
1657–1681, 2017.

[22] M. Satyanarayanan, “Pervasive computing: Vision and chal-
lenges,” IEEE Personal Comm., vol. 8, no. 4, pp. 10–17, 2001.

[23] M. Gusev, B. Koteska, M. Kostoska, B. Jakimovski, S. Dustdar,
O. Scekic, T. Rausch, S. Nastic, S. Ristov, and T. Fahringer, “A
deviceless edge computing approach for streaming IoT applica-
tions,” IEEE Int. Comp., vol. 23, no. 1, pp. 37–45, 2019.

[24] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev,
B. Koteska, M. Kostoska, B. Jakimovski, S. Ristov, and R. Pro-
dan, “A serverless real-time data analytics platform for edge
computing,” IEEE Int. Comp., vol. 21, no. 4, pp. 64–71, 2017.

[25] G. Merlino, D. Bruneo, F. Longo, S. Distefano, and A. Puliafito,
“Cloud-Based Network Virtualization: An IoT Use Case,” in Int.
Conf. on Ad Hoc Net. Springer, 2015, pp. 199–210.

[26] F. Longo, D. Bruneo, S. Distefano, G. Merlino, and A. Puliafito,
“Stack4Things: a sensing-and-actuation-as-a-service framework
for IoT and cloud integration,” Ann. Telecomm., vol. 72, pp.
53–70, 2017.

[27] D. J. Lilja, “Experiments with a Task Partitioning Model for
Heterogeneous Computing,” in Proceedings of the Workshop on
Heterogeneous Processing. IEEE, 1993, pp. 29–35.

[28] U. Catalyurek and C. Aykanat, “A hypergraph-partitioning ap-
proach for coarse-grain decomposition,” in The 2001 ACM/IEEE
Conference on Supercomputing. ACM, 2001, pp. 28–28.

[29] R. Dautov, S. Distefano, D. Bruneo, F. Longo, G. Merlino, and
A. Puliafito, “Data processing in cyber-physical-social systems
through edge computing,” IEEE Access, vol. 6, pp. 29 822–29 835,
2018.

[30] M. D. de Assuncao, A. da Silva Veith, and R. Buyya, “Distributed
data stream processing and edge computing: A survey on
resource elasticity and future directions,” Journal of Network
and Computer Applications, vol. 103, pp. 1–17, 2018.

[31] R. Dautov and S. Distefano, “Automating IoT Data-Intensive
Application Allocation in Clustered Edge Computing,” IEEE
Transactions on Knowledge and Data Engineering, pp. 1–1, 2019.

[32] F. Lin, Y. Zhou, X. An, I. You, and K. R. Choo, “Fair resource
allocation in an intrusion-detection system for edge computing:
Ensuring the security of internet of things devices,” IEEE
Consumer Electronics Magazine, vol. 7, no. 6, pp. 45–50, 2018.

[33] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Prob-
lems. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2009.

[34] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper:
Wait-free Coordination for Internet-scale Systems,” in USENIX
annual technical conference, vol. 8, no. 9, 2010.

[35] D. Trihinas, G. Pallis, and M. D. Dikaiakos, “ADMin: Adaptive
monitoring dissemination for the internet of things,” in 2017
IEEE Conference on Computer Communications (INFOCOM).
IEEE, 2017, pp. 1–9.

[36] M. Mao and M. Humphrey, “A performance study on the VM
startup time in the cloud,” in 2012 IEEE Fifth International
Conference on Cloud Computing. IEEE, 2012, pp. 423–430.

Rustem Dautov holds a PhD in Computer
Science from the University of Sheffield, UK.
He is a Research Scientist at SINTEF, Norway,
where he is involved in several R&D projects
at the European and national levels. He has
previously been a Postdoctoral Researcher and
a Lecturer in IoT at Kazan Federal University,
Russia, and a Marie Curie Fellow at SEERC,
Greece. His research focuses on software engi-
neering for IoT, Edge and Cloud Computing.

Salvatore Distefano is an Associate Profes-
sor at the University of Messina, Italy and a
Fellow Professor at Kazan Federal University,
Russia. His research interests include Cloud,
Fog, Edge computing, IoT, crowd-sourcing,
Big Data, software and service engineering,
performance and reliability evaluation and QoS.
He is involved in several national and interna-
tional projects. He is a member of international
conference committees and journal editorial
boards such as IEEE Trans. on Dependable and

Secure Computing. He has also co-founded the SmartMe.io startup.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on April 17,2020 at 04:01:34 UTC from IEEE Xplore. Restrictions apply.

