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Before starting… 

Disclaimer: I know little about HPC and storage 
 
More collaboration than ever between HPC, Distributes 
Systems, Big Data / Machine Learning communities 
 
Hope this talk will help a bit in bringing us even closer 
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Big Data Research at Berkeley 
AMPLab (Jan 2011- Dec 2016) 

• Mission: “Make sense of big data” 
• 8 faculty, 60+ students 
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Big Data Research at Berkeley 
AMPLab (Jan 2011- Dec 2016) 

• Mission: “Make sense of big data” 
• 8 faculty, 60+ students 

Algorithms  

Machines  People  

Goal: Next generation of open source 
 data analytics stack for industry & academia 

Berkeley Data Analytics Stack (BDAS) 
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Several Successful Projects 

Apache Spark: most popular big data execution engine 
• 1000+ contributors 
• 1000+ orgs; offered by all major clouds and distributors 

Apache Mesos: cluster resource manager 
• Manages 10,000+ node  clusters 
• Used by 100+ organizations (e.g., Twitter, Verizon, GE) 

Alluxio (a.k.a Tachyon): in-memory distributed store 
• Used by 100+ organizations (e.g., IBM, Alibaba) 



This Talk 

Reflect on how  
• application trends, i.e., user needs & requirements 
• hardware trends 

have impacted the design of our systems 

How we can use these lessons to design new systems  
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2009: State-of-the-art in Big Data  
Apache Hadoop 

• Large scale, flexible data processing engine 
• Batch computation (e.g., 10s minutes to hours) 
• Open Source 

Getting rapid industry traction:  
• High profile users: Facebook, Twitter,  Yahoo!, … 
• Distributions: Cloudera, Hortonworks 
• Many companies still in austerity mode 

 



2009: Application Trends 

Iterative computations, e.g., Machine Learning 
• More and more people aiming to get insights from data 

Interactive computations, e.g., ad-hoc analytics 
• SQL engines like Hive and Pig drove this trend 
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2009: Application Trends 

Despite huge amounts of data, many working 
sets in big data clusters fit in memory 
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2009: Application Trends 

12 *G Ananthanarayanan,  A. Ghodsi,  S. Shenker, I. Stoica, ”Disk-Locality in Datacenter Computing Considered Irrelevant”, HotOS 2011 

Memory (GB) Facebook  
(% jobs) 

Microsoft  
(% jobs) 

Yahoo!  
(% jobs) 

8 69 38 66 

16 74 51 81 

32 96 82 97.5 

64 97 98 99.5 

128 98.8 99.4 99.8 

192 99.5 100 100 

256 99.6 100 100 
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2009: Hardware Trends 
Memory still riding the Moore’s law 
 

14 

Co
st

 ($
/G

B)
 

http://www.jcmit.com/memoryprice.htm 



2009: Hardware Trends 
Memory still riding the Moore’s law 
 
I/O throughput and latency stagnant 

• HDD dominating data clusters as storage of choice 
• Many deployments as low as 20MB/sec per drive 
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Requirements: 
•  ad-hoc 

queries 
•  ML algos 

Enabler: 
•  working sets 

fit in memory  

Memory 
growing with 
Moore’s Law 
 
I/O performance 
stagnant (HDDs) 
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2009: Our Solution: Apache Spark 

In-memory processing 
• Great for ad-hoc queries 

Generalizes MapReduce to multi-stage computations 
•  Implement BSP model 

Share data between stages via memory 
• Great for iterative computations, e.g., ML algorithms 



2009: Technical Solutions 

Low-overhead resilience mechanisms à  
Resilient Distributed Datasets (RDDs) 
 
Efficiently support for ML algos à Powerful and flexible APIs 

• map/reduce just two of over 80+ APIs 
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2012: Application Trends 

People started to assemble e2e data analytics pipelines 
 
 
 
Need to stitch together a hodgepodge of systems 

• Difficult to manage, learn, and use 
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Requirements: 
•  build e2e 

big data 
pipelines 

 
Unified 
platform: 
•  SQL 
•  ML 
•  Graphs 
•  Streaming 
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2012: Our Solution: Unified Platform 

Support a variety of workloads 
Support a variety of input sources 
Provide a variety of language bindings 

…	

Spark Core 
 Python, Java, Scala, R 

Spark Streaming 
real-time 

Spark SQL 
interactive 

MLlib 
machine learning 

GraphX 
graph 

a	
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2014: Application Trends 

New users, new requirements 

Spark early adopters 
Data Engineers 
Data Scientists 
Statisticians 
R users 
PyData … 
 

Users 
 

Understands 
MapReduce 

& functional APIs 
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2014: Hardware Trends 

Memory capacity still growing fast 

Many clusters and datacenters transitioning to SSDs 
• Orders of magnitude improvements in I/O and latency 
• DigitalOcean: SSD only instances since 2013 

CPU performance growth slowing down 
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Unified 
platform: 
•  SQL 
•  ML 
•  Graphs 
•  Streaming 
 

2012

Memory still 
growing fast 
 
I/O perf. 
improving  
 
CPU stagnant 
 

Requirements: 
•  new users: 

data 
scientists & 
analysts 

•  Improved 
performance 

 

2014

API: DataFrame 
 
Storage rep.: 
•  Binary format 
•  Columnar 
 
Code generation 
 



pdata.map(lambda	x:	(x.dept,	[x.age,	1]))	\	
					.reduceByKey(lambda	x,	y:	[x[0]	+	y[0],	x[1]	+	y[1]])	\	
					.map(lambda	x:	[x[0],	x[1][0]	/	x[1][1]])	\	
					.collect()	

data.groupBy(“dept”).avg(“age”)	



DataFrame API 

DataFrame logically equivalent to a relational table 

Operators mostly relational with additional ones for 
statistical analysis, e.g., quantile, std, skew 

Popularized by R and Python/pandas, languages of 
choice for Data Scientists 



DataFrames in Spark 

Make DataFrame declarative, unify DataFrame and SQL  

DataFrame and SQL share same 
• query optimizer, and 
• execution engine 

Tightly integrated with rest of Spark 
• ML library takes DataFrames as input & output 
• Easily convert RDDs ↔ DataFrames 

Python 
DF 

Logical 
Plan 

Java/Scala 
DF 

R 
DF 

Execution 
Every optimizations automatically applies to  

SQL, and Scala, Python and R DataFrames  



One Query Plan, One Execution Engine 
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What else does DataFrame enable? 

Typical DB optimizations across operators:  
• Join reordering, pushdown, etc 

Compact binary representation: 
• Columnar, compressed format for caching 

Whole-stage code generation: 
• Remove expensive iterator calls 
• Fuse across multiple operators 
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2016 
(What’s Next?) 



What’s Next? 

Application trends 
 
Hardware trends 
 
Challenges and techniques  

36 



Application Trends 

Data only as valuable as the decisions and actions it enables 
 
What does it mean? 
•  Faster decisions better than slower decisions 
•  Decisions on fresh data better than on stale data 
•  Decisions on personal data better than on aggregate data  
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Application Trends 

Real-time decisions  

 

on live data 

 

with strong security 

 

decide in ms 

the current state of the environment 

privacy, confidentiality, integrity 
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Applications Quality 
Latency 

Security 
Update Decision  

Zero-time defense sophisticated, accurate, robust sec sec privacy, integrity 

Parking assistant sophisticated, robust sec sec privacy 

Disease discovery sophisticated, accurate hours sec/min privacy, integrity 

IoT (smart buildings) sophisticated, robust min/hour sec privacy, integrity 

Earthquake warning sophisticated, accurate, robust  min ms integrity 

Chip manufacturing sophisticated, accurate, robust min sec/min confidentiality, integrity  

Fraud detection sophisticated, accurate min ms privacy, integrity 

“Fleet” driving sophisticated, accurate, robust sec sec privacy, integrity 

Virtual assistants sophisticated, robust min/hour sec integrity 

Video QoS at scale sophisticated min ms/sec privacy, integrity 
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Applications Quality 
Latency 

Security 
Update Decision  

Zero-time defense sophisticated, accurate, robust sec sec privacy, integrity 

Parking assistant sophisticated, robust sec sec privacy 

Disease discovery sophisticated, accurate hours sec/min privacy, integrity 

IoT (smart buildings) sophisticated, robust min/hour sec privacy, integrity 

Earthquake warning sophisticated, accurate, robust  min ms integrity 

Chip manufacturing sophisticated, accurate, robust min sec/min confidentiality, integrity  

Fraud detection sophisticated, accurate min ms privacy, integrity 

“Fleet” driving sophisticated, accurate, robust sec sec privacy, integrity 

Virtual assistants sophisticated, robust min/hour sec integrity 

Video QoS at scale sophisticated min ms/sec privacy, integrity 
Addressing these challenges, the goal of next Berkeley lab: 

RISE (Real-time Secure Execution) Lab  



What’s next? 

Application trends 
 
Hardware trends 
 
Challenges and techniques  
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Moore’s Law is Slowing Down 

43 



What Does It Mean? 
CPUs affected most: just 20-30%/year perf. improvements 

• More complex layouts à harder to scale 
• Mostly by increasing number of cores à harder to take advantage 

Memory: still grows at 30-40%/year 
• Regular layouts, stacked technologies 

Network: grows at 30-50%/year 
• 100/200/400GBpE NICs at horizon 
• Full-bisection bandwidth network topologies 

 44 
CPUs is the bottleneck and it’s getting worse!  
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Memory-to-core ratio is increasing  
e.g., AWS: 7-8GB/vcore à 17GB/vcore (X1)  



Unprecedented Hardware Innovation 
From CPU to specialized chips: 

•   GPUs, FPGAs, ASICs/co-processors (e.g., TPU) 
• Tightly integrated, e.g., Intel’s latest Xeon integrates CPU & FPGA 

 
New, disruptive memory technologies 

• HBM (High Bandwidth Memory), same package at CPU 
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http://www.amd.com/en-us/innovations/software-technologies/hbm 

High Bandwidth Memory (HBM) 2 channels @ 
128 bits 

8 channels = 
1024 bits 



High Bandwidth Memory (HBM) 8 stacks = 
4096 bits à 
500 GB/sec  

http://www.amd.com/en-us/innovations/software-technologies/hbm 



Unprecedented Hardware Innovation 
From CPU to specialized chips: 

• GPUs, FPGAs, ASICs/co-processors (e.g., TPU) 
• Tightly integrated (e.g., Intel’s latest Xeon integrates CPU & FPGA) 

 
New, disruptive memory technologies 

• HBM2: 8 DRAM chips/package à 1TB/sec 
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Unprecedented Hardware Innovation 
From CPU to specialized chips: 

• GPUs, FPGAs, ASICs/co-processors (e.g., TPU) 
• Tightly integrated (e.g., Intel’s latest Xeon integrates CPU & FPGA) 

 
New, disruptive memory technologies 

• HBM2: 8 DRAM chips/package à 1TB/sec 
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3D XPoint Technology 

Developed by Intel and Micron 
•  Announced last year; products released this year 

Characteristics: 
•  Non-volatile memory 
•  2-5x DRAM latency! 
•  8-10x density of DRAM 
•  1000x more resilient than SSDs 



Unprecedented Hardware Innovation 
From CPU to specialized chips: 

•   GPUs, FPGAs, ASICs/co-processors (e.g., TPU) 
• Tightly integrated (e.g., Intel’s latest Xeon integrates CPU & FPGA) 

 
New, disruptive memory technologies 

• HBM2: 8 DRAM chips/package à 1TB/sec 
• 3D XPoint 
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Requirements: 
•  ad-hoc 

queries 
•  ML algos 

Enabler: 
•  working sets 

fit in memory  
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Requirements: 
•  new users: 
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•  Improved 
performance 

 

2014

API: DataFrame 
 
Storage rep.: 
•  Binary format 
•  Columnar 
 
Code generation 
 

Applications

Hardware

Memory  rapidly 
evolving 
 
Specialized 
processing:  
•  GPUs,  FPGAs,  

ASICs, SGX, 
100s core CPUs 

 

 

Requirements: 
•  Real-time 

decisions on 
fresh data 

•  Strong security 
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What’s next? 

Application trends 
 
Hardware trends 
 
Challenges and techniques  
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Complexity – Computation  
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Complexity – Memory  

L1/L2 cache 

L3 cache 

Main memory 

NAND SSD 

Fast HHD 

~1 ns 

~10 ns 

~100 ns / ~80 GB/s / ~100GB 

~100 usec / ~10 GB/s / ~1 TB 

~10 msec / ~100 MB/s / ~10 TB 

2015 

~10 msec / ~100 MB/s / ~100 TB 

L1/L2 cache 

L3 cache 

Main memory 

NAND SSD 

Fast HHD 

~1 ns 

~10 ns 

~100 ns / ~80 GB/s / ~100GB 

~100 usec / ~10 GB/s / ~10 TB 

HBM ~10 ns / ~1TB/s / ~10GB 

NVM (3D Xpoint) ~1 usec / ~10GB/s / ~1TB 

2020 



Complexity – More and More Choices  

57 

Amazon 
EC2 

t2.nano, t2.micro, t2.small
m4.large, m4.xlarge, m4.2xlarge, 
m4.4xlarge, m3.medium, 
c4.large, c4.xlarge, c4.2xlarge,
c3.large, c3.xlarge, c3.4xlarge,
r3.large, r3.xlarge, r3.4xlarge,
i2.2xlarge, i2.4xlarge, d2.xlarge 
d2.2xlarge, d2.4xlarge,…

n1-standard-1, ns1-standard-2, 
ns1-standard-4, ns1-standard-8, 
ns1-standard-16, ns1highmem-2, 
ns1-highmem-4, ns1-highmem-8, 
n1-highcpu-2, n1-highcpu-4, n1-
highcpu-8, n1-highcpu-16, n1-
highcpu-32, f1-micro, g1-small…

Google Cloud 
Engine 

Microsoft  
AZURE 

Basic tier: A0, A1, A2, A3, A4
Optimized Compute : D1, D2, 
D3, D4, D11, D12, D13
D1v2, D2v2, D3v2, D11v2,…
Latest CPUs: G1, G2, G3, …
Network Optimized: A8, A9
Compute Intensive: A10, A11,…



Complexity – More and More Constraints  

Latency 
 
Accuracy  
 
Cost 
 
Security 
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Techniques for Conquering Complexity 
Use additional choices to simplify! 
 
Expose and control tradeoffs 
 
Don’t forget “tried & true” techniques 
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Use Choices to Simplify System Design 

60 

L1/L2 cache 

L3 cache 

Main memory 

Fast HHD 

< 2010 2011-2014 

L1/L2 cache 

L3 cache 

Main memory 

Fast HHD 

NAND SSD 

> 2014 

L1/L2 cache 

L3 cache 

Main memory 

Fast HHD 

NAND SSD 



Use Choices to Simplify System Design 
Example: NVIDIA DGX-1 supercomputer for Deep Learning 
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HBM 
(720GB/s / 16GB)  

…	
HBM 

(720GB/s / 16GB)  
HBM 

(720HB/s / 16GB)  
100 GB/s 

Pascal P100 

Main memory 

Fast HHD 

HBM 

NVM (3D Xpoint) 

…
 

NAND SSD 



Use Choices to Simplify System Design 
Possible datacenter architecture (e.g., FireBox, UC Berkeley) 
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L1/L2 cache 

L3 cache 

Main memory 

L1/L2 cache 

L3 cache 

Main memory 

L1/L2 cache 

L3 cache 

Main memory 

…	

Ultra-fast persistent des-aggregated storage  
(~10 usec / ~ 10 GBs / ~ 1 PB) 

L1/L2 cache 

L3 cache 

Main memory 

NAND SSD 

Fast HHD 

HBM 

NVM (3D Xpoint) 



Use Choices to Simplify App Design 
Maybe no need to optimize every algorithm for every 
specialized processor… 
 
… if run in cloud, just pick best instance types for your app! 
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Expose and Control Tradeoffs 
Latency vs. accuracy 

• Approximate query processing (e.g., BlinkDB) 
• Ensembles and correction ML models (e.g., Clipper) 

Job completion time vs. cost  
• Predict response times given configuration (e.g., Earnest) 

Security vs. latency vs. functionality 
• E.g., CryptDB, Opaque 
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Expose and Control Tradeoffs 
Caching vs. memory  

• HBM allows to be configured either as cache or memory region 

Declarative vs. procedural 
• Enable users to pick specific query plans for complex 

declarative programs & complex environments 
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“Tried & True” Techniques 
Sampling: 

• Scheduling (e.g., Sparrow),  querying (e.g., BlinkDB),   
storage (e.g., KMN) 

Speculation: 
• Replicate time-sensitive requests/jobs (e.g., Dolly) 

Incremental updates: 
• Storage (e.g., IndexedRDDs), and ML models (e.g., Clipper)  

Cost-based optimization: 
• Pick target hardware at run-time  
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Summary 
Application and hardware trends often determine solution 

We are at an inflection point both in terms of both apps and 
hardware trends 

Many research opportunities 

Be aware of “complexity”: use myriad of choices to simplify!  
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Thanks 


