
ppsimpl: a reflexive Coq tactic for canonising goals

Frédéric Besson
Inria Rennes

Abstract
The Coq proof-assistant provides automation for various logic frag-
ments. However, there is a lack of generic support for extending
those tactics. To augment the proof automation, we propose an ex-
tensible reflexive tactic, ppsimpl, aiming at canonising goals so
that the scope of existing tactics can be broaden at low cost.

The tactic first injects a type, say T, into a canonical type, say CT
and maps function over T into their counterpart over CT. This trans-
formation allows type T to benefit from the automation provided for
type CT. The tactic also performs another normalisation step which
purpose is to restrict the operators of CT to those that are known
to the automated tactics. This is done by either unfolding function
definitions or replacing a function by a (partial) specification.

The extensibility of the ppsimpl tactic is obtained through the
type-class mechanism which allows to infer and collect all the
necessary proof objects. These instances are processed by a Ltac
compiler which automatically generate the reification of terms and
instantiate the generic correctness proof.

1. Introduction
The Coq proof-assistant comes with a bestiary of proof-procedures.
Each of them being specialised for a particular logic fragment.
Among the most popular ones are omega and lia for linear (in-
teger) arithmetic; lra and fourier for linear real arithmetic;
ring for solving ring equations; field for rational expressions;
congruence for the logic of unintepreted functions and construc-
tors; tauto and rtauto for propositional logic. Sometimes, those
tactics fail to solve goals whereas a casual user would expect them
to succeed. Hence, mundane proofs get longer; require a deeper
knowledge of libraries and are less robust to changes. There are
various reasons that limit in practice the applicability of exist-
ing Coq tactics. For instance, little support is provided to deal
with the low-level numeric type positive that is almost an inte-
ger. Likewise, dealing with booleans can be cumbersome whereas
booleans are almost propositions. Moreover, tactics usually do not
handle functions even when their specification fall in the relevant
logic fragment. For (integer) arithmetic, this is particularly strik-
ing: functions such as max, division, modulo, square root can be
fully specified using only addition and multiplication. To alleviate

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

Copyright c© held by owner/author(s). Publication rights licensed to ACM.
ACM [to be supplied]. . . $15.00

Goal ∀ x y: bool, x && y = true→ y = true.
Proof. intros x y; ppsimpl; tauto. Qed.

Goal ∀ x: nat, (x > 0 → sqrt x > x→ x = 0).
Proof. intros; ppsimpl; nia. Qed.

Figure 1. ppsimpl at work

these problems, the Ltac tactic zify1 tries hard to map different
numeric types towards Z and ssreflect (Gonthier et al. 2008)
makes a systematic link between booleans and propositions using
so-called small scale reflection. Yet, zify is not easily extensible
and ssreflect does not aim at large scale reflection.

In this paper, we describe an extensible reflexive tactic to
canonise goals in order to extend the scope of current automa-
tion. The transformation is specified with type classes (Sozeau
and Oury 2008) and is thus easily extensible. This specifica-
tion is then compiled into an efficient reflexive tactic. With sup-
port for boolean and integers, the tactic solves automatically the
goals of Figure 1. A working tactic can be obtained by cloning
the git repository https://scm.gforge.inria.fr/anonscm/
git/ppsimpl/ppsimpl.git and checking out the ppsimpl-8.5
branch.

2. The tactic from the user perspective
The ppsimpl tactic is compiling ahead of time class instances that
are declared by the user. In the following, we review the different
type-classes that are required by the ppsimpl compiler. As we will
see, certain instances require non-trivial proof-terms. When this is
the case, we make sure that the proof-terms are automatically filled
in by the type-class resolution mechanism. We also provide tactics
dedicated to certain instances so that remaining proof obligations
are meaningful from the user standpoint.

2.1 User declarations
The Coq types the tactic operates on is not fixed. A novel type T
is declared by providing an instance of type TypeDecl.t T. Such
an instance contains a default value of type T, an equivalence over
T and a predicate that is universally true for the values of T. For
instance, if we declare the type nat of Peano integers, the canonical
default value is O; the equivalence relation is Leinitz equality (=)
over nat and the predicate states that all natural numbers are
positive fun (x:nat) => x >= O.

Once a type T is defined, the user specifies how to inject
T into another type T’ using an instance of type DeclInj.t
T (TypeDecl.t T) T’ (TypeDecl.t T’). Such an instance
contains an injection function inj : T -> T’ and a proof that
inj preserves the relevant equivalence. For instance, to inject

1 Tough undocumented, zify is a quite useful tactic developed by P.
Letouzey.

https://scm.gforge.inria.fr/anonscm/git/ppsimpl/ppsimpl.git
https://scm.gforge.inria.fr/anonscm/git/ppsimpl/ppsimpl.git

nat toward Z, the injection function is Z.of_nat and we need
to prove that forall x y : nat, x = y <-> Z.of_nat x =
Z.of_nat y.

After declaring types, the user declares how to inject a func-
tion F of type Ty = T1 -> ... -> Tn by providing an instance
of type Inj.t Ty F. The instance contains a function F’ of
type Ty’ = T’1 -> ... -> T’n such that T’i is the injec-
tion of type Ti (i.e., we have an instance of type DeclInj.t
Ti _ T’i _ for each i); a proof that inj (F x1 ...xn) ==
F’ (inj x1) ...(inj xn) and a proof that F’ is a morphism
for the relevant equivalences. For example, to define of an in-
stance of type Inj.t (nat -> nat) plus we would provide the
function Z.add; prove that forall x y, Z.of_nat (plus x
y) = Z.add (Z.of_nat x) (Z.of_nat y) and that forall
x x’ y y’, x = x’ /\y = y’ -> Z.add x y = Z.add x’
y’. The definition of the type-class Inj.t is complicated by the
fact that the injection and morphism need to be generic w.r.t the
type Ty. For this purpose, the class definition contains additional
information that is responsible for constructing the relevant injec-
tion and morphism lemma by induction over the structure of the
type Ty = T1 -> ... -> Tn. This object is automatically con-
structed using type-class resolution using instances that ensure in
particular that all the Ti and T’i have been declared (there is an
instance of TypeDecl.t Ti and TypeDecl.t T’i).

The user can also optionally specify that a function F can be
unfolded by declaring an instance of class Unfold.t F. The in-
stance contains a function F’ and a proof that the results are equiv-
alent. For example, to define an instance of type Unfold.t Zsucc,
we would provide the function fun x => x + 1 and prove that
forall x, Zsucc x = x + 1.

Eventually, the user can provide a predicate specifying the
input-output relation of a function F: T1 -> ...-> Tn−1 ->
Tn by declaring an instance of class Abstract.t F. The instance
contains a predicate P : Tn -> T1 ... -> Tn−1 -> Prop and
a proof that it correctly models the function i.e., forall r a1
...an−1, F a1 ...an = r -> P r a1 ...an−1. For exam-
ple, to define an instance of type Abstract.t Z.max, we would
provide the predicate fun r x y => not (x < y) /\r = x
\/ x < y /\r = y and prove r = Z.max x y -> not (x <
y) / r = x \/ x < y /\r = y. Again, the correctness lemma
is generated by induction over the structure of the type of F using
type classes.

2.2 Tactic compilation
Given the above type class declarations, it is possible to program
a generic rewrite engine recursively traversing terms and applying
the appropriate injection lemma. This tactic would have the flavor
of the (z)ify tactic with the advantage of being easily extendable.
We do not follow this path but explore instead how to compile
declared class instances to obtain a reflexive tactic. Eventually,
the compilation would benefit from an OCAML implementation.
Currently, it is implemented in Ltac using various tricks which
do not deserve advertising. Anyhow, the compilation requires the
definition of several functions and lemma2.

The compilation done, the ppsimpl tactic performs a standard
proof by reflection. After the tactic, we use a carefully designed
conversion in order to de-reify the goal and get a readable result
preserving in particular the original variable names. For the exam-
ples of Figure 1, ppsimpl generates the goals of Figure 2. Each
original variable is given a pre-condition that is generated from type
constraints. Here, when declaring TypeDecl.t bool we stated
that a boolean can only be true or false i.e., forall b, isTrue

2 For each of them, the user needs to explicitly call a dedicated fully
automatic tactic.

x : bool
y : bool
==
True→
(Is_true y ∨ ~ Is_true y) ∧ (Is_true x ∨ ~ Is_true x)→
(Is_true x ∧ Is_true y↔ True)→ (Is_true y↔ True)

x : nat
e : Z
==
((0 ≤ Z.of_nat x)→ (e ∗ e ≤ Z.of_nat x < (e + 1) ∗ (e + 1))) →
(0 ≤ Z.of_nat x)→
(0 < Z.of_nat x)→ (Z.of_nat x < e)→ Z.of_nat x = 0

Figure 2. Result of ppsimpl for the goals of Figure 1

b \/ ~isTrue b. When declaring TypeDecl.t nat we stated
that natural numbers are positive i.e., forall n, 0 <= n. The
rest of the goal is obtained by recursively applying injection func-
tions. In Figure 2, the square-root over nat is injected into the
square-root over Z. Other introduced pre-conditions are the spec-
ifications of functions F that have an Abstract.t F instance. In
that case, the call to F is replaced by a fresh variable. For example,
in Figure 2, the square-root of x is named e.

3. Conclusion
Proof by reflection (Bertot and Castéran 2004, Chapter 17) requires
a deep-embedding of a specific logic fragment. In order to im-
port HOL-LIGHT proofs into Coq, Keller and Werner (Keller and
Werner 2010) propose a deep-embedding of higher-order logic. The
syntax of terms is not typed and therefore the interpretation of terms
can therefore fail. Armand et al. (Armand et al. 2011) are using a
similar encoding for first-order logic to import SMT proofs into
Coq. In this work, we have a syntax for terms that is similar to the
AAC tactic(Braibant and Pous 2011). This has proved not too hard
to work with these (weakly) dependent types. Retrospectively, we
fear that it might be responsible for a very noticeable loss of per-
formance. Moreover, it makes extension to polymorphic types and
quantifiers more challenging - especially without axiom.

The current tactic is compiled using about one hundred in-
stances and provides additional support for the types nat, positive,
Z, comparison and bool. It allows an existing arithmetic tactic
such lia or nia to discharge goals using, for instance, Euclidean
division or square root operators.

As future work, we consider binding ppsimpl more tightly with
other reflective tactic such as ring or lia thus avoiding to perform
a reification twice. For performance (and also to improve error
reporting), we also wish to port the Ltac compiler to Ocaml.

References
M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A

Modular Integration of SAT/SMT Solvers to Coq through Proof Wit-
nesses. In CPP, volume 7086 of LNCS, pages 135–150. Springer, 2011.

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts
in Theoretical Computer Science. Springer, 2004.

T. Braibant and D. Pous. Tactics for reasoning modulo AC in coq. In CPP,
volume 7086 of LNCS, pages 167–182. Springer, 2011.

G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection Exten-
sion for the Coq system. Rapport de recherche RR-6455, INRIA, 2008.

C. Keller and B. Werner. Importing HOL Light into Coq. In ITP, volume
6172 of LNCS, pages 307–322. Springer, 2010.

M. Sozeau and N. Oury. First-Class Type Classes. In TPHOLs, volume
5170 of LNCS, pages 278–293. Springer, 2008.

	Introduction
	The tactic from the user perspective
	User declarations
	Tactic compilation

	Conclusion

