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Abstract
A model of resource access control is presented in which the access control to resources

can employ user interaction to obtain the necessary permissions. This model is inspired by
and improves on the Java security architecture used in Java-enabled mobile telephones.
We extend the Java model to include access control permissions with multiplicities in
order to allow to use a permission a certain number of times. We define a program model
based on control flow graphs together with its operational semantics and provide a formal
definition of the basic security policy to enforce viz that an application will always ask
for a permission before using it to access a resource. A static analysis which enforces the
security policy is defined and proved correct. A constraint solving algorithm implementing
the analysis is presented.

1 Introduction
Availability of services and resources has been identified as a fundamental property of in-
formation system security, together with confidentiality and integrity. One of the principal
techniques that helps ensuring availability is dynamic monitoring of how processes consume
their allocated resources, as e.g., the resource allocation model for denial of service developed
by Millen [15]. In this model, a trusted resource monitor maintains a resource allocation
matrix which records for each process and each resource, how many units of the resource are
currently allocated to the process. Prior to consuming a resource, the monitor verifies that
the necessary resources have indeed been allocated to the process. This guarantees that no
process will attempt to consume more resources than it has been allocated.

The purpose of this article is to transpose this process-oriented resource allocation model
to a more programming language-oriented model in which the operations for resource manipu-
lation becomes part of a high-level programming language. The goal is to provide a technique
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for reasoning about such resource-aware programs and for proving statically that a particular
program does not attempt to use more resources than it has been allocated. This is the major
difference with respect to the dynamic monitoring approach cited above. More accurately,
we will propose a model in which static verification is mixed with dynamic allocation and
monitoring to offer the most flexible programming possible.

Access control to resources is traditionally described by a model in which an access control
matrix specifies the actions that a subject (program, user, applet, . . . ) is allowed to perform
on a particular object. The language-based access control mechanisms proposed recently for
languages such as Java and C# have added a dynamic aspect to this model: applets can be
granted permissions temporarily and the outcome of an access control depends on both the
set of currently held permissions and the state of the machine. The most studied example of
this phenomenon is the stack inspection of Java (and the stack walks of C]) together with
the privileged method calls by which an applet grants all its permissions to its callers for the
duration of the execution of a particular method call, see e.g. [3, 7, 10, 13]. Another example
is the security architecture for embedded Java on mobile telephones, defined in the Mobile
Information Device Profile (MIDP) [23] for Java, which uses interactive querying of the user
to grant permissions on-the-fly to the applet executing on a mobile phone so that it can
make internet connections, access files, send SMSs etc. An important feature of the MIDP
model are the “one-shot” permissions that can be used once for accessing a resource. This
quantitative aspect of permissions raises several questions of how such permissions should be
modeled (e.g., “do they accumulate?” or “which one to choose if several permissions apply?”)
and how to program with such permissions in a way that respects both usability and security
principles such as Least Privilege [20] and the security property stated below.

In this article, we present a formal model of resource access control mechanisms with
the purpose of developing a semantically well-founded and more general replacement for
the Java MIDP model. We propose a semantics of the programming constructs used in
the model and a logic for reasoning about the flow of permissions in programs using these
constructs. The basic security property that we aim to prove for an application is that a
program will never access a resource for which it does not have permission. This property can
be established by inserting dynamic (run-time) checks that monitor the execution and examine
the available permissions before each resource access. However, such dynamic monitoring has
two drawbacks. First, it incurs an over-head in execution time—this is likely to be modest for
the monitoring in question. Second, and more importantly, when an illegal access is detected
a security exception is raised and must be dealt with, interrupting the normal execution of
the application. While this does not jeopardize the security of the application as such, it
is undesirable from a usability point of view. For these reasons, we propose to develop an
access control model that allows to analyse and verify statically (i.e., before execution) that
an application will acquire all the permissions necessary for its execution.

The notion of permission is central to our model. Permissions have an internal structure
(formalised in Section 3) that describes the actions that they enable and the set of objects to
which they apply. The “one-shot” permissions from Java MIDP (presented in Section 2) have
motivated a generalisation in which permissions now have multiplicities, stating how many
times the given permission can be used. Multiplicities are important for controlling resource
accesses that have a cost, such as sending of certain text messages and connections to certain
network services on mobile telephones. In addition, adding a specific zero multiplicity allows
to extend the MIDP model with revocation of permissions.

The security model we propose has two basic constructs for manipulating permissions:
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grant(p)

consume(p)

grant(p)

consume(p)

grant(p1,∞)

consume(p1) grant(p2, 1)

consume(p2)

Figure 1: Left: current MIDP permissions. Right: new permission model

• grant models the interactive querying of the user, asking whether he grants a particular
permission with a certain multiplicity to the applet, and

• consume models the access to a method which requires (and hence consumes) permis-
sions.

An important feature of the new model we propose is that an application can request one
or more permissions in advance instead of having to ask permission just before consuming it,
as it currently happens in the MIDP access control model based on the “one-shot” permissions.
For example, in our model it is possible for a user to grant an applet the permission to send
3 SMSs during a transaction. Figure 1 illustrates the difference between the two models with
control flow graph example. To the left, a grant precedes directly consume whereas to the
right we ask for a number of p1 permissions in advance which are then consumed in the loop
without any further user interaction

The choice of where to insert requests for user-granted permissions now becomes important
for the usability of an applet and has a clear impact on its security. We provide a static analysis
that will verify automatically that a given choice of placement will ensure that an applet
always has the permissions necessary for its further execution. The analysis is developed by
integrating the grant and consume constructs into a program model based on control-flow
graphs. The model and its operational semantics is presented in Section 4. In this section,
we also formally define what it means for an execution trace (and hence for a program)
to respect the basic security property. Section 5 defines a constraint-based static analysis
for safely approximating the flow of permissions in a program with the aim of computing
what permissions are available at each program point. The correctness of this analysis is
established in Section 6. Section 7 describes how to solve the constraints produced by the
analysis. Section 8 describes related formal models and verification techniques for language-
based access control and Section 9 concludes.

The present article is an extended and improved version of [6]. Apart from providing more
explanations in general, the present article extends the program model to handle permission
management inside loop structures and proposes an analysis that is more precise than the
analysis proposed in loc. cit. in the way that exceptions are handled.

2 The Java MIDP security model
The Java MIDP programming model for mobile telephones [23] proposes a thoroughly de-
veloped security architecture which is the starting point of our work. In the MIDP security
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model, applications (called midlets in the MIDP jargon) are downloaded and executed by a
Java virtual machine. Midlets are made of a single archive (a jar file) containing complete
programs. At load time, the midlet is assigned a protection domain which determines how the
midlet can access resources. It can be seen as a labelling function which classifies a resource
access as either allowed or user.

• allowed means that the midlet is granted unrestricted access to the resource;

• user means that, prior to an access, an interaction with the user is initiated in order
to ask for permission to perform the access and to determine how often this permission
can be exercised. Within this protection domain, the MIDP model operates with three
possibilities:

– blanket: the permission is granted for as long as the midlet remains installed;
– session: the permission is granted for as long as the midlet is running;
– oneshot: the permission is granted for a single use.

The oneshot permissions correspond to dynamic security checks in which each access is
protected by a user interaction. This clearly provides a secure access to resources but the
potentially numerous user interactions are at the detriment of the usability and makes social
engineering attacks easier. For example, the user may be overwhelmed by innocuous requests,
and then (when she is no longer taking them seriously) asked for permission on a costly
resource like sending a message to a premium number. At the other end of the spectrum,
the allowed mode which gets granted through signing provides a maximum of usability but
leaves the user with absolutely no assurance on how resources are used, as a signature is only
a certificate of integrity and origin.

In the following we will propose a security model which extends the MIDP model by
introducing permissions with multiplicities and by adding flexibility to the way in which
permissions are granted by the user and used by applications. In this model, we can express:

• the allowed mode and blanket permissions as initial permissions with multiplicity ∞;

• the session permissions by prompting the user at application start-up whether he
grants the permission for the session and by assigning an infinite number of the given
permission;

• the oneshot permissions by prompting the user for a permission with a grant just
before consuming it with a consume.

The added flexibility is obtained by allowing the programmer to insert user interactions
for obtaining permissions at any point in the program (rather than only at the beginning and
just before an access) and to ask for a batch of permissions in one interaction. The added
flexibility can be used to improve the usability of access control in a midlet but will require
formal methods to ensure that the midlet will not abuse permissions (security concern) and
will be granted sufficient permissions by the programmer for a correct execution (usability
concern). Another feature enabled in the extended model is the ability to revoke permissions
which is not present in the current MIDP model. We return to this point at the end of
Section 3.
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3 The structure of permissions
In classical access control models, permissions held by a subject (user, program, . . . ) autho-
rise certain actions to be performed on certain resources. Such permissions can be represented
as a relation between actions and resources. To obtain a better fit with access control archi-
tectures such as that of Java MIDP we combine this permission model with multiplicities and
resource types, in a way inspired by the resource allocation matrices used by Millen in his
resource allocation model [15]. However, we add more structure to the set of resources. Con-
crete MIDP permissions are strings whose prefixes encode package names and whose suffixes
encode a specific permission. For instance, one finds permissions javax.microedition.io.
Connector.http and javax.microedition.io.Connector.sms.send which enable applets
to make connections using the http protocol or to send a SMS, respectively. Thus, permissions
are structured entities that for a given resource type define which actions can be applied to
which resources of that type and how many times.

To model this formally, we assume given a set ResType of resource types. For each resource
type rt there is a set of resources Resrt of that type and a set of actions Actrt applicable to
resources of that type. We incorporate the notion of multiplicities by attaching to a set of
actions a and a set of resources r a multiplicity m indicating how many times actions a can
be performed on resources from r. Multiplicities are taken from the ordered set:

Mul 4= (N ∪ {⊥Mul ,∞},≤).

The 0 multiplicity represents absence of a given permission and the∞ multiplicity means that
the permission is permanently granted. The ⊥Mul multiplicity represents an error arising from
trying to decrement the 0 multiplicity. We define the operation of decrementing a multiplicity
as follows:

m− 1 =


∞ if m =∞
m− 1 if m ∈ N,m 6= 0
⊥Mul if m = 0 or m = ⊥Mul

Several implementations of permissions include an implication ordering on permissions.
One permission implies another if the former allows to apply a particular action to more
resources than the latter. However, the underlying object-oriented nature of permissions
imposes that only permissions of the same resource type can be compared. We capture this
in our model by organising permissions as a dependent product of permission sets for a given
resource type.

Definition 1 (Permissions). Given a set ResType of resource types and ResType-indexed
families of resources Resrt and actions Actrt, the set of atomic permissions Permrt is defined
as:

Permrt
4= (P(Resrt)× P(Actrt)) ∪ {⊥}

relating a type of resources with the actions that can be performed on it1. The element ⊥
represents an invalid permission. By extension, we define the set of permissions Perm as the
dependent product:

Perm 4= rt ∈ ResType → Permrt ×Mul
1In the following, we use regular expressions to denote sets of resources (files, telephone numbers etc).
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relating for all resource types an atomic permission and a multiplicity stating how many times
it can be used.
For ρ ∈ Perm and rt ∈ ResType, we use the notations ρ(rt) to denote the pair of atomic
permissions and multiplicities associated with rt in ρ. Similarly, 7→ is used to update the
permission associated to a resource type, i.e., (ρ[rt 7→ (p,m)])(rt) = (p,m).

Example 1. Given two resource types CheapSMS and ExpensiveSMS ∈ ResType, the per-
mission ρ ∈ Perm defined by

[CheapSMS 7→ ((+1800∗, {send}), 2),ExpensiveSMS 7→ ((0033∗, {send}), 1)]

grants two accesses to a send action of the resource +1800∗ (phone number starting with
+1800) of type CheapSMS and one access to the send action of an expensive SMS on a
number starting with 0033.

Notice that this way of modeling permissions imposes a restriction on how the granting of
permissions can be expressed. In particular, it is not possible to express permission to send,
say, two SMSs to number n1 and three SMSs to number n2 if n1 and n2 belong to the same
resource type SMS, say. In this case, either permission can be granted to send five messages
to the set of resources {n1, n2} of type SMS or different resource types must be introduced
to distinguish n1 and n2.

Definition 2. The partial order vp ⊆ Perm × Perm on permissions is given by

ρ1 vp ρ2
4= ∀rt ∈ ResType ρ1(rt) v ρ2(rt)

where v is the product of the subset ordering vrt on Permrt and the ≤ ordering on multiplic-
ities.

Intuitively, being higher up in the ordering means having more permissions to access a
larger set of resources. For example,

[ExpensiveSMS 7→ ((0033∗, {send}), 1)] v [ExpensiveSMS 7→ ((∗, {send}), 2)]

The ordering induces a greatest lower bound operator u : Perm × Perm → Perm on permis-
sions. For example, for ρ ∈ Perm

ρ[File 7→ ((/tmp/∗, {read,write}), 1)] u ρ[File 7→ ((∗/dupont/∗, {read}),∞)] =
ρ[File 7→ ((/tmp/ ∗ /dupont/∗, {read}), 1)]

Operations on permissions

There are two operations on permissions that will be of essential use:

• consumption (removal) of a specific permission from a collection of permissions;

• update of a collection of permissions with a newly granted permission.

Definition 3. Let ρ ∈ Perm, rt ∈ ResType, p, p′ ∈ Permrt, m ∈ Mul and assume that
ρ(rt) = (p,m). The operation consume : Permrt → Perm → Perm is defined by

consume(p′)(ρ) =
{
ρ[rt 7→ (p,m− 1)] if p′ vrt p
ρ[rt 7→ (⊥,m− 1)] otherwise
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There are two possible error situations when trying to consume a permission. Attempting
to consume a resource for which there is no permission (p′ 6vrt p) is an error. Similarly,
consuming a resource for which the multiplicity is zero will result in setting the multiplicity
to ⊥Mul .

Definition 4. A permission ρ ∈ Perm is an error, written Error(ρ), if:

∃rt ∈ ResType, ∃(p,m) ∈ Permrt ×Mul, ρ(rt) = (p,m) ∧ (p = ⊥ ∨m = ⊥Mul).

Granting a number of accesses to a resource of a particular resource type is modeled by
updating the component corresponding to that resource type.

Definition 5. Let ρ ∈ Perm, rt ∈ ResType, the operation grant : Permrt ×Mul → Perm →
Perm for granting a number of permissions to access a resource of a given type is defined by

grant(p,m)(ρ) = ρ[rt 7→ (p,m)]

Notice that granting such a permission erases all previously held permissions for that
resource type, i.e., permissions do not accumulate. This is a design choice: the model forbids
that permissions be granted for performing one task and then used later on to accomplish
another. The grant operation could also add the granted permission to the existing ones
rather than replace the corresponding one. Besides cumulating the number of permissions
for permissions sharing the same type and resource, this would allow different resources for
the same resource type. However, the consume operation becomes much more complex, as
a choice between the overlapping permissions may occur. Analysis would require handling
multisets of permissions.

A consequence of the fact that permissions do not accumulate is that our model can
accommodate the revocation of permissions, by asking the user to grant zero permissions
of a given type. As pointed out in Section 2, this is a difference with respect to the Java
MIDP model. In particular, this enables the programmer to impose scope on permissions by
inserting a grant instruction with null multiplicity at the end of the permission scope.

4 Program model
In this section we present the formal definition of the permission usage of a program during its
execution. We first present the control-flow graph model of programs, then explain how this
kind of model can be generated from a real program and finally present the formal meaning
of the term safe execution in such a model.

We model a program by a control-flow graph (CFG) that captures the manipulations of
permissions (grant and consume), the handling of program loops, method calls and returns,
and models the way that exceptions are thrown and handled in a language like Java. These
operations are respectively represented by the instructions grant(p,m), consume(p), calli,
return, throw(ex), with i ∈ N, ex ∈ EX , rt ∈ ResType, p ∈ Permrt and m ∈ Mul. This is
an enriched version of the models used in previous work on modelling access control for Java
[3, 7, 13]. The instruction calli combines the essential features of method calls and iteration
into one idealized instruction. Its (non-deterministic) semantics is that it will call at a given
point in the execution, a particular method k times with 1 ≤ k ≤ i, unless an exception is
raised. Ordinary method calls correspond to calli with i = 1. The throw(ex) instruction will
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throw the exception ex. This exception can be caught inside the method currently executing
in which case an edge indicates the way to the relevant handler. Otherwise, it escapes the
method and will be handled in the enclosing methods.

Definition 6. A control-flow graph is a 7-tuple

G = (NO,EX ,KD,TG,CG,EG, n0)

where:

• NO is the set of nodes of the graph;

• EX is the set of exceptions;

• KD : NO → {grant(p,m), consume(p), calli, return, throw(ex)}, associates a kind to
each node, indicating which instruction the node represents;

• TG ⊆ NO ×NO is the set of intra-procedural edges;

• CG ⊆ NO×NO is the set of inter-procedural edges, which can capture dynamic method
calls;

• EG ⊆ EX ×NO×NO is the set of intra-procedural exception edges that will be followed
if an exception is raised at that node;

• n0 is the entry point of the graph.

In the following, given n, n′ ∈ NO and ex ∈ EX , we will use the notations n TG→ n′ for
(n, n′) ∈ TG, n CG→ n′ for (n, n′) ∈ CG and n ex→ n′ for (ex, n, n′) ∈ EG.

In the sequel, we only consider control flow graphs such that the entry-point of a method
is unique. In terms of graphs, this translates to the fact that targets of intra-procedural edges
are the roots of disjoint sub-graphs. Formally stated, we enforce the following property:

n
CG→ e ∧ n CG→ e′ ∧ e TG→

?
r ∧ e′ TG→

?
r ⇒ e = e′

Figure 2 contains an example of the control flow graph of grant and consume operations
from a fictitious flight-booking transaction. For simplicity, actions related to permissions, such
as {connect} or {read}, are omitted. In this transaction, the user first transmits his request
to a travel agency, site. He can then modify his request or get additional information. Once
satisfied with information provided, he can either book the flight or pay the desired flight. In
both cases, the identity of the user is required, hence the corresponding permission is asked
from the outset.

In the case of payment, the application asks for permission to access information concern-
ing bank detail such as credit card number. This could also have been asked from the start
as part of pinit, but is instead obtained via a dynamic request that is being executed only
if the payment branch of the application is actually chosen. In the example, the developer
has chosen to delay asking for the permission of accessing credit card information concerning
credit limit and card number until it is certain that this permission is indeed needed. Another
design choice would be to grant this permission from the outset. This would minimise user
interaction because it allows to remove the querying grant operation. However, the initial
permission pinit would then contain file 7→ (/wallet/∗, 3) instead of file 7→ (/wallet/id, 1)
which would grant the application with more permissions than strictly needed, going against
the principle of least privilege.
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pinit[http 7→ (∗,∞);https 7→ (site, 1); file 7→ (/wallet/id, 1)]

consume(http(site))

consume(http(∗))

consume(file(/wallet/id))

consume(http(site)) grant(file(/wallet/∗), 2)

consume(file(/wallet/limit))

consume(file(/wallet/cc#))

consume(https(site))

2.

3.
3.

4. 5.

1.
1.

1. Modify request
2. Get info
3. Choose flight
4. Book only
5. Book and pay

Figure 2: Example of grant/consume permissions patterns

Model generation

The control flow graph we consider here is relatively standard. Since we only focus on branch-
ing instructions, resource uses and method call/returns, this model can be seen as a compres-
sion of the general control flow graphs that can be generated by tools like Bandera [2], or
Soot [21].

Starting from a standard CFG builder we need to perform several compressing transforma-
tion to fit in our model. A block without any method call or resource use can be compressed
into one single node. For each loop containing a method call or a resource usage we try to
statically bound the number of possible iterations of this loop in order to generate a suitable
calli instruction. This non-trivial task is accomplished by a numerical analysis for bounding
the number of times a program point (the head of the loop) is reached during the execution
of a method. Such an information is easily instrumented by a ghost variable LOOP(pc) in-
creased before executing the instruction at program point pc. Standard numerical abstraction
will then be able to bound LOOP(pc) for standard "for" loop such as for (int i=0; i<100; i++)

(here an interval on LOOP(pc)− i is sufficient) but also some others statically bounded loops.
A loop containing a resource usage (directly or indirectly via method call) which cannot be
statically bounded by a constant is simply translated into a loop in the control flow graph.

Operational semantics

We define the small-step operational semantics of CFGs in Figure 3 which defines an inter-
pretation of CFGs in terms of execution traces. The semantics is stack-based and mimics the
behaviour of a standard programming language with methods and exceptions, e.g., as Java
or C]. The operational semantics operates on a state consisting of a standard control-flow
stack of nodes, enriched with the permissions held at that point in the execution. Thus, the
small-step semantics is given by a relation � between elements of (NO∗×(EX∪{ε})×Perm),
where NO∗ is a sequence of nodes. For example, for the instruction calli of Figure 3, if the
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current node n leads through an inter-procedural step to a node m, then the node m is added
to the top of the stack n:s, with s ∈ NO∗. In order to take into account the iterative aspect
of the calli instruction, we add a formal exponent i on the n component of the stack. This
exponent is used to remember how many times the method can be called again and is updated
in the rules for the method return instruction return as follows. The first rule for return
deals with the states where the exponent i is strictly greater than 1. In this case the method
can be executed again, in a context where the exponent now is decremented by one. The
conditions n CG→ m and m TG→

∗
r serve to ensure that the new iteration invokes the method

from which execution returns (in case the calling node n is linked to several method entries).
The second rule for return describes the case where iteration stops: if the exponent is greater
than or equal to one then the iteration can stop and execution proceed at the node following
the call node n.

Instructions may change the value of the permission along with the current state. E.g.,
for the instruction grant of Figure 3, the current permission ρ of the state will be updated
with the new granted permissions. The current node of the stack n will also be updated,
at least to change the program counter, depending on the desired implementation of grant.
Note that the instrumentation is non-intrusive, i.e. a transition will not be blocked due to
the absence of a permission. Thus, for s in NO∗, e in (EX ∪ {ε}), ρ′ in Perm, if there exists
s′ in NO∗, e′ in (EX ∪ {ε}), ρ′ in Perm such that s, e, ρ� s′, e′, ρ′, then for all ρ and ρ′, the
same transition holds.

For the instruction throw(ex), we distinguish two cases depending on whether the ex-
ception is handled in the current method or not. In the first case (n ex→ h), the execution
continues in the same method following the corresponding exception edge. In the second
case, the exception ex is recorded in the current state which becomes now an exception state
(i.e. a state of the form (s, e, ρ) with e 6= ε). The two last rules explain how to handle an
exception state. In the first one, there is no exception edge in the current caller to catch the
exception ex, the exception escapes the method and the control is transfered to the caller
with an exception state. Otherwise, the caller catches the exception and receives the control
at the node h targeted by the exception edge.

KD(n) = grant(p,m) n
TG→ n′

n:s, ε, ρ� n′:s, ε, grant(p,m)(ρ)
KD(n) = consume(p) n

TG→ n′

n:s, ε, ρ� n′:s, ε, consume(p)(ρ)

KD(n) = calli n
CG→ m

n:s, ε, ρ� m:ni:s, ε, ρ

KD(r) = return n
CG→ m m

TG→
∗
r i > 1

r:ni:s, ε, ρ� m:ni−1:s, ε, ρ
KD(r) = return n

TG→ n′ i ≥ 1
r:ni:s, ε, ρ� n′:s, ε, ρ

KD(n) = throw(ex) n
ex→ h

n:s, ε, ρ� h:s, ε, ρ
KD(n) = throw(ex) ∀h, n ex9 h

n:s, ε, ρ� n:s, ex, ρ

∀h, n ex9 h

t:n:s, ex, ρ� n:s, ex, ρ
n
ex→ h

t:n:s, ex, ρ� h:s, ε, ρ

Figure 3: Small-step operational semantics
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This operational semantics will be the basis for the notion of program execution traces,
on which global results on the execution of a program will be expressed.

Definition 7 (Trace of a CFG). A partial trace tr ∈ (NO, (EX∪{ε}))∗ of a CFG is a sequence
of nodes (n0, ε) :: (n1, e1) :: . . . :: (nk, ek) such that for all 0 ≤ i < k there exists ρ, ρ′ ∈ Perm,
s, s′ ∈ NO∗ such that ni:s, ei, ρ� ni+1:s′, ei+1, ρ

′.
For a program Pg represented by its control-flow graph G, we will denote by JPgK the set

of all partial traces of G.

To state and verify the safety of a program that acquires and consumes permissions, we
first define what it means for an execution trace to be safe. We define the permission set
available at the end of a trace by induction over its length.

PermsOf (nil) 4= pinit

PermsOf (tr :: (consume(p), e)) 4= consume(p)(PermsOf (tr))
PermsOf (tr :: (grant(p,m), e)) 4= grant((p,m))(PermsOf (tr))
PermsOf (tr :: (n, e)) 4= PermsOf (tr) otherwise

pinit is the initial permission of the program, for the state n0. By default, if no permission
is granted at the beginning of the execution, it will contain ((∅, ∅), 0) for each resource type.
The allowed mode and blanket permissions for a resource r of a given resource type can be
modeled by associating the permission (({r},Act),∞) with that resource type.

A trace is safe if none of its prefixes ends in an error situation due to the access of resources
for which the necessary permissions have not been obtained.

Definition 8 (Safe trace). A partial trace tr ∈ (NO, (EX ∪ {ε}))∗ is safe, written Safe(tr),
if for all prefixes tr′ ∈ prefix(tr), ¬Error(PermsOf (tr′)).

5 Static analysis of permission usage
We now define a static data flow analysis for computing a safe approximation, denoted Pn, of
the permissions that are guaranteed to be available at each program point n in a CFG when
execution reaches that point. Safe means that Pn underestimates the set of permissions that
will be held at n during the execution. The approximation will be defined as a solution to
a system of constraints over Pn, derived from the CFG. We follow a standard approach for
defining static analyses by providing rules for translating a program into a constraint system
over a domain of abstract properties, the solution of which is the approximation sought [1].
In Section 7 we then provide the algorithms for solving these constraints.

The constraints are derived from the structure of the CFG following the rules in Figure 4.
The rules for Pn are straightforward data flow rules: e.g., for grant and consume we use the
corresponding semantic operations grant and consume applied to the start state Pn to get
an upper bound on the permissions that can be held at end state Pn′ . Notice that the set
Pn′ can be further constrained if there is another flow into n′. The effect of a method call on
the set of permissions will be modeled by a transfer function R defined below. This transfer
function describes the effect of one execution of a method so to take into account the iteration
in a calli, we apply the R function i times to the set of permissions available at point of the
method call.
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Finally, throwing an exception at node n that will be caught at node m means that the
set of permissions at n will be transferred to m and hence form an upper bound on the set of
available permissions at this point.

KD(n) = grant(p,m) n
TG→ n′

Pn′ vp grant(p,m)(Pn)
KD(n) = consume(p) n

TG→ n′

Pn′ vp consume(p)(Pn)

KD(n) = calli n
CG→ m n

TG→ n′

Pn′ vp
d

1≤j≤i(Rεm)j(Pn)
KD(n) = calli n

CG→ m

Pm vp Pn

KD(n) = calli n
CG→ m n

ex→ h

Ph vp (
d

0≤j≤i−1(Rεm)j ;Rexm )(Pn)
KD(n) = throw(ex) n

ex→ m

Pm vp Pn

Pn0 vp pinit

Figure 4: Constraints on minimal permissions

Our CFG program model includes procedure calls which means that the analysis must
be inter-procedural. We deal with procedures by computing summary functions for each
procedure. These functions summarise how a given procedure consumes resources from the
entry of the procedure to the exit, which can happen either normally by reaching a return
node, or by raising an exception which is not handled in the procedure. More precisely, for
a given CFG we compute the quantity R : (EX ∪ {ε}) → NO → (Perm → Perm) with the
following meaning:

• the partial application of R to ε is the effect on a given initial permission of the execution
from a node until return;

• the partial application of R to ex ∈ EX is the effect on a given initial permission of the
execution from a node until reaching a node which throws an exception ex that is not
caught in the same method.

Given nodes n, n′ ∈ NO, we will use the notation Rn and Rexn for the partial applications
of R(ε)(n) and R(ex)(n). The rules are written using diagrammatic function composition ;
such that F ;F ′(ρ) = F ′(F (ρ)). We define an order v on functions F, F ′ : Perm → Perm by
extensionality such that F v F ′ if ∀ρ ∈ Perm, F (ρ) vp F ′(ρ).

As for the entities Pn, the function R is defined as solutions to a system of constraints.
The rules for generating these constraints are given in Figure 5 (with e ∈ EX ∪ {ε}). The
rules all have the same structure: compose the effect of the current node n on the permission
set with the function describing the effect of the computation starting at n’s successors in the
control flow. This provides an upper bound on the effect on permissions when starting from
n. As with the constraints for P , we use the functions grant and consume to model the effect
of grant and consume nodes, respectively. Return nodes keep the permissions unchanged
and are therefore modelled by the identity transfer functions. The rules for call nodes are
best explained for i = 1. A method call call1 at node n that does not cause an exception is
modeled by Rεm (the effect of the called method m returning normally) followed by the effect
of Ren′ (the effect of the continuation of the execution after the call). In case a node n calls
a method m that raises an exception ex, the behaviour depends on whether the exception is
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KD(n) = grant(p,m) n
TG→ n′

Ren v grant(p,m);Ren′
KD(n) = consume(p) n

TG→ n′

Ren v consume(p);Ren′

KD(n) = return
Ren v λρ.ρ

KD(n) = calli n
CG→ m n

TG→ n′

Ren v
d

1≤j≤i(Rεm)j ;Ren′

KD(n) = calli n
CG→ m ∀n′, n ex9 n′

Rexn v
d

0≤j≤i−1(Rεm)j ;Rexm
KD(n) = calli n

CG→ m n
ex→ h

Ren v
d

0≤j≤i−1(Rεm)j ;Rexm ;Reh

KD(n) = throw(ex) n
ex→ h

Ren v Reh
KD(n) = throw(ex) ∀n′, n ex9 n′

Rexn v λρ.ρ

Figure 5: Summary functions of the effect of the execution on initial permission

caught or not. If the exception is uncaught (there is no exception edge n ex→ n′), the effect
Rexm is an upper bound for Rexn . If the exception is caught by a handler (there is an exception
edge n ex→ h), the effect on node n is the composition of effect Rexm followed by the effect Reh
of the successor node. In order to generalise these rules for an arbitrary i, we use the fact
that a calli amounts to calling a method, say m, at most i times (1 ≤ i). The effect of
calling at most i times a method m that does not cause an exception is hence the intersection
of the effects (Rεm)j for any j less than i i.e.,

d
1≤j≤i(Rεm)j . If an exception occurs during

the execution of m, we take into account the j previous executions without exception, for
0 ≤ j < i with

d
0≤j≤i−1(Rεm)j . The rules for throw are straightforward. If a node n throws

an exception ex that is immediately caught at node h, the effect of n (Rn) is bounded by the
effect of h (Rh). If the exception ex at node n is uncaught, the permissions reaching n escape
with exception ex i.e., Rexn is bounded by the identity function.

6 Correctness
The correctness of our analysis is stated on execution traces. For a given program, if a solution
of the constraints computed during the analysis does not contain errors in permissions (cf.
Definition 4), then the program will behave safely. Formally,

Theorem 1 (Basic Security Property). Given a program Pg, let (P,R) be a solution to the
constraints generated by Pg. If the functions (Rn)n∈NO are monotone, then

∀n, (∀p,KD(n) = consume(p)⇒ ¬Error(Pn))⇒ ∀tr ∈ JPgK,Safe(tr)

The proof of this theorem uses a big-step operational semantics which is shown equivalent
to the small-step semantics of Figure 3. This big-step semantics is easier to reason with (in
particular for method invocation) and yields an accessibility relation Acc that also captures
non-terminating methods. The result only holds for monotone Rn solutions to the summary
function constraints. In Section 7 we show how to solve these over a domain of monotone
functions.

The first part of the proof of Theorem 1 amounts to showing that if the analysis declares
that no abstract state indicates an access without the proper permission then this is indeed
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the case for all the accessible states in program. To prove this, we first show (by induction
over the definition of the big-step semantics) that summary functions R correctly model the
effect of method calls on permissions. Then, we show a similar result for the permissions
computed for each program point by the analysis. The second part links the trace semantics
with the big-step instrumented semantics by proving that if no accessible state in the instru-
mented semantics has a tag indicating an access control error then the program is safe with
respect to the definition of safety of execution traces. This part amounts to showing that the
instrumented semantics is a monitor for the Safe predicate.

We define the big-step semantics of CFGs used to prove Theorem 1 in Figure 6. This
semantics is a step away from the execution but is still equivalent to the small-step seman-
tics defined in Figure 3. The structure of the proof is standard and similar to that in [5,
Section 2.3] and to a similar proof for a small-step and a big-step operational semantics
of the JVM [18] that has been machine-checked with the Coq proof assistant. The big-
step semantics is formally defined by a relation . between elements of (NO × Perm). Note
that in the inference rules of Figure 6, the relation ex

. denotes that an exception ex has
been thrown and not yet caught. In the semantics, there are three groups of rules: intra-

Grant

KD(n) = grant(p,m)
n

TG→ n′

n, ρ . n′, grant(p,m)(ρ) Consume

KD(n) = consume(p)
n

TG→ n′

n, ρ . n′, consume(p)(ρ)

ThrowCatch

KD(n) = throw(ex)
n
ex→ h

n, ρ . h, ρ
ThrowEscape

KD(n) = throw(ex)
∀h, n ex9 h

n, ρ
ex
. n, ρ

CallReturn

KD(n) = calli KD(r) = return

n
CG→ m n

TG→ n′

1 ≤ k ≤ i ∀j ∈ 1, . . . , k, m, ρj . r, ρj−1

n, ρk . n′, ρ0

CallEscape

KD(n) = calli n
CG→ m

∀h, n ex9 h m, ρ
ex
. t, ρ′

n, ρ
ex
. n, ρ′

CallCatch

KD(n) = calli n
CG→ m

n
ex→ h m, ρ

ex
. t, ρ′

n, ρ . h, ρ′

Refl
n, ρ . n, ρ

Trans

n, ρ . n1, ρ1
n1, ρ1 . n

′, ρ′

n, ρ . n′, ρ′
TransExc

n, ρ . n1, ρ1

n1, ρ1
ex
. n′, ρ′

n, ρ
ex
. n′, ρ′

Figure 6: Big-step operational semantics

procedural, inter-procedural and closure rules. The rules Grant, Consume, ThrowCatch
and ThrowEscape are intra-procedural. Their direct counterparts in the small-steps se-
mantics only update the current node and permissions. The rules CallReturn, CallEscape
and CallCatch are inter-procedural. The rule CallReturn is used to match calli/return
pairs. It is the purpose of this semantics to model a call as a single big step. Exceptions
are propagated from callee to caller by the rules CallEscape and CallCatch. If there is no
handler, the exception continues to escape (rule CallEscape); if there a handler, the excep-
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tion is caught (rule CallCatch). The last three rules are closure rules. Rule Refl and Trans
state that the transition relation is reflexive and transitive. The last rule state a weak form
of transitivity which applies to exceptions.

Using the big-step instrumented semantics, we define for a CFG G, the set Acc(G) of
accessible nodes and permissions from the initial node n0 as follows:

(n0, pinit) ∈ Acc(G)
(n, ρ) ∈ Acc(G) n

CG→ m

(m, ρ) ∈ Acc(G)
(n, ρ) ∈ Acc(G) n, ρ . n′, ρ′

(n′, ρ′) ∈ Acc(G)

It captures all nodes and permissions reachable through the . relation from the initial node
and permission plus those for methods that do not return (second inference rule). Indeed, in
the big-step semantics, in order to relate a node and permission with . to a calli node, a
return node must be reached (sixth inference rule of Figure 6).

This definition of accessibility allows to structure the correctness proof into two parts.
The first part of the proof of Theorem 1 amounts to showing that if the analysis declares that
if no abstract state indicates an access without the proper permission then this is indeed the
case for all the accessible states in program.

Lemma 1. Given a graph G and a solution (P,R) to the constraints generated by G, if the
functions (Rn)n∈NO are monotone, then

∀n, (∀c,KD(n) = consume(c)⇒ ¬Error(Pn))⇒ ∀(n, ρ) ∈ Acc(G),¬Error(ρ)

Proof. We need three intermediary results:

• First, we have to show a correctness result on the definition of R (which is used in the
definition of P ), stated as:

∀n n′,∀ρ ρ′, n, ρ . n′, ρ′ ⇒ ∀e, Ren(ρ) vp Ren′(ρ′)
∧
∀n n′,∀ρ ρ′,∀ex, n, ρ ex. n′, ρ′ ⇒ Rexn (ρ) vp ρ′

This proof is done by mutual induction over the definition of . and ex
. . For example, in

the case of a method call we have as hypothesis that n CG→ m,n
TG→ n′, 1 ≤ k ≤ i and

that for all j = 1, . . . , k, m, ρj .r, ρj−1 and we will have to prove Ren(ρk) vp Ren′(ρ0). By
the induction hypothesis used on the transitions m, ρj . r, ρj−1 we get that Rem(ρj) vp
Rer(ρj−1) for j = 1, . . . , k. Using the constraint Rer v λρ.ρ on returns this can be
simplified to Rem(ρj) vp ρj−1 and hence, by monotony of Rem, (Rem)k(ρk) vp ρ0. From
the constraint on method calls we have that Ren v (

d
1≤j≤i(Rεm)j);Ren′ v (Rεm)k;Ren′

and then we conclude that Ren(ρk) vp Ren′(ρ0).

• Then, we have to show a correctness result on the definition of P , stated as:

∀n n′,∀ρ ρ′, n, ρ . n′, ρ′ ∧ Pn vp ρ⇒ Pn′ vp ρ′

We prove this result by induction over .. For the same example of a method call as
before, and with the same hypotheses as above, we will have to prove Pn′ vp ρ0 under the
hypothesis Pn vp ρk. From the P constraints, we have that Pn′ vp

d
1≤j≤i(Rεm)j(Pn) vp

(Rεm)k(Pn) vp (Rεm)k(ρk). From the result above and R constraints on return, we know
that for all j = 1, . . . , k, we have Rεm(ρj) vp ρj−1 so therefore also (Rεm)k(ρk) vp ρ0.
We can hence deduce that Pn′ vp ρ0 and this concludes the case for method call.
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• Then, we have to relate the notion of accessibility and the definition of Pn:

∀n ∈ NO, ∀ρ ∈ Perm, (n, ρ) ∈ Acc(G)⇒ Pn vp ρ

We prove this result by induction over Acc. The two first cases directly match with the
corresponding rule on Pn and the third case corresponds to the previous intermediary
result.

The lemma is a consequence of this last result, using proof by contradiction. We suppose
(n, ρ) ∈ Acc(G) with Error(ρ), then we get Pn vp ρ, which contradicts ¬Error(Pn).

The second part links the trace semantics with the big-step instrumented semantics by
proving that if no accessible state in the instrumented semantics has a tag indicating an access
control error then the program is safe with respect to the definition of safety of execution
traces. This part amounts to showing that the instrumented semantics is a monitor for the
Safe predicate.

Lemma 2. Given a graph G:

∀(n, ρ) ∈ Acc(G),¬Error(ρ)⇒ ∀tr ∈ JGK,Safe(tr)

Proof. First, we relate the small-step to the big-step operational semantics:

∀n ∈ NO, ∀s ∈ NO∗,∀ρ ∈ Perm, n0, ε, pinit �
∗ n:s, ε, ρ⇒ (n, ρ) ∈ Acc(G)

where �∗ is the reflexive-transitive closure of �. It amounts to first restraining the result to
a fixed stack that can not be popped by transition relations (to relate to intra-procedural big
step transitions) and then to include call, return and exception steps. The structure of the
proof is standard [5, 18]. Given this, we prove the lemma by contradiction, assuming that for
a node n in the trace is such that the associated permission is an error. By definition of the
trace, this node is accessible from n0, pinit with �∗, then we have (n, ρ) ∈ Acc with Error(ρ)
that contradicts the hypothesis of our lemma.

The proof of Theorem 1 is a direct consequence of Lemmas 1 and 2.

7 Constraint solving
Computing a solution to the constraints generated by the analysis in Section 5 is complicated
by the fact that solutions to the R-constraints (see Figure 5) are functions from Perm to Perm
that have infinite domains. It makes the current constraint system difficult to solve with
standard, iterative techniques [1]. To solve this problem, we identify a class of functions that
are sufficient to encode solutions to the constraints while restricted enough to allow effective
computations. Given a solution to the R-constraints, the P -constraints (see Figure 4) are
solved by standard fixpoint iteration.

The rest of this section is devoted to the resolution of the R-constraints. The resolution
technique consists in applying solution-preserving transformations to the constraints until
they can be solved either symbolically or iteratively.
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7.1 On simplifying R-constraints

In our model, resources are partitioned depending on their resource type. At the semantic
level, grant and consume operations ensure that permissions of different types do not interfere
i.e., that it is impossible to use a resource of a given type with a permission of a different
type. We exploit this property to derive from the original system of constraints a family of
independent ResType-indexed constraint systems. A system modelling a given resource type,
say rt, is a copy of the original system except that grant and consume are indexed by rt and
are specialized accordingly:

grantrt(p′rt′ ,m′) =
{
λ(p,m).(p′,m′) if rt = rt′

λ(p,m).(p,m) otherwise

consumert(p′rt′) =
{
λ(p,m).(if p′ vrt′ p then p else ⊥,m− 1) if rt = rt′

λ(p,m).(p,m) otherwise

Further inspection of these operators shows that multiplicities and atomic permissions also
behave in an independent manner. As a result, each ResType indexed system can be split into
a pair of systems: one modelling the evolution of atomic permissions; the other modelling the
evolution of multiplicities. Hence, solving the R-constraints amounts to computing for each
exception e, node n and resource type rt a pair of mappings:

• an atomic permission transformer (Permrt → Permrt) and

• a multiplicity transformer (Mul → Mul).

In the next sections, we define syntactic representations of these multiplicity transformers
that are amenable to symbolic computations.

7.2 Constraints on multiplicity transformers

Before presenting our encoding of multiplicity transformers, we identify the structure of the
constraints we have to solve. Multiplicity constraints are terms of the form x≤̇e where x :
Mul → Mul is a variable over multiplicity transformers, ≤̇ is the point-wise ordering of
multiplicity transformers induced by ≤ and e is an expression built over the terms

e ::= v | grantMul(m) | consumeMul(m) | id | e u e | e; e

where

• v is a variable;

• grantMul(m) is the constant function λx.m;

• consumeMul(m) is the decrementing function λx.x−m;

• id is the identity function λx.x;

• f u g is the lower bound;

• and f ; g is function composition (f ; g = g ◦ f).
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We define MulF = {λx.min(c, x−d)|(c, d) ∈ Mul×Mul} as a restricted class of multiplicity
transformers that is sufficiently expressive to represent the solution to the constraints. Sub-
traction is lifted to multiplicities. It generalises the decrementing of multiplicities presented
in Section 3 and is defined as follows.

∞− x = ∞
x−∞ = ⊥Mul if x 6=∞
x−⊥Mul = ∞
⊥Mul − n = ⊥Mul if n ∈ N
n− n′ = n− n′ if n′ ≤ n and n, n′ ∈ N
n− n′ = ⊥Mul if n′ > n and n, n′ ∈ N

Elements of MulF encode constant functions, decrementing functions and are closed under
function composition as shown by the following equalities:

grantMul(m) = λx.min(m,x−⊥Mul)
consumeMul(m) = λx.min(∞, x−m)

λx.min(c, x− d) u λx.min(c′, x− d′) = λx.min(min(c, c′), x−max(d, d′))
λx.min(c, x− d);λx.min(c′, x− d′) = λx.min(min(c− d′, c′), x− (d′ + d))

We represent a function λx.min(c, x−d) ∈ MulF by the pair (c, d) of multiplicities. Constraint
solving over MulF can therefore be recast into constraint solving over the domain MulF ] =
Mul ×Mul equipped with the interpretation J(c, d)K 4= λx.min(c, x− d) and the ordering v]

defined as (c, d) v] (c′, d′) 4= c ≤ c′ ∧ d′ ≤ d.

7.3 Solving multiplicity constraints

The domain MulF ] does not satisfy the descending chain condition. This means that iter-
ative solving of the constraints might not terminate. Instead, we use an elimination-based
algorithm. First, we split our constraint system over MulF ] = Mul ×Mul into two constraint
systems over Mul. Example 2 shows this transformation for a representative set of constraints.

Example 2. C = {Y v] (c, d), Y ′ v] X,X v] Y ;] Y ′} is transformed into C ′ = C1 ∪C2 with
C1 = {Y1 ≤ c, Y ′1 ≤ X1, X1 ≤ min(Y1 − Y ′2 , Y ′1)} and C2 = {Y2 ≥ d, Y ′2 ≥ X2, X2 ≥ Y ′2 + Y2}.

Notice that C1 depends on C2 but C2 is independent from C1. This result holds generally
and, as a consequence, these sets of constraints can be solved in sequence: C2 first, then C1.

To be solved, C2 is converted into an equivalent system of fixpoint equations defined over
the complete lattice (Mul,≤,max,⊥Mul). The equations have the general form x = e where
e ::= var | max(e, e) | e+ e. The elimination-based algorithm unfolds equations until a direct
recursion is found. After a normalisation step, the resolution consists in applying symbolic
transformations of the equations that preserve the least solution. The purpose of the following
Proposition 1 is to break the remaining direct, recursive dependencies between equations.

Proposition 1. Let e1 and e2 be arbitrary expressions and x be a variable.The least solution
of the equation x = max(x+ e1, e2) is given by

x = max(e2 +∞× e1, e2)
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aconsume(p)

bcall1

creturn

dgrant(p, 1)

ereturn

fcall1

greturn

Figure 7: A CFG graph

It should be noted that the use of Proposition 1 might compromise termination if x occurs
in e2, in which case e2 gets duplicated and hence also the number of occurrences of x. For
this more complicated case, we refer to the more complex techniques proposed by Su and
Wagner [22] and Leroux and Sutre [14] that mix iteration and symbolic unfolding.

Given a solution for C2, the solution of C1 can be computed by standard fixpoint iteration
as the domain (Mul,≤,min,∞) does not have infinite descending chains. This provides
multiplicity transformer solutions of the R-constraints.

Example 3. Consider the CFG graph of Figure 7. Dotted arrows represent intra-procedural
(TG→) edges and bold arrows represent inter-procedural (CG→) edges. Nodes are identified by a
lower case letter. The R constraints, obtained according to Figure 5, are:

Ra v consume(p);Rb
Rb v Rd;Rc Rb v Rg;Rc
Rc v λx.x
Rd v grant(p, 1);Re Rd v grant(p, 1);Rf
Re v λx.x
Rf v Ra;Re
Rg v λx.x

These constraints give rise to an equivalent system of equations (see Nielson et al. [17] for a
formal justification) obtained by taking the lower bound of expressions constraining the same
variable. Here, the lower bound is the point-wise min function that we shall write u. The
fixpoint equations are therefore as follows:

Ra = consume(p);Rb
Rb = (Rd;Rc) u (Rg;Rc)
Rc = λx.x
Rd = (grant(p, 1);Re) u (grant(p, 1);Rf )
Re = λx.x
Rf = Ra;Re
Rg = λx.x

After unfolding, we obtain a recursive equation in Rd,

Rd = grant(p, 1) u (grant(p, 1); consume(p); (Rd u λx.x))

which, after symbolic simplifications, becomes

Rd = (λx.1) u ((λx.0); (Rd u λx.x))
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This latter equation can be rewritten as Rd(x) = min(1,min(Rd(0), 0)) = min(0, Rd(0)) In
this particular case, the greatest solution can be computed by standard fixpoint iteration over
the MulF domain. The iteration starts from the greatest function R0

d = λx.∞. We then
obtain R1

d = λx.0 because R1
d(x) = min(0, R0

d(0)) = min(0,∞) = 0. As we have R2
d(x) =

min(0,min(R1
d(0)) = 0 = R1

d(x), this is actually the greatest solution.
Given Rd, the other transfer functions can be easily deduced.

Ra = Rf = λx.min(0, x− 1)
Rb = λx.min(0, x)
Rc = Re = Rg = λx.x
Rd = λx.0

The transfer function Ra which under-approximates the permissions at the method exit ( i.e.,
node c) is such that Ra(n) = 0 for all n ≥ 1. As a result, this piece of program is only
permission-safe if it is called with at least one permission of type p. Moreover, in the worst
case, all these permissions will be either consumed or overridden by a grant and the number of
permission at node c will be zero. Note that this result is tight, as shown by the execution trace
a:s, b:s, d:b:s, f :b:s, a:f :b:s, b:f :b:s, g:b:f :b:s, c:f :b:s, e:b:s, c:s which reaches the return node la-
beled c with zero permissions left.

8 Related work
To the best of our knowledge, this article presents the first formal model of the Java MIDP
access control mechanism. A number of articles deal with access control in Java and C] but
they have focused on the stack inspection mechanism and the notion of granting permissions
to code through privileged method calls. Earlier work by some of the present authors [7, 13]
proposed a semantic model for stack inspection but was otherwise mostly concerned with
proving behavioural properties of programs that use these mechanisms. They differ from
the present work because the access control check in MIDP does not involve a stack walk.
In addition, the multiplicative aspect of permissions is absent in the work stack inspection,
meaning that the core analysis is over a different kind of domain. The closest of our own
work is perhaps the technique for computing interfaces for stack inspection [5], in which we
compute the set of permissions required for a method to execute without raising a security
exception due to a failed stack inspection.

Closer in aim with the present work is that of Pottier et al. [19] on verifying that stack
inspecting programs do not raise security exceptions because of missing permissions, but
the program model (the lambda calculus) is different and the abstract domain is sets of
permissions. Bartoletti et al. [3] also aim at proving that stack inspecting applets will not
cause security exceptions and propose the first proper modelling of exception handling. Both
these works prove properties that allow to execute the program without dynamic permission
checks. In this respect, they establish the same kind of property as we do in this paper.
However, the works cited above do not deal with multiplicities of permissions and do not
deal with the aspect of permissions granted on the fly through user interaction. The analysis
of multiplicities leads to systems of numerical constraints which do not appear in the stack
inspecting analyses.

Language-based access control has been studied for various idealised program models.
Igarashi and Kobayashi [12] propose a static analysis for verifying that resources are accessed
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according to access control policies specified e.g. by finite-state automata, but do not study
specific language primitives for implementing such an access control. Closer to the work
presented in this article is that of Bartoletti et al. [4] who propose with λ[] a less general
resource access control framework than Igarashi and Kobayashi, and without explicit notions
of resources, but are able to ensure through a static analysis that no security violations
will occur at run-time. They rely for that purpose on a type and effect system on λ[] from
which they extract history expressions further model-checked. In the context of mobile agent,
Hennessy and Riely [11] have developed a type system for the π-calculus with the aim of
ensuring that a resource is accessed only if the program has been granted the appropriate
permission (capability) previously. In this model, resources are represented by locations in a
π-calculus term and are accessed via channels. Permissions are now capabilities of executing
operations (e.g. read, transmit) on a channel. Types are used to restrict the access of a term
to a resource and there is a notion of sub-typing akin to our order relation on permissions. The
notion of multiplicities is not dealt with but could probably be accommodated by switching
to types that are multi-sets of capabilities. Our of only having one kind of permission for each
resource type has a counterpart in their restriction to at most one capability for each channel.
Like in our work, there is a proof of a “subject reduction” result stating that well-typed
programs do not go wrong.

Our analysis is closely related to the work by Chander et al. [8] on combining static
analysis with dynamic (run-time) checks for enforcing bounds on the resource consumption.
The setting and the basic safety property considered in loc. cit. is similar to ours: both
are concerned with programming the dynamic allocation and consumption of resources by
inserting specific operations that allocate sufficient resources to accomplish a computation
and both ensure statically that a program always acquires resources before consuming them.

The model of resources considered by Chander et al. is slightly simpler than ours as re-
sources are just identified by name. In our setting this would correspond to having a resource
type e.g., Memory with one action ‘allocate’ that can be called a number of times according to
how much memory is granted. However, nothing prevents an extension to the resource struc-
ture considered here. In addition, their resource allocation accumulates resources whereas we
have opted for a non-accumulating allocation of permissions. For traditional resources such
as memory, the accumulative allocation is natural. For permissions related to access control,
we have argued that the non-accumulative allocation of permissions adheres more closely to
the principle of giving the minimum amount of permissions needed for accomplishing a task.

The main technical difference between the two works lies in the expressiveness and the
degree of automation of the underlying program analyses. The approach of Chander et al.
relies on the programmer to provide loop invariants and pre- and post-conditions for methods
in order to link program variables to the amount of resources available. These relational
invariants allow powerful transformations such as hoisting resource allocations out of loops
with variable bounds but in the current approach they must be provided by an external
prover. In contrast, we have defined an analysis which is tailored to the type of applets that
are downloaded on mobile devices but which can only handle restricted forms of loops. The
benefits of this restriction is that the underlying resource analysis is inter-procedural and
hence infers all necessary invariants and pre-/post-conditions fully automatically.
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9 Conclusions
We have proposed an access control model for programs which dynamically acquire permis-
sions to access resources. The model extends the current access control model of the Java
MIDP profile for mobile telephones by introducing multiplicities of permissions together with
explicit instructions for granting and consuming permissions. These instructions allow to
improve the usability of an application by fine-tuning the number and placement of user in-
teractions that ask for permissions. In addition, programs written in our access control model
can be formally and statically verified to satisfy the fundamental property that a program
does not attempt to access a resource for which it does not have the appropriate permission.
The formalisation is based on a model of permissions which extends the standard object × ac-
tion model with multiplicities. We have given a formal semantics for the access control model,
defined a constraint-based analysis for computing the permissions available at each point of
a program, and shown how the resulting constraint systems can be solved. To the best of
our knowledge, it is the first time that a formal treatment of the Java MIDP model has been
proposed.

The present model and analysis has been developed in terms of control-flow graphs and has
ignored the treatment of data such as integers etc. By combining our analysis with standard
data flow analysis we can obtain a better approximation of integer variables and hence, e.g.,
the number of times a permission-consuming loop is executed. Allowing a grant to take a
variable as multiplicity parameter combined with a relational analysis based on polyhedra
would allow to verify a program as the following.

grant( sendSMS (*), addr_book . length ) ;
// 0 ≤ addr_book . l e n g t h = #SMSpermissions
for (i = 0 , i < addr_book .length , i++)
// 0 < addr_book . l e n g t h − i ≤ #SMSpermissions

if (*) consume (SMS( addr_book [i].no),send );
// 0 ≤ #SMSpermissions

Here, the number of requested permissions depends on the size of the address book data
structure, and the verification needs to establish a relation between several program entities
in order to prove that the number of permissions is always non-negative.

The permission analysis presented here is not complete in the sense that there are certain
graphs whose traces are all safe but that are not deemed secure by the analysis. For instance,
consider the following graph:

acall1 bgrant(p, 0) cconsume(p) dreturn

ecall1 freturn

The analysis computes that at node c there are no permission of type p. As a consequence, it
concludes that the following consume operation might be responsible for a security violation.
Actually, because the call from node a to node e never returns, the consume of node c never
gets executed and no security violation is ever raised. In general, inaccessible nodes in the
CFG may be flagged by the analysis as responsible for security violations despite the fact that
they will never be executed. The analysis can be strengthened by first computing reachable
nodes and only launch the permission analysis on these. For reachable nodes, we conjecture
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that the analysis is computing tight bounds for permission multiplicities i.e, for each node
n, there is a trace of graph reaching n such that the permission multiplicities are those
computed by the analysis. If this conjecture holds, as reachability can be computed exactly
for our model of programs, the permission analysis would then be complete. Completeness is
useful to understand and eliminate certain potential sources of false alarms when our analysis
is combined with other analyses. Indeed, only the CFG construction can be blamed for
a program being wrongly flagged as violating the permission policy. To eventually prove
program safety, the CFG construction would have to be refined in order to rule out the false
alarms.

This work is intended for serving as the basis for a Proof Carrying Code (PCC) [16]
architecture aiming at ensuring that a program will not use more resources than what have
been declared. In the context of mobile devices, where inappropriate use of such resources
could have an economic (via premium-rated SMS for instance) or privacy (via address-book
access) impact, this would provide improved confidence in programs without resorting to
third-party signature. The PCC certificate would consist of the precomputed Pn and Ren. The
host device would then check that the transmitted certificate is indeed a solution. Note that no
information is needed for intra-procedural instructions other than grant and consume—this
drastically reduces the size of the certificate.

As pointed out in Section 4, the CFGs on which the verification is done can be constructed
automatically using well-known control flow analyses. As a consequence, the entire verification
can be made fully automatic. However, in order to make the current work practical in the
MIDP platform, there are a several issues to be solved, including a number of static analyses
such as analysis of strings and aliases. The major challenge specific to this application domain
is that this has to be integrated into a larger model of interactive midlets that use object-
oriented graphical user interfaces to present security screens to the user. In more technical
terms, the CFGs here should be grafted into a larger structure that describes where control
flows depending on which screen is presented to the user and which (virtual) button the user
presses. Such structures are sometimes called navigation graphs and automatic analyses for
constructing such graphs are only starting to emerge [9].
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