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Abstract. Static analysers are becoming so complex that it is crucial to
ascertain the soundness of their results in a provable way. In this paper
we develop a certified checker in Coq that is able to certify the results of
a polyhedral array-bound analysis for an imperative, stack-oriented byte-
code language with procedures, arrays and global variables. The checker
uses, in addition to the analysis result, certificates which at the same
time improve efficiency and make correctness proofs much easier. In par-
ticular, our result certifier avoids complex polyhedral computations such
as convex hulls and is using easily checkable inclusion certificates based
on Farkas lemma. Benchmarks demonstrate that our approach is effec-
tive and produces certificates that can be efficiently checked not only by
an extracted Caml checker but also directly in Coq.

1 Introduction

Bytecode verification is an important component for making Java a trustworthy
platform for mobile computing. Several researchers have investigated how to de-
velop machine-checked bytecode verifiers in order to increase the confidence in
this component itself [13, 2]. The standard bytecode verifier ensures one kind of
security policy that is proved by a simple data flow analysis. The static verifi-
cation of other security and safety policies (e.g., to check that all array accesses
are within bounds) requires more sophisticated static program analysers, which
themselves are sophisticated pieces of software. A significant example of this is
the state-of-the-art Astrée static analyser for C [9] which proves the absence
of run-time errors for the primary flight control software of the Airbus A340
fly-by-wire system.

In this paper we show that it is possible to use advanced analysers to enhance
the security of a mobile code platform by developing a machine-verified extended
bytecode verifier that can check the result of such analysers. One approach would
be to certify the analyser entirely within a proof checker, as done for the key
components of the Java bytecode verifier [13, 2]. In previous work, Pichardie
et. al [18, 6] formalised the theory of abstract interpretation inside the Coq
proof assistant and proved the correctness of a variety of program analysers.
� This work was partially funded by the FET Global Computing project Mobius, by
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This approach is ambitious since it would require to program and certify in Coq
the whole analyser with all its abstract operators (least upper bound, closure,
widening...) and to prove termination of the fixpoint iteration process. Formally
certifying a polyhedral analyser with this technique would require a tremendous
certification effort. Moreover, efficiency is a major concern when considering the
expensive symbolic manipulations of a polyhedral library [12] and the problem
becomes even more perceptible in a pure lambda-calculus language such as Coq.

As noticed by Leroy in the context of certified compilation [15], static analyses
and optimisation heuristics are algorithms for which it is generally easier to
prove the correctness of a result verifier than the algorithm itself. In this paper
we apply this result certification methodology [20] to a polyhedral analysis [10]
for an imperative, stack-oriented bytecode language with procedures, arrays and
global variables. We design in parallel a polyhedral analyser and a certified result
checker using the abstract interpretation theory. The analyser and the checker
share the same constraint-based specification whose soundness is formally proved
in Coq. The analyser uses an optimised polyhedral C library [12] to compute
a post-fixpoint solution while the checker uses a certified simplified abstract
domain to check the post-fixpoint. One particularity of our approach is that, in
addition to the program and the post-fixpoint, the checker receives hints that
enable it to use a simplified abstract domain when verifying the fixpoint. In
particular, the expensive operations of computing the convex hull of polyhedra
is replaced by polyhedral inclusion checks which can be performed efficiently by
an application of Farkas’s lemma. More precisely, we propose the following three
contributions:

– A certified constraint based specification of a polyhedral analysis for byte-
code programs.

– A notion of certificate for result checking of polyhedral analysers.
– A certificate result checker, obtained by Coq extraction, able to perform

static array bound checking on resource constrained devices.

2 Polyhedral Analysis of Bytecode

We consider a cut-down language of Java bytecode which includes integers, dy-
namically created (unidimensional) arrays of integers, static methods (proce-
dures) and static fields (global variables). The formal syntax and small-step
operational semantics are rather straightforward and can be found in the com-
panion report [4].

The analysis is inter-procedural, relational and parametrised with respect to
a numeric abstract domain used to abstract the values of the local and global
variables of the program. The analyser automatically infers an invariant for each
control point in the program, a pre-condition that must hold at the point of
calling a procedure and a post-condition that is guaranteed to hold when the
procedure returns.
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2.1 Motivating example

The Binary Search example (in source format here for readability considera-
tions) given in Fig. 1 shows how our analysis will prove that the instruction
that accesses the array vec with index mid will not index out of bounds. We
have annotated the code of Binary Search with the invariants that have been
inferred automatically. Invariants refer to values of local and global variables
and can also refer to the length of an array. For example, the invariant (I3)
asserts among other properties that when entering the while loop, the relation
0 ≤ low < high < |vec| is satisfied. Similarly, the post-condition ensures that
the result is a valid index into the array being searched, or −1, indicating that
the element was not found. In addition, the analysis introduces a 0-indexed vari-
able (such as e.g. key0 in the example) for each parameter in order to refer to
its value when entering the procedure. As a result, the invariant on exit of the
method defines a summary relation between its input and its output.

// PRE: 0 ≤ |vec0|
static int bsearch(int key, int[] vec) {

// (I1) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ |vec0|
int low = 0, high = vec.length - 1;

// (I2) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I3) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = low + (high - low) / 2;

// (I4) key0 = key ∧ |vec0| = |vec|∧
// 0 ≤ low < high < |vec0| ∧ low + high− 1 ≤ 2 · mid ≤ low + high

if (key == vec[mid]) return mid;

else if (key < vec[mid]) high = mid - 1;

else low = mid + 1;

// (I5) key0 = key ∧ |vec0| = |vec| ∧ −2 + 3 · low ≤ 2 · high + mid∧
// − 1 + 2 · low ≤ high + 2 · mid ∧ −1 + low ≤ mid ≤ 1 + high∧
// high ≤ low+mid∧1+high ≤ 2 ·low+mid∧1+low+mid ≤ |vec0|+high∧
// 2 ≤ |vec0| ∧ 2 + high + mid ≤ |vec0| + low
}

// (I6) key0 = key∧|vec0| = |vec|∧low−1 ≤ high ≤ low∧0 ≤ low∧high < |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

Fig. 1. Binary search

2.2 Numeric relational domain specification

The bytecode analysis is specified with respect to an abstract numeric relational
interface (defined below) that can be instantiated with standard relational ab-
stract domains [10, 16, 17]. The numeric abstract domain D is a family of sets DV
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indexed with a finite set V of variables. The abstract operators and associated
properties listed below furnish the interface needed to specify and prove correct
our generic numeric relational bytecode analysis.

To establish the connection between abstract elements and sets of numeric
environments P(V → Z), D is equipped with a concretisation function γ : DV →
P(V → Z) compatible with a decidable partial order relation � i.e., d � d� ⇒
γ(d) ⊆ γ(d�). The domain D provides an upper-bound (�) and a lower bound
(�) operators. To handle variable scopes, the domain is also equipped with a
renaming and a projection operator. The renaming operator [·]W→W � : DV +W →
DV +W � is purely syntactic and maps a variable wi in the ordered set W to the
corresponding variable w�i in W � (+ denotes disjoint union here). The projection
operator ∃V � : DV +V � → DV allows to project an abstract element onto a subset
of the variables. For instance, ∃{y}.x ≤ y ≤ z would (by transitivity) compute
x ≤ z.

All the previous operators are language independent. The interface of the
numeric domain with the programming language is made through expressions
(Expr) and guards (Guard).

ExprV � e ::= n | x |? | e � e x ∈ V, � ∈ {+,−,×, /}
GuardV � t ::= e �� e ��∈ {=, �=, <,≤, >,≥}

In the rest of the paper �� will denotes the negation of a binary test ��. Expres-
sions denote sets of numerical values (due to the question mark symbol ? that
is used to model an arbitrary value) while guards denote predicates on environ-
ments. The meaning �·�ρ of such expressions is defined relative to an environment
ρ ∈ V → Z.

�n�ρ = {n} �x�ρ = {ρ(x)} �?�ρ = Z
�e1 � e2�ρ = {n1 � n2 | n1 ∈ �e1�, n2 ∈ �e2�}
�e1 �� e2�ρ ⇐⇒ ∃ n1 ∈ �e1�ρ, n2 ∈ �e2�ρ. n1 �� n2

The abstract assignment of an expression e ∈ ExprV to a variable x ∈ V is
modelled by the operator �x := e�� : DV → DV .

{ρ[x �→ v] | ρ ∈ γ(d) ∧ v ∈ �e�ρ} ⊆ γ(�x := e��(d))

The set of environments for which a guard t ∈ GuardV is true may be over-
approximated by assume�(t). Formally, the following holds:

{ρ | �t�ρ} ⊆ γ(assume�(t)).

The analyser used in the benchmarks is obtained by instantiating the opera-
tors described above with the domain of convex polyhedra [10]. In addition, the
analyser uses a widening operator whose purpose is to ensure the termination of
fixpoint iterations—this operator is therefore not needed at checking time.
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2.3 Constraint-based specification

The bytecode analysis is defined by specifying for each bytecode an abstract
transfer function which maps abstract states to abstract states (for non-jumping
intraprocedural instructions at least). The abstract states are pairs of the form
(s�, l�) where l� is a relation between local, global and auxiliary variables and
s� is an abstract stack whose elements are symbolic expressions built from these
variables. More precisely, the analysis manipulates the following sets of variables:

R: set of local variables r0, . . . , r|R|−1 of methods,
R0: set of old local variables rold

0 , . . . , rold
|R|−1 of methods, representing their initial

values at the beginning of method execution,
S: set of static fields f0, . . . , f|S|−1 of the program,
S0: set of old static fields fold

0 , . . . , fold
|S|−1 of the program used to model values

of static fields at the beginning of method execution,
A: set of auxiliary variable aux 0, . . . , aux |A|−1 used to keep track of results of

methods in the symbolic operand stack.

Moreover, we use a “primed” version X � of the variable set X for renaming
purposes. For each method the analysis computes a signature Pre → Post whose
informal meaning is

if the method is called with in a context where its arguments and the
static fields satisfy the property Pre then if the method returns, then
its result, its arguments, and the initial and final values of static fields
satisfy the property Post .

Preconditions are chosen by over-approximating the context in which each method
may actually be invoked. Additionally the analysis computes at each control
point of each method a local invariant between the current (R) and initial (R0)
values of local variables, the current (S) and initial (S0) values of static fields,
and some auxiliary variables (A) which are used temporarily to remember results
of method calls which are still on the stack

The stack of symbolic expressions is used to “decompile” the operations on
the operand stack. For example, for the instruction Load r that fetches the value
of local variable r , the analysis just pushes the symbolic expression r onto the ab-
stract stack s�. More generally, the effect of most instructions can be represented
symbolically and only the comparisons and assignment to variables require up-
dating the relation l� between variables. In a polyhedron-based analysis this kind
of symbolic manipulation [24, 21] is a substantial saving.

Definition 1 (Abstract domain). The abstract value for a program P is de-
scribed by an element (Pre,Post ,Loc) of the lattice

State� = (Meth → DR0+S0)×
�
Meth → DR0+S0+S+{res}

�

×
�
Meth × N →

�
Expr�

R+S+A × DR0+S0+R+S+A

�
+ {⊥}

�
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instr Finstr

Nop (s�, l�) → (s�, l�)
Ipush n (s�, l�) →

`
n :: s�, l�

´

Pop (e :: s�, l�) →
`
s�, l�

´

Dup (e :: s�, l�) →
`
e :: e :: s�, l�

´

Iadd (e2 :: e1 :: s�, l�) →
`
e2 + e1 :: s�, l�

´

Isub (e2 :: e1 :: s�, l�) →
`
e2 − e1 :: s�, l�

´

Imult (e2 :: e1 :: s�, l�) →
`
e2 × e1 :: s�, l�

´

Idiv (e2 :: e1 :: s�, l�) →
`
e2/e1 :: s�, l�

´

Ineg (e :: s�, l�) →
`
0− e :: s�, l�

´

Iinput (s�, l�) → (? :: s�, l�)
Load r (s�, l�) →

`
r :: s�, l�

´

Store r (e :: s�, l�) →
`
s�[?/r], �r := e��(l�)

´

Getstatic f (s�, l�) →
`
f :: s�, l�

´

Putstatic f (e :: s�, l�) →
`
s�[?/f ], �f := e��(l�)

´

Iinc r n (s�, l�) →
`
s�[r − n/r], �r := r + n��(l�)

´

Newarray (e :: s�, l�) →
`
e :: s�, l�

´

Arraylength (e :: s�, l�) →
`
e :: s�, l�

´

Iaload (e2 :: e1 :: s�, l�) →
`
? :: s�, l�

´

Iastore (e3 :: e2 :: e1 :: s�, l�) →
`
s�, l�

´

m[p] = instr �∈ {Goto p�, If icmp cond p�, Invoke m�,Return}
Finstr(Loc(m, p)) � Loc(m, p + 1)

[Intra]

m[p] = Goto p�

Loc(m, p) � Loc(m, p�)
[Goto]

m[p] = If icmp �� p� Loc(m, p) = (e2 :: e1 :: s�, l�)
(s�, assume�(e1 �� e2) �� l�) � Loc(m, p�)

[If1]

m[p] = If icmp �� p� Loc(m, p) = (e2 :: e1 :: s�, l�)

(s�, assume�(e1 �� e2) �� l�)) � Loc(m, p + 1)
[If2]

m[p] = Invoke m� n = nbArgs(m’) Loc(m, p) = (en−1 :: · · · :: e0 :: s�, l�)`
∃R+S0+A

`�n−1
i=0 assume�(ei = rold

i ) � ∃R0(l�)
´´

S→S0
� Pre(m�)

[Call1]

m[p] = Invoke m� Loc(m, p) = (en−1 :: · · · :: e0 :: s�, l�)
l�m� = ∃R0

`�n−1
i=0 assume�(ei = rold

i )S→S� � Post(m�)S0→S�
´

“
aux j :: s�[?/aux j ], ∃S�+{res}�aux j := res�

“
l�S→S� � l�m�

””
� Loc(m, p + 1)

[Call2]

where p is the index of the j−th Invoke in m

m[p] = Return Loc(m, p) = (e :: s�, l�)

∃R+A(�res := e��(l�)) � Post(m)
[Return]

m ∈ P n = nbArgs(m)
�|S|−1

i=0 assume�(fi = fold
i )

�n−1
i=0 assume�(rold

i = ri) � Pre(m) � Loc(m, 0)
[Init]

� � Pre(main)
[PreMain]

Fig. 2. Analysis specification
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The analysis result is specified as a solution of a constraint (inequation)
system associated to each program. The constraint system is given in Fig. 2.
Array references are abstracted by the length of the array they point to. As a
consequence, the instruction Newarray which takes an integer n on top of the
stack and replaces it with a reference to a newly allocated array of length n, is
simply abstracted by the identity function. The constraints [Call1] and [Call2]
associated with a method call are the most complicated parts of the analysis.
The complications partly arise because we have several kinds of variables (static
fields, local and auxiliary variables) whose different scopes must be catered for.
The analysis gives rise to two constraints: one that relates the state before the
call to the pre-condition of the method ([Call1]) and one that registers the impact
of the call on the state immediately following the call site ([Call2]).

When invoking a method m� from method m, we compute an abstract state
that holds before starting executing m� and which constrains the Pre(m�) com-
ponent of the abstract element describing P . This state registers that the n
topmost expressions e1, . . . , en on the abstract stack corresponds to the actual
arguments that will be bound to the local variables of the callee m�, by injecting
the constraints ei = rold

i into the relational domain and adding them to the cur-
rent state as given by l�. Care must be exercised not to confound the parameters
R0 of the caller with the parameters of the callee, hence the projecting out of
R0 before joining the constraints. Furthermore, the local variables R, the initial
values of static fields S0 and the auxiliary variables A of method m have a dif-
ferent meaning in the context of method m� and are removed from the abstract
state at the start of m� too. Finally, the current value of static fields S in m at
the point of the method call becomes the initial value of the static fields when
analysing m�, hence the renaming of S into S0.

The second rule [Call2] for Invoke describes the impact of the method call on
its successor state. We use an auxiliary variable aux j (chosen to be free in s�) to
name the result of the method call which is pushed onto the stack. This variable
is constrained to be equal to the variable res which receives the value returned by
m�. The rest of the left-hand side expression of the constraint l�S→S� � ∃R0 (. . .)
serves to link the post-condition Post(m�) of the method with the state l� of
the call site. These are linked via the local variables ri constrained to be equal
to the argument expressions ei and via the global static fields S. Again, some
renaming and hiding of variables is required: e.g., the initial values of the static
fields in m�, referred to by S0, correspond to the values of the static fields before
the call in the state l� and in the expressions ei, referred to by S. The renamings
S0 → S� and S → S�, respectively, ensure that these values are identified.

The purpose of the invariants specified by the analysis is to enforce a suitable
safety policy. In a context of array bound checking we must check that each array
access is within the bounds of the array. As a consequence, for each occurence
of an instruction Iaload or Iastore at a program point (m, pc), we test if the
local invariant Loc(m, pc) computed by the analysis ensures a safe array access.
If these tests succeed we say that Loc satisfies all safety checks.
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2.4 Inference

The constraint system presented in the previous section can be turned into a
post-fixpoint problem by standard techniques. Consequently, the solutions of
the system can be characterised as the set of post-fixpoints {x | F �(x) � x}
of a suitable monotone function F � operating on the global abstract domain
State� of the analysis. Computing such a post-fixpoint is then the role of chaotic
iterations [8]. Iteration is sped up by using widening on well-chosen control
points. Neither the iteration strategy nor the widening operators belong to the
Trusted Computing Base (TCB) since the validity of the result can be checked
with a post-fixpoint test.

2.5 Soundness of the analysis

To prove the soundness of the analysis we prove that for each method of the
program, the signature Pre → Post and the local invariants in Loc that are
specified by the constraint system, are correct with respect to the semantics of
the execution of the method. The full proof has been machine checked in Coq
(see [23]) in order to prove the soundness of the result checker. Details (see [4])
are omitted here for lack of space but we comment the main theorems now.

First we define the safety policy using semantic ingredients. A program is
safe if all reachable states w.r.t. to the small-step semantics are distinct from
the error state. The semantics enters the error state when an array is accessed
via the instructions Iaload and Iastore with a value outside the array bounds.

Definition safe (p:program) : Prop :=

∀ st, reachable p st → st <> error.

The constraint based specification of Fig. 2 is turned into a suitable Coq pred-
icate AnalysisSolution (including safety checks) and we prove that the exis-
tence of a suitable (Pre,Post ,Loc) solution implies the safety of the program.

Theorem sound_analysis : ∀ p loc pre post,

AnalysisSolution p loc pre post → safe p.

The purpose of Section 3 is to define an executable checker able to check if
a candidate (Pre,Post ,Loc) is a solution to the constraint based specification.
The candidate is included in a certificate cert with extra information that we
will describe in the next section.

Theorem bin_checker_correct_wrt_analysis_spec : ∀ p cert,

checker p cert = true →
∃ loc, ∃ pre, ∃ post, AnalysisSolution p loc pre post.

Combined together these two theorems prove the semantic soundness of the
executable checker that can be run in Coq or extracted into a Caml version.

Theorem bin_checker_correct_wrt_semantic :

∀ p cert, checker p cert = true → safe p.



Certified Result Checking for Polyhedral Analysis of Bytecode Programs 9

3 Result Checking of Polyhedral Operations

In this section, we show how to efficiently implement convex polyhedra operators
using a result checking approach.

3.1 The polyhedral domain revisited

Polyhedra can be represented as sets of linear constraints. For efficiency, it is
desirable to keep these sets in normal form i.e., without redundant constraints.
For this purpose, polyhedra libraries maintain a dual description of polyhedra
based on generators in which a convex polyhedron is the convex hull of a (finite)
set of vertices, rays and lines. Vertices, rays and lines are respectively extremal
points, infinite directions and bi-directional infinite directions of the polyhedron.

At the origin of the efficiency (and complexity) of convex polyhedra algo-
rithms is Chernikova’s algorithm which is used to maintain the coherence of the
double description of polyhedra [7]. The main insight of our approach is that
we develop a checker which only uses the constraint description of polyhedra
and which never needs to detect redundant constraints. Moreover, projections
are not computed but delayed using a set of extra existential variables. More
precisely, our polyhedra are represented by a list of linear expression over two
disjoint sets of variables V and E. Variables in v ∈ V are genuine variables.
The set E is fixed. Variables e ∈ E are (existential) variables that represent
dimensions which have been projected out.

Definition 2. Let V and E be disjoint sets of variables.

PV = Lin�
V +E

where LinX = {c0 + c1 × x1 + · · · + cn × xn | ci ∈ Z, xi ∈ X}.

Given es ∈ PV , the concretisation function is defined by

γ(es) = {ρ|V | ρ ∈ (V + E) → Z ∧ ∀lc ∈ es, �lc ≥ 0�ρ}

Efficient Coq implementation of PV We have implemented (and proved
correct) a result checker for convex polyhedra based on an efficient implementa-
tion of PV . To ensure the efficiency of the checker, we have carefully fine-tuned
algorithms and data-structures. Variables are coded by binary integers i.e., the
Coq positive type.

Inductive positive : Set
:= xH | x0 (p:positive) | xI (p:positive).

Variables in v ∈ V start with a x0 constructor while existential variables v ∈ E
start with a xI constructor. A linear expression e ∈ Lin is coded by a radix tree
whose node labels record integer coefficients of the linear expression.
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Inductive tree : Set :=

| Leaf

| Node (left:tree) (label:Z) (right:tree).

Therefore, looking-up a variable coefficient can be done by following a path in
the tree. This operation executes in time linear in the length of the variable
i.e., logarithmic in the number of variables. For efficiency again, Coq polyhedra
p ∈ PV are not simply lists of linear expressions but are dependent records
which store: i) a list lin_cstr of linear constraints coded as trees, ii) a variable
fresh_v ∈ V for which all successors are fresh, iii) a variable fresh_e ∈ E
for which all successors are fresh, iv) a set used_v that stores the variables
v ∈ V that are used in lin_cstr, v) and all the proofs i.e., the data-structure
invariants, that ensure that fresh_v and fresh_e are really fresh and that the
set used_v indeed over-approximates the variables used in lin_cstr.

Checking convex polyhedra operations In the following, we show how to
implement the polyhedral operations using (only) polyhedra in constraint form.
Renaming simply consists in applying the renaming to the expressions within
the polyhedron. Because the existential variables belong to a disjoint set, no
capture can occur. Using Fourier-Motzkin elimination (see e.g., [19]), projec-
tions can be computed directly over the constraint representation of polyhedra.
However, in the worst case, the number of constraints grows exponentially in the
number of variables to project. To solve this problem, we delay the projection
and simply register them as existentially quantified. This is done by renaming
these variables to fresh existential variables.
To compute intersections, care must be taken not to mix up the existential
variables. To avoid captures, existentially variables are renamed to variables that
are fresh for both polyhedra. Interestingly, with our tree encoding, renaming all
the existential variables is a constant time operation. Thereafter, the intersection
is obtained by concatenating the lists of linear expressions.
To implement the assume operator, the involved expressions are first linearised
and the obtained linear inequalities are put into the form e ≥ 0 where e now
belongs to the set Lin defined above. A special care is taken to precisely handle
euclidean division (which is the semantics we give to the division operator in
this work). For instance, the expression x = y/c where c is a strictly positive
constant, gives rise to a polyhedron made of the linear constraints c · x ≤ y and
y ≤ c ·x+ c− 1. Dealing with the round-to-zero integer division can be done via
a program transformation that does case analysis on the signs of the arguments.
We do not detail this here.
Assignment can be expressed in terms of the previous operators. Given x� a
fresh existential variable, we have:

�x := e��(P ) =
�
∃{x}

�
P � assume�(x� = e)

��
{x�}→{x}

The least upper bound operator i.e., convex hull is the typical operation that
is straightforward to implement using the generator representation of polyhedra.
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Instead of computing a convex hull, we follow the result certification method-
ology and provide a certificate polyhedron that is the result of the convex hull
computation. Furthermore, our result checker need not check that the result
is exactly the convex hull but only that it is an upper bound by doing a two
inclusion tests.
To implement inclusion tests, we push the methodology further and use in-
clusion certificates. The form of certificates and their generation are described
below.

3.2 Result certification for polyhedral inclusion

Our inclusion checker �check takes as input a pair of polyhedra (P,Q) and an
inclusion certificate. It will only return true if the certificate contains enough
information to conclude that P is indeed included in Q (P � Q).

In practice, we only use our checker where Q does not contain existential
variables (because Q is computed by the untrusted analyser). This allows us
to reduce the problem of inclusion into n problems of polyhedron emptiness
where n is the number of constraints in Q. Such a problem admits a nice result
certification technique thanks to Farkas’s lemma (see for instance [19]) that gives
a notion of emptiness certificate for polyhedra.

Lemma 1 (Farkas Lemma). Let A ∈ Qm×n and b ∈ Qm. The following
statements are equivalent:

– For all x ∈ Qn, ¬(A · x ≥ b)
– There exists ic ∈ Q+m satisfying At · ic = 0̄ and bt · ic > 0.

The soundness (⇐) proof is the easy part and is all that is needed in the machine-
checked proof. The existence of a certificate ensures the infeasibility of the linear
constraints and therefore that the corresponding polyhedron is empty.

Thus, an inclusion certificate ic1 :: · · · :: icn for an entry (P,Q) is a collection
of n vectors of Qm (with n = |Q|) and checking each emptiness certificate ick

consists of 1) computing a matrix-vector product (At · ic); 2) verifying that the
result is a null vector; 3) computing a scalar product (bt · ick); and 4) verify-
ing that the result is strictly positive. All in all, the certificate checker runs in
quadratic-time in terms of arithmetic operations for each emptiness certificate.

Moreover, certificate generation can be recast as a linear programming prob-
lem that can be efficiently solved by either the Simplex or interior point methods.

4 Implementation and Experiments

The relational bytecode analysis has been implemented in Caml and instanti-
ated with the efficient NewPolka polyhedral library [12] as its relational abstract
domain. The programs we analyse are genuine Java programs where unsup-
ported instructions have been automatically replaced by conservative numerical
instructions (e.g., a Getfield is replaced by a sequence Pop; Iinput). Iinput is a



12 F. Besson, T. Jensen, D. Pichardie and T. Turpin

dummy instruction placing an arbitrary value on top of the operand stack. The
analyser then computes a solution to the constraint system generated from a
program. From these invariants, loop headers and join points are extracted and
the inclusion certificates required by the checker are produced using the Sim-
plex algorithm. A binary form of loop headers, join point invariants and their
inclusion certificates constitute the final program certificate.

As invariants computed by static analysers often contain more information
than necessary for proving a particular safety policy i.e., the absence of array
out-of-bounds accesses, it is interesting to prune the analysis result and eliminate
invariants that are useless for proving a given safety property. The advantages are
twofold: invariants to check are smaller and their verification cheaper. We have
applied the technique described in [5] for pruning constraint-based invariants,
with some adaptations to deal with the interprocedural aspects of our polyhedral
analysis. The algorithm is not described here for space reasons but can be found
in the companion report [4].

The result checker for polyhedral analysis described in Section 2 and Section 3
has been implemented in Coq. For our benchmarks we consider a refined version
of the safety property where all but a designated subset of array accesses are
required to be correct.

For each program we compare the checking time with (before) and without
(after) fixpoint pruning, using either an extracted checker (Caml) or the checker
running in Coq. In the first approach the Coq result checker is automatically
transformed into a Caml program by the Coq extraction mechanism. In the
second approach, the result checker is directly run inside the reduction engine
of Coq to compute a foundational proof of safety of the program (using the
technique of proof by reflection [1]). Fig. 3 presents our experimental results.
The benchmarks are relatively modest in size and it is well known that full-blown
polyhedral analyses have scalability problems. Our analyser will not avoid this
but can be instantiated with simpler relational domains such as e.g., octagons,
without having to change the checker. The programs and the analysis results can
be found online [23] and replayed in Coq or with an extracted Caml checker. We
consider two families of programs. The first one consists of benchmarks used by
Xi to demonstrate the dependent type system for Xanadu [24]. For this family we
automatically prove the absence of out-of-bound accesses. The second is taken
from the Java benchmark suite SciMark for scientific and numerical computing
where our polyhedral analysis prove safety for array accesses except for the more
intricate multi-dimensional arrays representing matrices.

Two things are worth noticing. First, the checking time is very small (less
than one second), which is especially noteworthy given that the checker is run in
Coq. We clearly benefit here from our efficient implementation and the optimised
reduction engine of Coq [11]. Compared to the extracted version, the Coq verifier
has at most a factor 10 of efficiency penalty. Second, pruning can halve the
number of constraints to verify. This reduction can sometimes but not always
produce a similar reduction in checking time. The reduction is especially visible
when the analyser tends to generate huge invariants which cannot be exploited.



Certified Result Checking for Polyhedral Analysis of Bytecode Programs 13

size score certificate size checking time (Caml) checking time (Coq)
Program before after before after before after

BSearch 80 100% 20 11 2.0 1.4 14.1 11.6
HeapSort 143 100% 65 25 6.1 3.7 45.0 35.5
QuickSort 276 100% 90 42 144.5 128.7 1036.7 974.0

Random 883 83% 50 31 7.3 8.0 46.9 44.3
Jacobi 135 50% 31 10 1.6 1.7 12.8 9.2
LU 559 45% 206 96 20.1 17.4 100.5 91.5
SparseCompRow 90 33% 34 6 1.5 1.1 10.3 6.1
FFT 591 78% 194 50 38.8 22.7 263.2 193.8

Fig. 3. Size in number of instructions, score in ratio succeeded checks / total checks,
certificates in number of constraints, time in milliseconds

This is e.g., the case for FFT where the analyser approximates an exponential
with a complex polyhedron.

As part of the Mobius project and collaboration with Pierre Crégut from
France Télécom, we have experimented with using the polyhedral result checker
to check array bounds on a mobile phone. This is part of the Mobius demo that
is available online1. The experiment shows that it is feasible to perform extended
bytecode verification with the polyhedral certificates that we have developed.

5 Related Work

A number of relational abstract domains (octagons [16], convex polyhedra [10],
polynomial equalities [17]) have been proposed with various trade-offs between
precision and efficiency, and intra-procedural relational abstract interpretation
for high-level imperative languages is by now a mature analysis technique. How-
ever, to the best of our knowledge the present work is the first extension of this
to an inter-procedural analysis for bytecode. Dependent type systems for Java-
style bytecode for removing array bounds checks have been proposed by Xi and
Xia [25]. The analysis of the stack uses singleton types to track the values of
stack elements, in the same spirit as our symbolic stack expressions. The analy-
sis is intra-procedural and does not consider methods (they are added in a later
work [24] which also adds a richer set of types). The type checking relies on loop
invariants. We have run our analysis on the example Xanadu programs given by
Xi and have been able to infer the invariants necessary for verifying safe array
access automatically.

The area of certified program verifiers is an active field. Wildmoser, Nipkow
et al. [22] were the first to develop a fully certified VCGen within Isabelle/HOL
for verifying arithmetic overflow in Java bytecode. The certification of abstract
interpreters has been developed by Pichardie et al. [18, 6]. Lee et al. [14] have cer-
tified the type analysis of a language close to Standard ML in LF and Leroy [15]

1
http://mobius.inria.fr/
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has certified some of the data flow analyses of a compiler back-end. Wildmoser
et al. [21] certify a VCGen that uses untrusted interval analysis for producing
invariants and that relies on Isabelle/HOL decision procedures to check the ver-
ification conditions generated with the help of these invariants. Their technique
for analysing bytecode is close to ours in that they also use symbolic expressions
to analyse the operand stack and the main contribution of the work reported
here with respect to theirs is to develop this result checking approach for a fully
relational analysis.

6 Conclusions and Future Work

This paper demonstrates the feasibility of an interprocedural relational analysis
which automatically infers polyhedral loop invariants and pre-/post-condition for
programs in an imperative bytecode language. To simplify the checking of these
invariants, we have devised a result checker for polyhedra which uses inclusion
certificates (issued from a result due to Farkas) instead of computing convex
hulls of polyhedra at join points. This checker is much simpler to prove correct
mechanically than the polyhedral analyser and provides a means of building
a foundational proof carrying code that can make use of industrial strength
relational program analysis.

Future work concerns extensions to incorporate richer domains of properties
such as disjunctive completions of linear domains or non-linear (polynomial)
invariants. Using propositional reasoning, checking disjunctive invariants can be
reduced to emptiness tests. As a result, parts of the polyhedral checker could be
reused. Emptiness certificates from Section 3.2 can be generalised to deal with
non-linear inequalities [3]. However, the analyses for inferring such properties
are in their infancy. On a language level, the challenge is to extend the analysis
to cover the object oriented aspects of Java bytecode. The inclusion of static
fields and arrays in our framework provides a first step in that direction but a
full extension would notably require an additional alias analysis.
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