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The A-Brain Project: Data-Intensive 
Processing on Microsoft Azure Clouds 
 Application  

•  Large-scale joint genetic and 
neuroimaging data analysis 

Goals  
•  Application: assess and understand the 

variability between individuals 
•  Infrastructure: assess the potential 

benefits of Azure 
Approach  
•  Optimized data processing on 

Microsoft’s Azure clouds 
Inria teams involved   
•  KerData (Rennes)  
•  Parietal(Saclay)  
Framework 
•  Joint MSR-Inria Research Center 
•  MS involvement: Azure teams, EMIC 
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Genetic information: SNPs 
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MRI brain images 

Clinical / behaviour 

The Imaging Genetics Challenge: 
Comparing Heterogeneous Information 

T Here we 
focus on this 

link 
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Neuroimaging-genetics: The Problem 

l  Several brain diseases have a 
genetic origin, or  their occurrence/
severity related to genetic factors 

l  Genetics important to understand & 
predict response to treatment 

 

l  Genetic variability captured in 
DNA micro-array data 
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Neuroimaging-genetics studies 

l  Objective: Find correlation between brain markers and genetic data 
to understand the behavioral variability and diseases 

l  Setting: Data pipeline, data organization 
 genetics 
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behaviour 
MRI 

~106 Single nucleotid 
polymorphisms 

? ? 
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Statistical analysis for large-scale 
neuroimaging-genetics 

l  Image data → 4D to 2D, dimension nvoxels × nsubjects 

l  Genetic data → dimension  nsnps × nsubjects 

l  Statistical question 

Subject 1 

Subject 2 

Subject n 
... 

SNP data 
Correlations ? 

nvoxels= 105 

nsnps= 106 

nsubjects= 103 



Approach: A-Brain as Map-Reduce Processing 
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A-Brain as Map-Reduce Data Processing 
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MAIN ACHIVEMENTS 
ON THE INFRASTRUCTURE SIDE 



Data-intensive Processing on Clouds: 
Challenges 

•  Computation-to-data latency is high! 
•  Scalable concurrent data accesses to shared data 
•  Need efficient Map-Reduce-like data processing 

-  Hadoop is not the best we can get 
-  The Reduce phase may be costly! 
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Scalable Storage for Processing Shared Data  
on Azure Clouds: TomusBlobs 

TomusBlobs 
•  Aggregates the virtual disks into a uniform storage 
•  Relies on versioning to support high throughput under heavy concurrency 

•  Leverages the BlobSeer data storage software (KerData) 
•  Data replication  
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Background: BlobSeer, a Software Platform  
for Scalable, Distributed BLOB Management 
  

Started in 2008, 6 PhD theses (Gilles Kahn/SPECIF PhD Thesis Award in 2011) 
Main goal: optimized for concurrent accesses under heavy concurrency 
 
Three key ideas 
Decentralized metadata management 
Lock-free concurrent writes (enabled by versioning) 

Write = create new version of the data 
Data and metadata “patching” rather than updating 
 
A back-end for higher-level data management systems 
Short term: highly scalable distributed file systems 
Middle term: storage for cloud services  
 
Our approach 
Design and implementation of distributed algorithms 
Experiments on the Grid’5000 grid/cloud testbed 
Validation with “real” apps on “real” platforms: Nimbus, Azure, OpenNebula clouds… 

http://blobseer.gforge.inria.fr/ 
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Using TomusBlobs for A-Brain: Results 

 
 
 
•  Gain / Azure Blobs: 45% 
•  Scalability:  1000 cores 
•  Demo available 
 

http://www.irisa.fr/kerdata/doku.php?id=abrain 
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Extending the MapReduce Model: 
MapIterativeReduce 
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The Mapper : 

•  Classical map tasks 

The Reducer 
•  Iterative reduction in two steps: 

•  Receive the workload description from the Clients 
•  Process intermediate results 

•  After each iteration, the termination condition is checked   
 



Impact of MapIterativeReduce on A-Brain  
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Beyond Single Site 
processing 

•  Data movements across geo-
distributed deployments is costly  

•  Minimize the size and number of 
transfers 

•  The overall aggregate must 
collaborate towards reaching the goal 

•  The deployments work as independent 
services 

•  The architecture can be used for 
scenarios in which data is produced in 
different locations 
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Towards Geo-distributed TomusBlobs 

•  TomusBlobs for intra-
deployment data 
management 

•  Public Storage (Azure Blobs/
Queues) for inter-deployment 
communication 

•  Iterative Reduce technique 
for minimizing number of 
transfers (and data size)  

•  Balance the network 
bottleneck  from single data 
center  
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Multi-Site MapReduce 

•  3 deployments (NE,WE,NUS) 
•  1000 CPUs 
•  ABrain execution across multiple sites 
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MAIN ACHIVEMENTS 
ON THE APPLICATION SIDE 



Our contributions (0): A linear framework for 
mass-univariate tests  

[Da mota et al. 
COMPSTAT 2012] 
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Our contributions (1):  
Improving Brain-Wide studies 

l  Use of a spatially regularizing prior: group features into parcels, and do the analysis 
on these parcels [Thirion et al. 2006] 

l  Remove the dependence on the parcellation choice by taking the mean across 
random draws 

 

[Da Mota et al. MICCAI 2013, NeuroImage 2013] 
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Our contributions (1): RPBI 
Randomized-parcellation based inference 

  

Randomized  
parcellations 

(ward clustering) 

Mean signal per 
parcel 

Statistic computation 
+ thresholding 
→count detections 
per voxel 

104 permutations to 
obtain fewer-
corrected p-values 
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Our contributions (1):  results of RPBI 

More detections 
on a real dataset 
(for a given type I 
error control)  

More accurate 
model (higher 
ROC curves) 
Higher 
repoducibility 
across groups 
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Our contributions (1):  
results of RPBI 

non-zero intercept test with confounds (handedness, site, sex), on 
an [angry faces - control] fMRI contrast from the faces protocol 
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Our contributions (1):  
results of RPBI 

Experiment with a few SNPs of the 
ARVCF gene (close to COMT): 
fMRI signals upon motor response 
errors  
 

RPBI uncovers a more significant 
association than traditional 

approaches 

MRI contrast 
corresponding to events where 
subjects make motor re- 
sponse errors ([go wrong] 
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Our contributions (1):  
adding robustness to RPBI 

Using robust regression instead of OLS in the RPBI 
method yields more reliable and sometimes more 
sensitive detections [Fritsch et al PRNI 2013] 

Imagen dataset:  
Correlation 
between 
- the interaction  
of a SNP in the 
oxytocyn recepter 
gene with the 
number of 
negative life 
event  
- the activation to 
angry faces  
[Loth et al. 2013] 
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Our contributions (2):  
Improving genome-wide studies 

Regress all the SNPs together against a given brain activation 
measure FMRI signal in 

a subcortical 
region 

All SNPs Other regressors 
(confounds) 

Do not try to localize a few SNPs (among 106): rather assess the 
joint effect of all SNPs again brain variables (heritability) 

Ø common variants are responsible of a large portion of  heritability  
Ø  address the missing variance problem [Yang et al. Nat.gen.

2010] 

[Da Mota et al. Submitted to frontiers] 
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Our contributions (2):  
Heritability estimation and test 

 
Test = amount of explained variance in a cross-validation scheme 

Average Predictive explained 
variance = a proxy for heritability  

Estimation by ridge 
regression 

λ is learned by 
cross-validation 
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Our contributions (2):  
Results with heritability 

Experiment on the Imagen dataset: heritability of the stop failure brain 
activation signals in the sub-cortical nuclei:The signals are 
significantly more heritable than chance in all regions considered 
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Conclusion: where we are 

l  Good method for brain-wide association RPBI 
l  Genome-wide associations: build on the ridge-based heritability estimate 

-  Analysis at the level of pathways, genes 
-  Robust version of ridge regression ? 

l  Application:  
-  Not enough data ! 
-  need more precise hypotheses to test 
-  Need more feature engineering 
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Conclusion: what we learned from  A-brain 
l  Using the cloud can be advantageous: 

-  Do not need to own the cluster 
-  Resources owned until the end of the computation 
-  Ease of use: execute the same code as the usual one  

l  Progress still needed to get closer to the power of a bare cluster  
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Two Things to Take Away 

 
 
•  The TomusBlobs data-storage layer developed within the A-Brain project was 

demonstrated to scale up to 1000 cores on 3 Azure data centers.  
•  It exhibits improvements in execution time up to 50% compared to 

standard solutions based on Azure BLOB storage.  
 
•  The consortium has provided the first statistical evidence of the heritability of 

functional signals  in a failed stop task in basal ganglia, using a ridge 
regression approach, while relying on the Azure cloud to address the 
computational burden.  
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