Trends and Challenges in Big Data

Ion Stoica November 14, 2016 PDSW-DISCS'16

Before starting...

Disclaimer: I know little about HPC and storage

More collaboration than ever between HPC, Distributes Systems, Big Data / Machine Learning communities

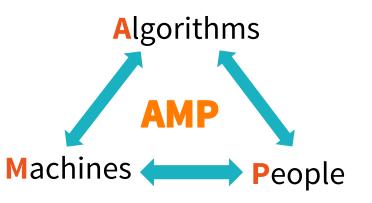
Hope this talk will help a bit in bringing us even closer

Big Data Research at Berkeley Algorithms AMPLab (Jan 2011- Dec 2016) • Mission: "Make sense of big data" • 8 faculty, 60+ students Machines People amazon Google IBM cisco. (intel) facebook Microsoft ORACLE YAHOO! SAMSUNG GE imagination at work HUAWE ERICSSON S ClearStory Hortonworks **vm**ware^{*} cloudera splunk> **T** wave **Wan**Disco 3

Big Data Research at Berkeley

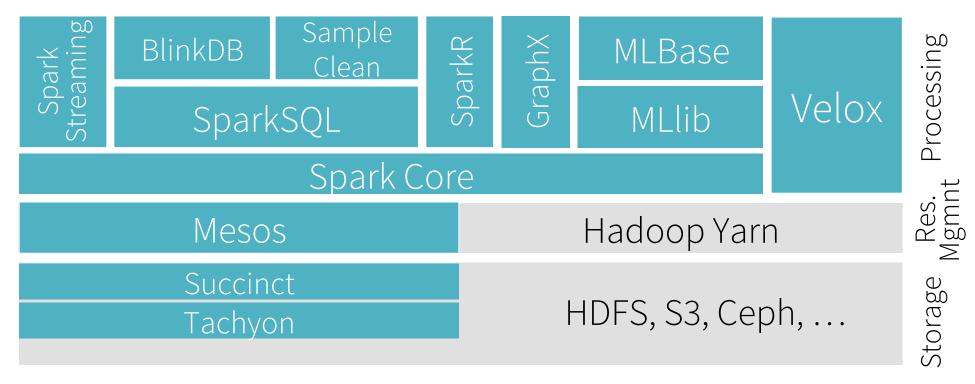
AMPLab (Jan 2011- Dec 2016)

- Mission: "Make sense of big data"
- 8 faculty, 60+ students



Goal: Next generation of open source data analytics stack for industry & academia Berkeley Data Analytics Stack (BDAS)

BDAS Stack



BDAS Stack 3rd party

Several Successful Projects

Apache Spark: most popular big data execution engine

- 1000+ contributors
- 1000+ orgs; offered by all major clouds and distributors

Apache Mesos: cluster resource manager

- Manages 10,000+ node clusters
- Used by 100+ organizations (e.g., Twitter, Verizon, GE)

Alluxio (a.k.a Tachyon): in-memory distributed store

Used by 100+ organizations (e.g., IBM, Alibaba)

ALLUXIO

This Talk

Reflect on how

- application trends, i.e., user needs & requirements
- hardware trends

have impacted the design of our systems

How we can use these lessons to design new systems

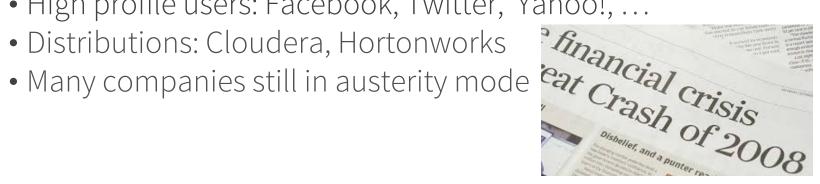
2009: State-of-the-art in Big Data

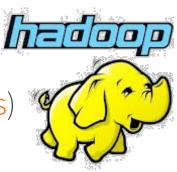
Apache Hadoop

- Large scale, flexible data processing engine
- Batch computation (e.g., 10s minutes to hours)
- Open Source

Getting rapid industry traction:

- High profile users: Facebook, Twitter, Yahoo!, ...





Iterative computations, e.g., Machine Learning

• More and more people aiming to get insights from data

Interactive computations, e.g., ad-hoc analytics

• SQL engines like Hive and Pig drove this trend

Despite huge amounts of data, many working sets in big data clusters fit in memory

Memory (GB)	Facebook (% jobs)	Microsoft (% jobs)	Yahoo! (% jobs)
8	69	38	66
16	74	51	81
32	96	82	97.5
64	97	98	99.5
128	98.8	99.4	99.8
192	99.5	100	100
256	99.6	100	100

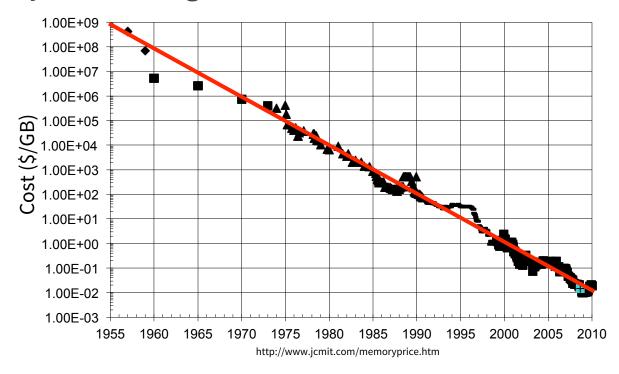
*G Ananthanarayanan, A. Ghodsi, S. Shenker, I. Stoica, "Disk-Locality in Datacenter Computing Considered Irrelevant", HotOS 2011 12

Memory (GB)	Facebook (% jobs)	Microsoft (% jobs)	Yahoo! (% jobs)
8	69	38	66
16	74	51	81
32	96	82	97.5
64	97	98	99.5
128	98.8	99.4	99.8
192	99.5	100	100
256	99.6	100	100

*G Ananthanarayanan, A. Ghodsi, S. Shenker, I. Stoica, "Disk-Locality in Datacenter Computing Considered Irrelevant", HotOS 2011 13

2009: Hardware Trends

Memory still riding the Moore's law

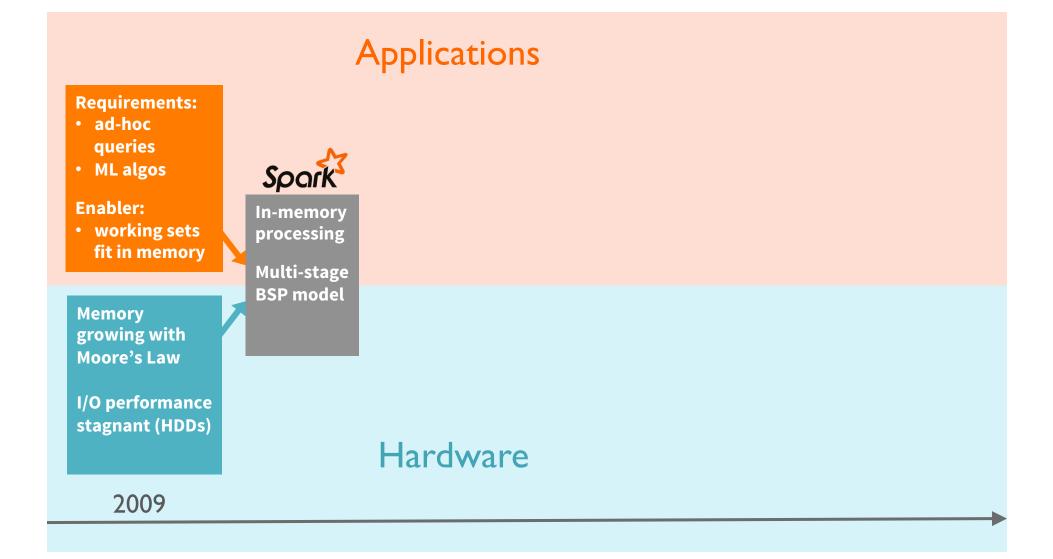


2009: Hardware Trends

Memory still riding the Moore's law

I/O throughput and latency stagnant

- HDD dominating data clusters as storage of choice
- Many deployments as low as 20MB/sec per drive



2009: Our Solution: Apache Spark

In-memory processing

• Great for ad-hoc queries

Generalizes MapReduce to multi-stage computations

• Implement BSP model

Share data between stages via memory

• Great for iterative computations, e.g., ML algorithms

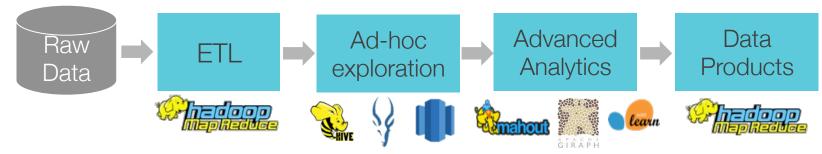
2009: Technical Solutions

Low-overhead resilience mechanisms → Resilient Distributed Datasets (RDDs)

Efficiently support for ML algos \rightarrow Powerful and flexible APIs

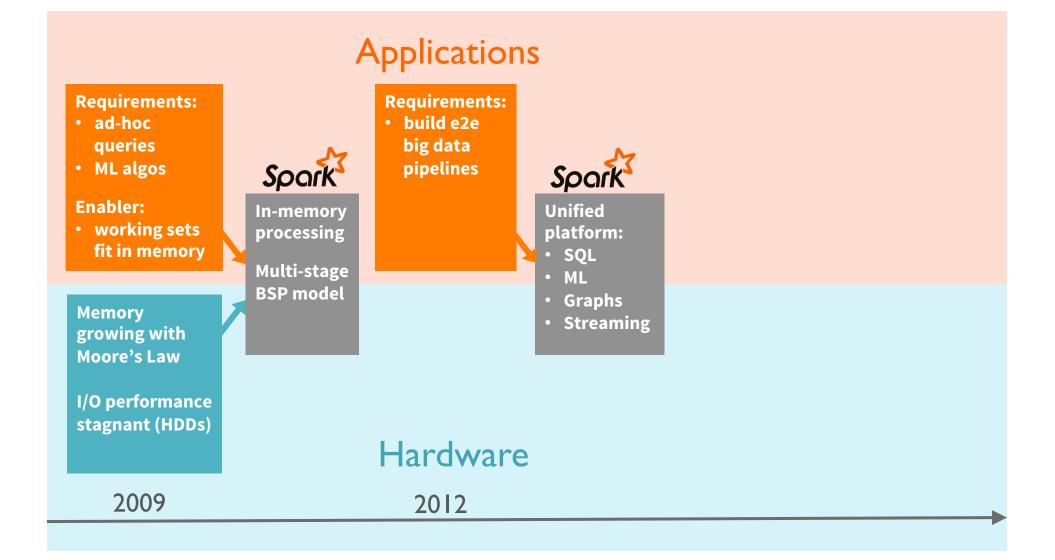
• map/reduce just two of over 80+ APIs

People started to assemble e2e data analytics pipelines



Need to stitch together a hodgepodge of systems

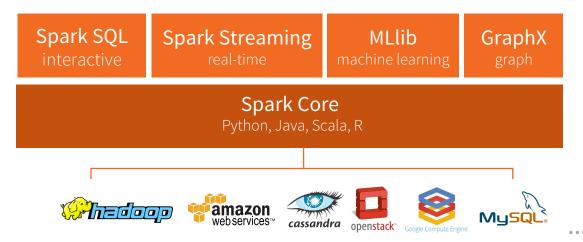
• Difficult to manage, learn, and use



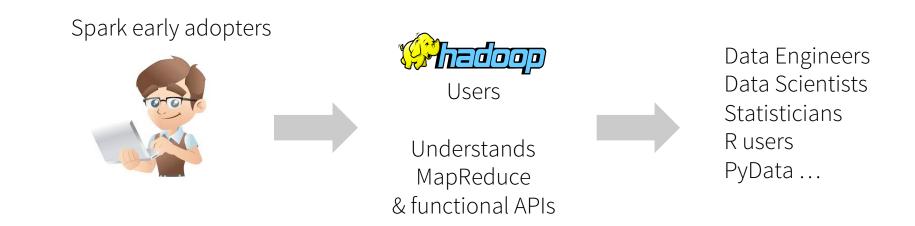
2012: Our Solution: Unified Platform

Support a variety of workloads Support a variety of input sources

Provide a variety of language bindings

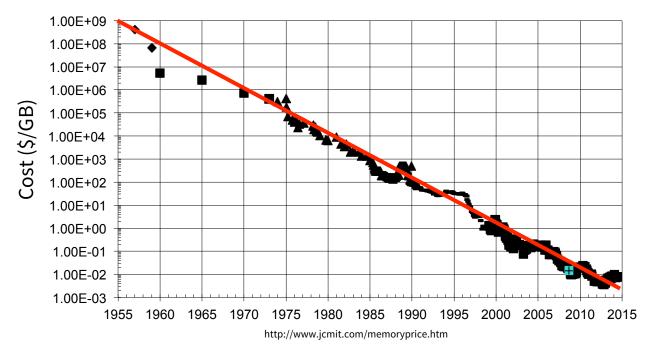


New users, new requirements



2014: Hardware Trends

Memory capacity still growing fast



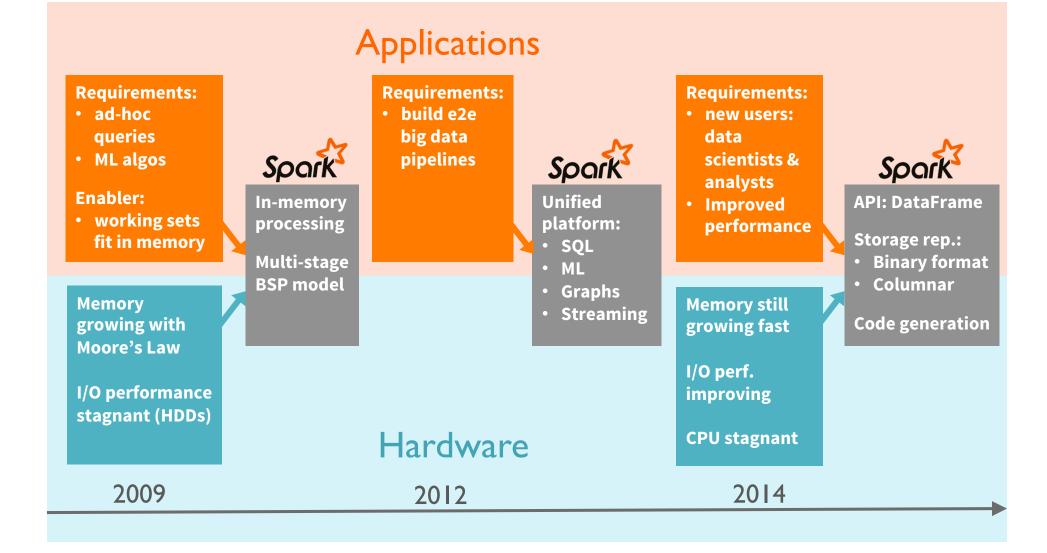
2014: Hardware Trends

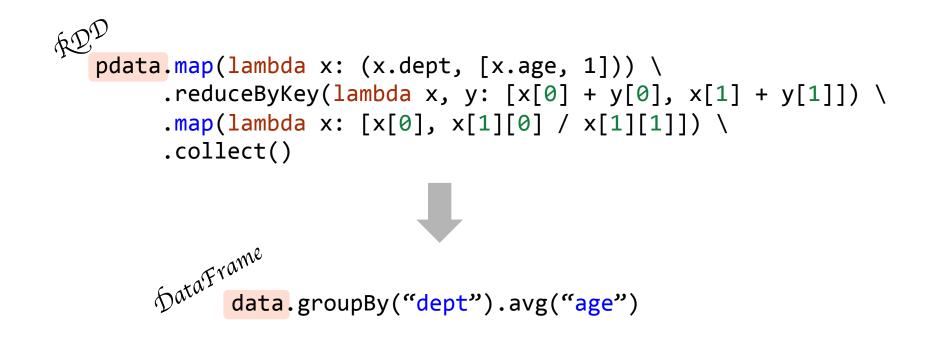
Memory capacity still growing fast

Many clusters and datacenters transitioning to SSDs

- Orders of magnitude improvements in I/O and latency
- DigitalOcean: SSD only instances since 2013

CPU performance growth slowing down





DataFrame API

DataFrame logically equivalent to a relational table

Operators mostly relational with additional ones for statistical analysis, e.g., quantile, std, skew

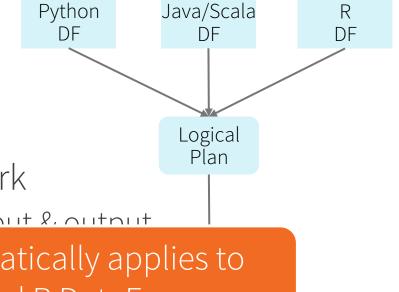
Popularized by R and Python/pandas, languages of choice for Data Scientists

DataFrames in Spark

Make DataFrame declarative, unify DataFrame and SQL

DataFrame and SQL share same

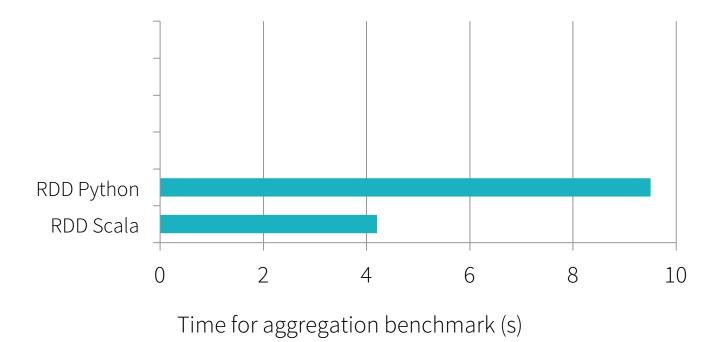
- query optimizer, and
- execution engine



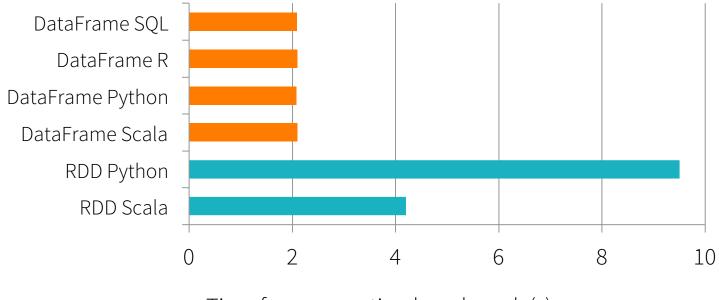
Tightly integrated with rest of Spark

- MI library takes Data Frames as input & output
- E Every optimizations automatically applies to SQL, and Scala, Python and R DataFrames

One Query Plan, One Execution Engine



One Query Plan, One Execution Engine



Time for aggregation benchmark (s)

What else does DataFrame enable?

Typical DB optimizations across operators:

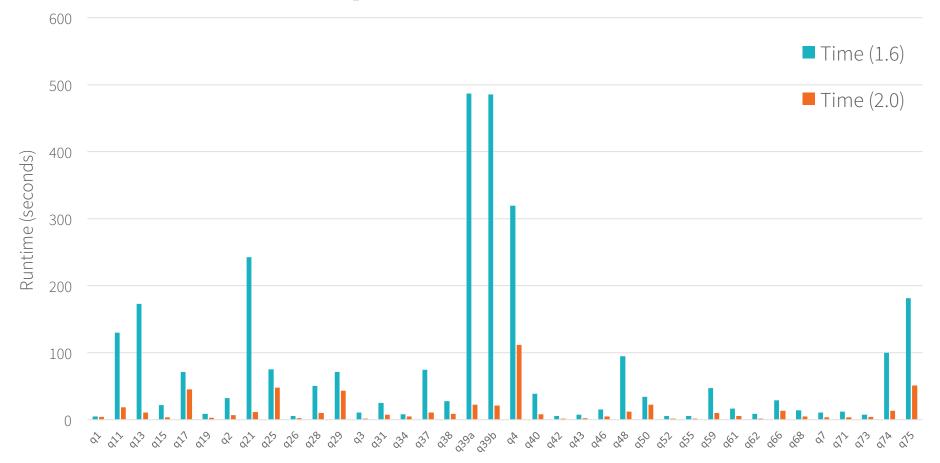
• Join reordering, pushdown, etc

Compact binary representation:

• Columnar, compressed format for caching

Whole-stage code generation:

- Remove expensive iterator calls
- Fuse across multiple operators



TPC-DS Spark 2.0 vs 1.6 - Lower is Better

2016 (What's Next?)

What's Next?

Application trends

Hardware trends

Challenges and techniques

Application Trends

Data only as valuable as the decisions and actions it enables

What does it mean?

- Faster decisions better than slower decisions
- Decisions on fresh data better than on stale data
- Decisions on personal data better than on aggregate data

Application Trends

Real-time decisions

on live data

with strong security

decide in ms

the current state of the environment

privacy, confidentiality, integrity

Applications	Quality	Latency		6
		Update	Decision	Security
Zero-time defense	sophisticated, accurate, robust	sec	sec	privacy, integrity
Parking assistant	sophisticated, robust	sec	sec	privacy
Disease discovery	sophisticated, accurate	hours	sec/min	privacy, integrity
IoT (smart buildings)	sophisticated, robust	min/hour	sec	privacy, integrity
Earthquake warning	sophisticated, accurate, robust	min	ms	integrity
Chip manufacturing	sophisticated, accurate, robust	min	sec/min	confidentiality, integrity
Fraud detection	sophisticated, accurate	min	ms	privacy, integrity
"Fleet" driving	sophisticated, accurate, robust	sec	sec	privacy, integrity
Virtual assistants	sophisticated, robust	min/hour	sec	integrity
Video QoS at scale	sophisticated	min	ms/sec	privacy, integrity

Applications	Quality	Latency		Coordina	
	Quality	Update	Decision	Security	
Zero-time defense	sophisticated, accurate, robust	sec	sec	privacy, integrity	
Parking assistant	SO				
Disease discovery	SO		Query engine		
IoT (smart buildings)		ermediate data .g., model)		-> Decision	
Earthquake warning	so (e.g., train) (e.		Automati decision eng		
Chip manufacturing	SO			tegrity	
Fraud detection	so Decision System				
"Fleet" driving	sophisticated, accurate, robust	sec	sec	privacy, integrity	
Virtual assistants	sophisticated, robust	min/hour	sec	integrity	
Video QoS at scale	sophisticated	min	ms/sec	privacy, integrity	

Applications	Quality	Latency			
		Update	Decision	Security	
Zero-time defense	sophisticated, accurate, robust	sec	sec	privacy, integrity	
Parking assistant	sophisticated, robust	sec	sec	privacy	
Disease discovery	sophisticated, accurate	hours	sec/min	privacy, integrity	
IoT (smart buildings)	sophisticated, robust	min/hour	sec	privacy, integrity	
Earthquake warning	sophisticated, accurate, robust	min	ms	integrity	
Chip manufacturing	sophisticated, accurate, robust	min	sec/min	confidentiality, integrity	
Fraud detection	sophisticated, accurate	min	ms	privacy, integrity	
"Fleet" driving	sophisticated, accurate, robust	sec	sec	privacy, integrity	
Addressing these challenges, the goal of next Berkeley lab:					

Addressing these challenges, the goal of next Berkeley lab: RISE (Real-time Secure Execution) Lab

What's next?

Application trends

Hardware trends

Challenges and techniques

Moore's Law is Slowing Down

MIT Technology Review

Computing

Intel Puts the Brakes on Moore's Law

Intel will slow the pace at which it rolls out new chip-making technology, and is still searching for a successor to silicon transistors.

by Tom Simonite March 23, 2016

The chips are down for Moore's law

عربي

The semiconductor industry will soon abandon its pursuit of Moore's law. Now things could get a lot more interesting.

TECHNOLOGY QUARTERLY AFTER MOORE'S LAW

Double, double, toil and trouble

What Does It Mean?

CPUs affected most: just 20-30%/year perf. improvements

- More complex layouts ightarrow harder to scale
- Mostly by increasing number of cores → harder to take advantage

Memory: still grows at 30-40%/year

• Regular layouts, stacked technologies

Network: grows at 30-50%/year

- 100/200/400GBpE NICs at horizon
- Full-bisection bandwidth network topologies

CPUs is the bottleneck and it's getting worse!

What Does It Mean?

CPUs affected most: just 20-30%/year perf. improvements

- More complex layouts ightarrow harder to scale
- Mostly by increasing number of cores → harder to take advantage

Memory: still grows at 30-40%/year

• Regular layouts, stacked technologies

Network: grows at 30-50%/year

• 100/200/400GBpE NICs at horizon

Memory-to-core ratio is increasing e.g., AWS: 7-8GB/vcore → 17GB/vcore (X1)

45

Unprecedented Hardware Innovation

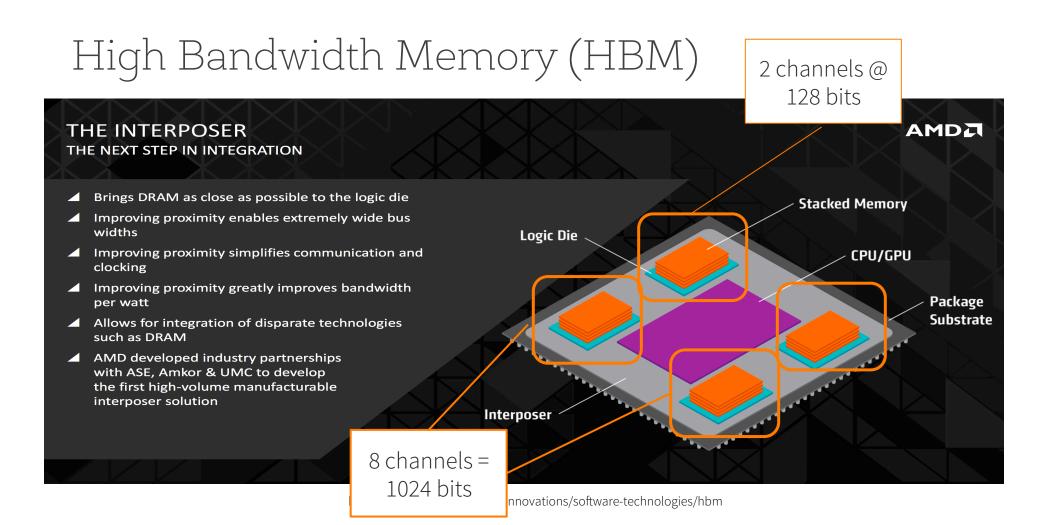
From CPU to specialized chips:

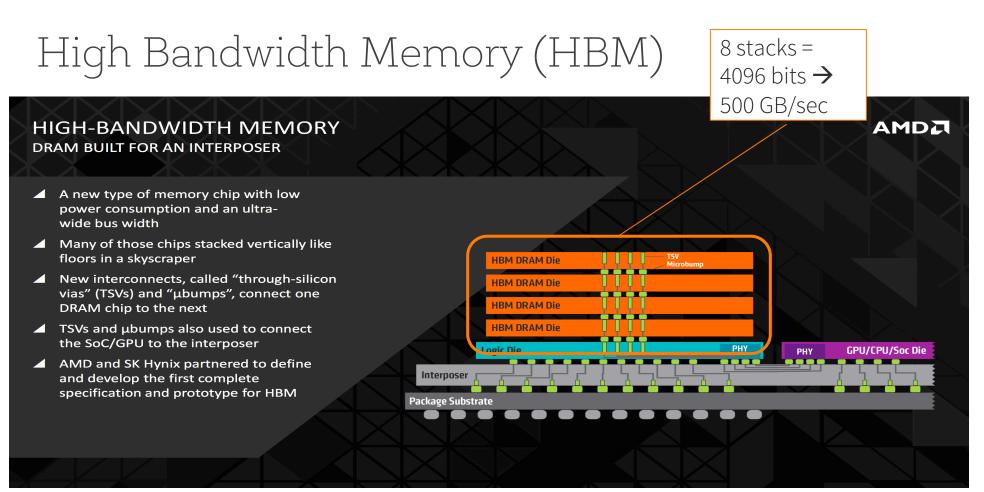
• GPUs, FPGAs, ASICs/co-processors (e.g., TPU)

• Tightly integrated, e.g., Intel's latest Xeon integrates CPU & FPGA

New, disruptive memory technologies

• HBM (High Bandwidth Memory), same package at CPU





http://www.amd.com/en-us/innovations/software-technologies/hbm

Unprecedented Hardware Innovation

From CPU to specialized chips:

- GPUs, FPGAs, ASICs/co-processors (e.g., TPU)
- Tightly integrated (e.g., Intel's latest Xeon integrates CPU & FPGA)

New, disruptive memory technologies

HBM2: 8 DRAM chips/package → 1TB/sec

Unprecedented Hardware Innovation

From CPU to specialized chips:

- GPUs, FPGAs, ASICs/co-processors (e.g., TPU)
- Tightly integrated (e.g., Intel's latest Xeon integrates CPU & FPGA)

New, disruptive memory technologies

- HBM2: 8 DRAM chips/package → 1TB/sec
- 3D XPoint

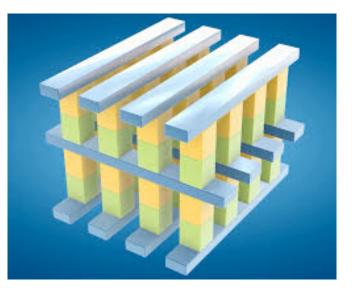
3D XPoint Technology

Developed by Intel and Micron

• Announced last year; products released this year

Characteristics:

- Non-volatile memory
- 2-5x DRAM latency!
- 8-10x density of DRAM
- 1000x more resilient than SSDs



Unprecedented Hardware Innovation

From CPU to specialized chips:

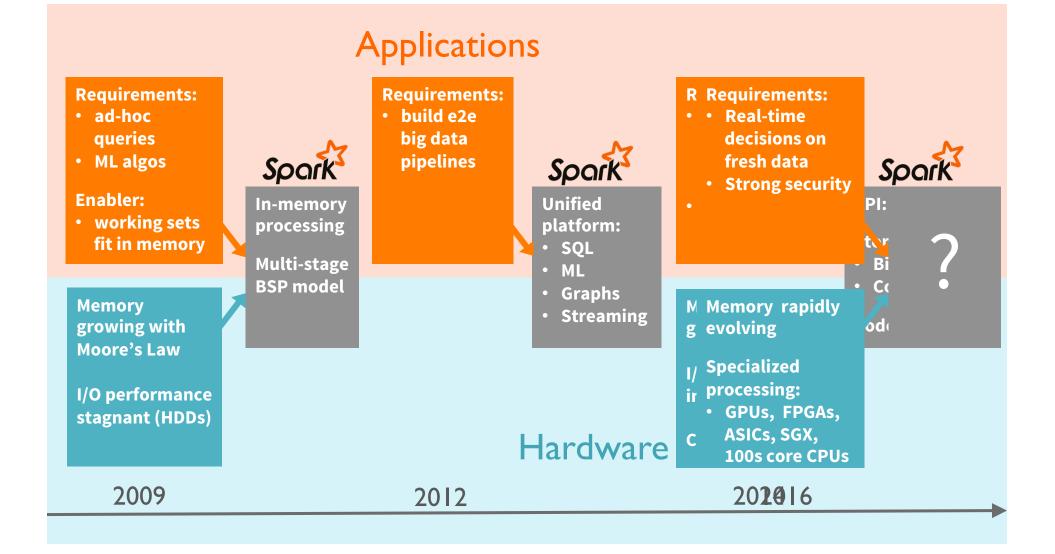
- GPUs, FPGAs, ASICs/co-processors (e.g., TPU)
- Tightly integrated (e.g., Intel's latest Xeon integrates CPU & FPGA)

52

New, disruptive memory technologies

- HBM2: 8 DRAM chips/package → 1TB/sec
- 3D XPoint

"Renaissance of hardware design" – David Patterson



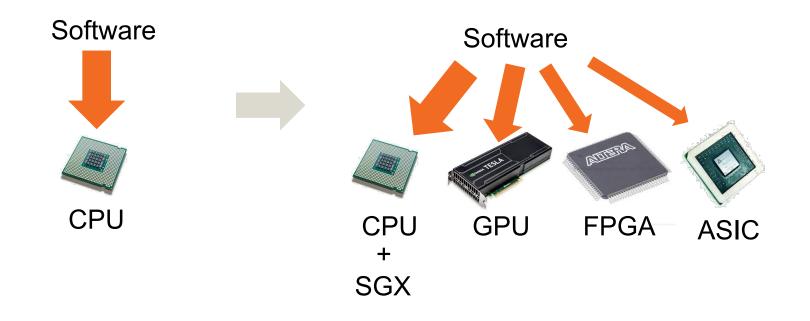
What's next?

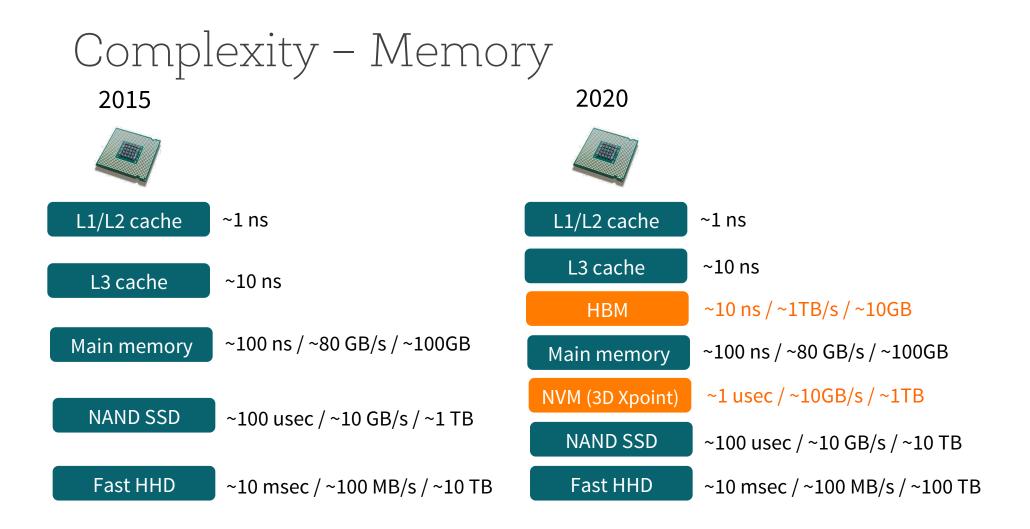
Application trends

Hardware trends

Challenges and techniques

Complexity - Computation





Complexity - More and More Choices

t2.nano, t2.micro, t2.small m4.large, m4.xlarge, m4.2xlarge, m4.4xlarge, m3.medium, c4.large, c4.xlarge, c4.2xlarge, c3.large, c3.xlarge, c3.4xlarge, r3.large, r3.xlarge, r3.4xlarge, i2.2xlarge, i2.4xlarge, d2.xlarge d2.2xlarge, d2.4xlarge,...

> Amazon EC2

Basic tier: A0, A1, A2, A3, A4 Optimized Compute : D1, D2, D3, D4, D11, D12, D13 D1v2, D2v2, D3v2, D11v2,... Latest CPUs: G1, G2, G3, ... Network Optimized: A8, A9 Compute Intensive: A10, A11,...

> Microsoft AZURE

n1-standard-1, ns1-standard-2, ns1-standard-4, ns1-standard-8, ns1-standard-16, ns1highmem-2, ns1-highmem-4, ns1-highmem-8, n1-highcpu-2, n1-highcpu-4, n1highcpu-8, n1-highcpu-16, n1highcpu-32, f1-micro, g1-small...

> Google Cloud Engine

Complexity - More and More Constraints

Latency

Accuracy

Cost

Security

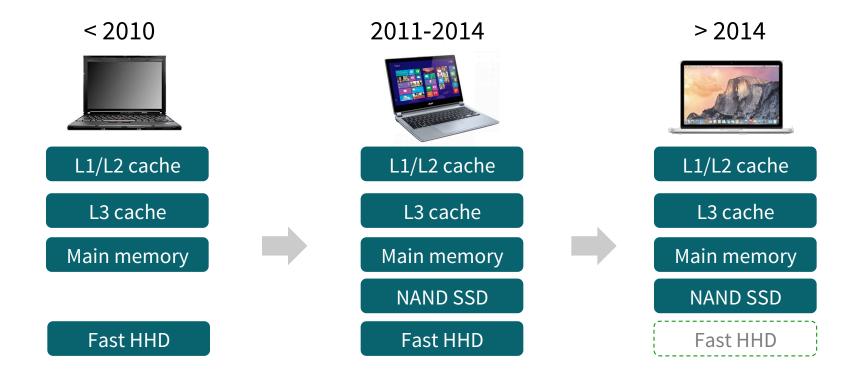
58

Techniques for Conquering Complexity Use additional choices to simplify!

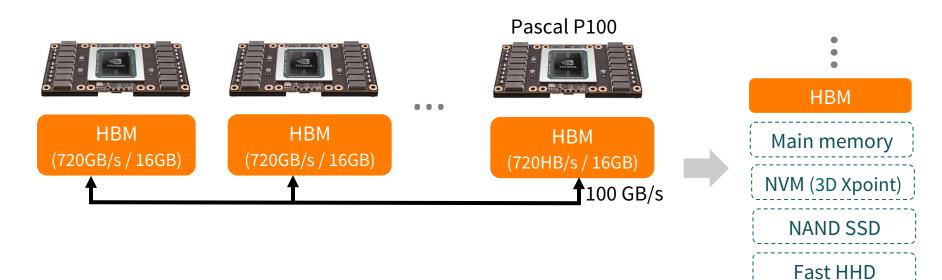
Expose and control tradeoffs

Don't forget "tried & true" techniques

Use Choices to Simplify System Design

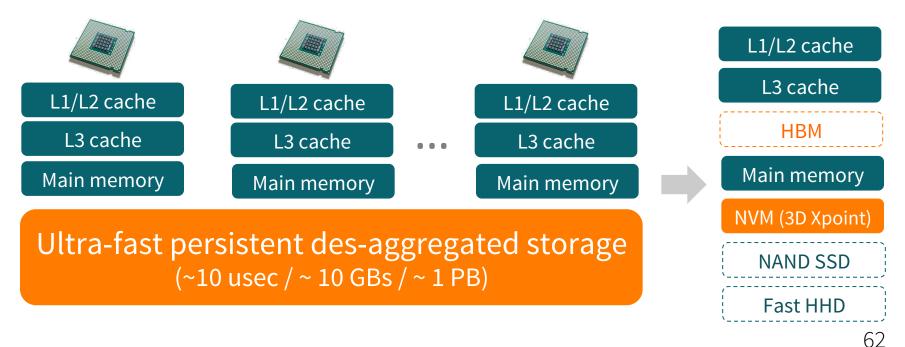


Use Choices to Simplify System Design Example: NVIDIA DGX-1 supercomputer for Deep Learning



Use Choices to Simplify System Design

Possible datacenter architecture (e.g., FireBox, UC Berkeley)



Use Choices to Simplify App Design Maybe no need to optimize every algorithm for every specialized processor...

... if run in cloud, just pick best instance types for your app!

Expose and Control Tradeoffs

Latency vs. accuracy

- Approximate query processing (e.g., BlinkDB)
- Ensembles and correction ML models (e.g., Clipper)

Job completion time vs. cost

• Predict response times given configuration (e.g., Earnest)

Security vs. latency vs. functionality

• E.g., CryptDB, Opaque

Expose and Control Tradeoffs

Caching vs. memory

• HBM allows to be configured either as cache or memory region

Declarative vs. procedural

• Enable users to pick specific query plans for complex declarative programs & complex environments

"Tried & True" Techniques

Sampling:

• Scheduling (e.g., Sparrow), querying (e.g., BlinkDB), storage (e.g., KMN)

Speculation:

• Replicate time-sensitive requests/jobs (e.g., Dolly) Incremental updates:

• Storage (e.g., IndexedRDDs), and ML models (e.g., Clipper) **Cost-based optimization**:

• Pick target hardware at run-time

Summary

Application and hardware trends often determine solution

We are at an inflection point both in terms of both apps and hardware trends

Many research opportunities

Be aware of "complexity": use myriad of choices to simplify!

Thanks