
Modular Class Analysis with datalog
�

Fr�d�ric Besson and Thomas Jensen

IRISA�INRIA�CNRS
Campus de Beaulieu

F������ Rennes� France

Abstract datalog can be used to specify a variety of class analyses for
object�oriented programs as variations of a common framework� In this
framework� the result of analyzing a class is a set of datalog clauses
whose least 	xpoint is the information analysed for� Modular class anal�
ysis of program fragments is then expressed as the resolution of open
datalog programs� We provide a theory for the partial resolution of
sets of open clauses and de	ne a number of operators for reducing such
open clauses�

� Introduction

One of the most important analyses for object�oriented languages is class analysis
that computes an �over��approximation of the set of classes that an expression
can evaluate to at run�time ������������	
� Class analysis forms the foundation for
static type checking for OO programs aimed at guaranteeing that methods are
only invoked on objects that implement such a method� It is also used for building
a precise call graph for a program which in turn enables other optimisations
and veri�cations� For example� the information deduced by class analysis can in
certain cases be used to replace virtual method invocations by direct calls to the
code implementing the method�

Existing class analyses are all whole�program analyses that require the entire
program to be present at analysis time� There are several reasons for why it is
desirable to improve this situation� The size of the object�oriented code bases to
be analysed means that a whole�program analysis is lengthy� Having to re�analyse
all the program every time a modi�cation is made means that the analysis is
of little use during a development phase� Furthermore� dealing with languages
that allow dynamic class loading means that not all code is available at analysis
time� These shortcomings must be resolved by developing more incremental and
modular analyses� that can deal with fragments of programs�

Modular program analysis has been the object of several recent studies�
Cousot and Cousot ��

 examine the various approaches to modular program
analysis and recast these in a uniform abstract interpretation framework� The
essence of their analysis is a characterisation of modular program analysis as the
problem of calculating approximations to a higher�order �xpoint� In this paper

� This work was partially funded by the IST FET�Open project
Secsafe��

we demonstrate how this �xpoint characterisation can be instantiated to the case
of class analyses expressed using datalog clauses� In this case� the result of the
class analysis is de�ned as the least solution of the set of clauses generated from
the program in a syntax�directed manner� A modular analysis is a procedure
that transforms a partial set of constraint into an equivalent �more resolved� set�
where �more resolved� means that the number of iterations required to reach the
least solution has been reduced�

The class analysis will be expressed as a translation from a simple object�
oriented programming language into constraints speci�ed using the datalog

language� datalog is a simple relational query language yet rich enough to give
a uniform description of a number of control �ow analyses of object�oriented
languages� including the set�based analysis of Palsberg and Schwartzbach� It has
an e�cient bottom�up evaluator that provides an implementation of the analysis
of closed programs for free� The analysis of program fragments gives rise to open
sets of datalog clauses� for which a number of powerful normalisation operators
exist� Finally� the semantic theory of open logic programs provides a basis for
de�ning abstract union operators on constraint systems corresponding to the
union of two program fragments�

The contributions of the paper can be summarised as follows�

� We show how datalog can be used for specifying class analyses in a uni�
form manner� We notably show how a number of existing analyses can be
expressed naturally in this framework�

� We extend this to a theory of modular class analysis in which the analysis
of program fragments are modeled using open datalog programs�

� We de�ne a number of partial resolution techniques for reducing an open
datalog program to a solved form�

Section � de�nes a simple object�oriented programming language� Section �
recalls basic notions of datalog� which is then used to de�ne a number of class
analyses in Section 	� Open datalog programs arising from analysis of program
fragments are introduced in Section ���� In Section ���� we give a characterisation
of correct modular resolution methods� We then show� in Section �� how several
modular resolution techniques �t into this framework�

� An Object�Oriented Language

Our analysis is de�ned with respect to an untyped imperative class�based object�
oriented language� To focus on the class analysis principles� language constructs
are kept to a minimum� The precise syntax is de�ned in Figure ��

A program P is made of a set of class declarations� Each class C is identi�
�ed by a unique name c and de�ne a set of methods� It may extend an existing
class c′� Within a class� each method M is uniquely identi�ed by its signature
m/i where m is the method name and i the number of arguments� The method
body is a sequence of instructions� The instruction x:= new c creates an object
of class c� Instruction x.fd :=y assigns the value of variable y to the �eld fd of

P ::= {C1, . . . , Cn}
C ::= class c{M1, . . . , Mn} |

class c extends c′{M1, . . . , Mn}
M ::= m(x1, . . . , xn) IL
IL ::= [I1, . . . , In]
I ::= x:= new c | x.fd:=y | x:=y.fd |

x:=x0.f(x1, . . . , xn) | ret x

Figure�� A minimalist object�oriented language

the object referenced by x� Similarly� x:=y.fd transfers the content of �eld fd of
y to variable x� The instruction x:=x0.f(x1, . . . , xn) invokes the method f on
the object stored in x0 with x1, . . . , xn as arguments and stores the result in x�
Finally� ret x ends the execution of an invoked method by returning the value of
x� Except the last instruction that models method return� all the other instruc�
tions are di�erent kinds of assignments� object creation� �eld update� �eld access
and dynamic method invocation� Following the object�oriented conventions� in
a method body� the current active object is referenced as self �

Execution of a program starts at the �rst instruction of the method main of
class main� The inheritance relation between the classes of a program is acyclic�
Because our language does not provide multiple inheritance� the class hierarchy
is a forest �of trees�� Virtual method resolution is de�ned by a method lookup
algorithm that given a class name c and a method signature m returns the class
c′ that implements m for the class c� In order to take inheritance into account�
the method lookup algorithm walks up the class hierarchy from class c and
eventually returns the �rst class c′ that de�nes a matching method m�

� datalog

We recall some basic facts about datalog ���
 that will serve as language for
specifying the class analyses� Syntactically� datalog can be de�ned as prolog
with only nullary functions symbols i�e�� constants� Hence� most of the de�nitions
and properties of datalog programs are inherited from prolog� It can also be
presented as a relational query language extended with recursion�

The denotation of a datalog program is the least set of atoms that satisfy
the clauses of the program� The fundamental di�erence with respect to Prolog
is that the least Herbrand model is computable�

De�nition �� Let Π be a ��nite� set of predicate symbols and V �resp� C� a set
of variables �resp� constant symbols��

� An atom is a term p(x1, . . . , xn) where p ∈ Π is a predicate symbol of arity
n and each xi �i ∈ [1, . . . , n]� is either a variable or a constant �xi ∈ V �C��

� A clause is a formula H ← B where H �the head� is an atom while the body
B is a �nite set of atoms�

� A program P is a set of clauses�

For atom A� Var(A) is the set of variables occurring in A and Pred(A)
is the predicate symbol of A� V ar and Pred are extended the obvious way to
clauses and programs� An atom A is said ground if its set of variables is empty� A
substitution σ : V → V �C is a mapping from variables to variables or constants�
A ground substitution maps variables to constants� We note Aσ the application
of a substitution σ to an atom A�

A Herbrand interpretation I is a set of ground atoms� Given a set of pred�
icate symbols Π and a set of constant C� the Herbrand base HB(Π,C) is the
�greatest� set of ground atoms that can be built from the predicate symbols in Π
and constants in C� The least Herbrand model of a program P is a Herbrand in�
terpretation de�ned as the least �xed point of a monotonic� continuous operator
TP known as the immediate consequence operator ��
�

De�nition �� For a program P and a Herbrand interpretation I� the operator
TP is de�ned by�

TP (I) = {A | ∃(H ← B ∈ P, σ : V → C).∀(b ∈ B).bσ ∈ I, A = Hσ}

In the following� the �xed point operator is noted lfp� Hence� the least Herbrand
model of a program P is lfp(TP)�

� Class Analysis in datalog

In this section we describe a class analysis in the form of a syntax�directed trans�
lation that maps a term L of the object�oriented language de�ned in Section � to
a set of datalog clauses� The result of the analysis is the least �xpoint of these
clauses� The analysis presented in this section deals with complete programs�
the following sections will be concerned with showing how to combine separate
analyses of individual classes to eventually recover the result of the analysis of
the complete program�

One of the advantages of datalog is that it allows to specify a collection
of class analyses in a common framework� thus allowing to relate a number of
known analyses� To make this point clear� we �rst give an intuitive description
of the basic analysis and then explain how it can be varied to obtain analyses of
di�erent degree of precision� Intuitively� the basic analysis works as follows� For
each variable x de�ned in method m of class c in the program we introduce a
unary predicate named c.m.x that characterises the set of objects being stored
in that variable� Each assignment to a variable will result in a clause de�ning
the corresponding predicate� The heap of allocated objects is represented by a
collection of binary predicates fd(�,�)� one for each �eld name fd used in the
program� If an object o1 of class c1 references an object o2 of class c2 via �eld
fd then fd(c1, c2) holds� To deal with method calls� each method signature m

gives rise to a pair of predicates m.call and m.ret such that m.call collects the
arguments of all calls to methods named m while m.ret collects the return values
from the di�erent calls to m�

A number of syntactic properties of a program are represented by the pred�
icates class� subclass� sig and define� Given an object�oriented program P � we
have� class(c) if c is a class of P � subclass(c, c′) if c is a direct subclass of c′

in P � sig(m) if m is a method signature of P and define(c, m) if class c of P
de�nes a method of signature m� The dynamic method lookup is encoded by the
predicate lk such that lk(o, f, c) if a call to method f on an object of class o is
resolved to the de�nition of f found in class c�

lk(c, m, c) ← {define(c, m)}
lk(c, m, c′) ← {notDefine(c, m), subclass(c, c′′), lk(c′′, m, c′)}
notDefine(c, m)← {class(c), sig(m),¬define(c, m)}

A technical note� because of the use of negation �¬�� the clause de�ning the pred�
icate notDefine does not strictly comply with our de�nition of clauses� However�
as long as negations are strati�ed � recursion cycles are negation free � the least
Herbrand model exists�

��� Context�Sensitive Analyses

There are a number of places in which the precision of the basic class analysis
can be �ne�tuned�

� Modeling of the heap of objects� In the basic analysis� objects in the heap
are simply abstracted by their class identi�er� hence the abstract domain of
objects is de�ned by Object = Class� Other ways of abstracting objects take
into account the creation context� For instance� objects can be distinguished
by their program point of creation� in which case we get Objet = Class×PP
where PP = Class ×Meth× PC is the set of program points�

� Distinguishing di�erent calls to the same method� The precision of an analy�
sis can be improved by keeping track of the program point at which a method
was invoked Context = PP � Other ways of separating the method calls is
by distinguishing them according to the class of their arguments �see the
Cartesian Product abstraction below��

� Distinguishing di�erent occurrences of the same variable� The basic analysis
keeps one set for each variable� All assignments to that variable will con�
tribute to this set� Introducing one set for each occurrence of a variable can
lead to more precise analysis results� see e�g�� ���
 for the bene�ts obtained
in the case of binding�time analysis for imperative languages�

The last type of context sensitivity is relatively straightforward to obtain by
syntactic transformations so here we focus on the �rst two items� creation� and
call�context sensitive analyses�

Context sensitivity is expressed separately by means of the predicates object�
objCtx� methCtx/n and classOf � The predicate object is used to de�ne the ab�
stract domain of objects� The predicate objCtx models a function that given a

Program

J{C1, . . . Cn}K =
�

i∈[1,... ,n]

JCiK ∪
��
�

main.call(o, ctx)←�
objCtx(0, 0, 0, main, 0, 0, o),
methCtx/n(0, 0, 0, o, 0, ctx)

�
��
�

Class

J class c MethsK = JMethsKc ∪ {class(c)← {}}
J class c extends c′ MethsK = JMethsKc ∪

�
subclass(c, c′) ← {}
class(c) ← {}

�

Methods

J{M1, . . . , Mn}Kc =
�

i∈[1,... ,n]

JMiKc

Jm(x1, . . . , xn)ILKc = Jm(x1, . . . , xn)Kc ∪ JILKc,m

Jm(x1, . . . , xn)Kc =

�										�
										�

define(c, m/n) ← {}
sig(m/n) ← {}
c.m.ctx(ctx) ←

�
m.call(o, o1, . . . , on, ctx),
classOf (o, c′), lk(c′, m/n, c)

�

c.m.self (o, ctx) ← {m.call(o, o1, . . . , on, ctx), c.m.ctx(ctx)}
c.m.x1(o1, ctx) ← {m.call(o, o1, . . . , on, ctx), c.m.ctx(ctx)}
. . .
c.m.xn(on) ← {m.call(o, o1, . . . , on, ctx), c.m.ctx(ctx)}

�										�
										�

Instructions

J[I1, . . . , In]Kc,m =
�

i∈[1,... ,n]

JIiKc,m,i

Jx �� new c′Kc,m,i =

�
c.m.x(o, ctx)←

�
c.m.self (o′, ctx),
objCtx(c, m, i, c′, ctx, o′, o)

��

Jx.fd �� yKc,m = {fd(o, o′)← c.m.x(o, ctx), c.m.y(o′, ctx)}

Jx �� x0.f(x1, . . . , xn)Kc,m,i =

�								�
								�

c.m.i.call(o0, . . . , on, ctx, ctx′)←�
x0(o0, ctx), . . . , xn(on, ctx),
methCtx/n(c, m, i, oo, . . . , on, ctx, ctx′)

�

f.call(o0, . . . , on, ctx′)←
{c.m.i.call(o0 , . . . , on, ctx, ctx′)}

c.m.x(o, ctx)←
{f.ret(o, ctx′), c.m.i.call(o0, . . . , on, ctx, ctx′)}

�								�
								�

Jret xKc,m,i = {m.ret(o, ctx)← c.m.x(o, ctx)}

Figure�� Generation algorithm for class analysis

syntactic program point �class� method� program counter�� a class to instantiate
and an analysis context yields a new object� If objCtx(c, m, i, c′, ctx, self , newObj)
holds then newObj is a novel object of class c′ built from the program point
(c, m, i)� for the call context ctx and the current object self �

The predicate family methCtx/n models a function that given a syntactic
program point �class� method� program point�� the n arguments of the call and
the current call context yields a novel call context� If

methCtx/n(c, m, i, self , o1, . . . , on, ctx, newCtx)

holds then newCtx is a novel call context built from the program point (c, m, i)�
for the call context ctx and the argument objects of the call self , o1, . . . , on�
Finally� the predicate classOf (o, c) permits to obtain the class c of the object
o� The predicates objCtx and classOf (o, c) must satisfy the following coherence
constraint� objCtx(c, m, i, c′, ctx, o)⇒ classOf (o, c′) �

��� Example Analyses

In the following we specify a number of known analyses as variations of the
analysis in Figure �� We do this by specifying the abstract domains of objects
and contexts� and by de�ning the instantiation of the predicates objCtx � methCtx
and classOf � For certain analyses� we make use of a tuple notation which is not
part of datalog� However� this extension is not a theoretical problem� such
�nite depth terms can be �attened and encoded by adding extra arguments
to predicate symbols� To give a more uniform presentation� we keep a tuple
notation�

��CFA
�CFA is a degenerated context sensitive analysis in which objects are
abstracted by their class and where there exists a single call context identi�ed
by the constant ctx� Hence� we have Object = Class and Context = {ctx}�

objCtx(c, m, i, c′, ctx, c′) ← {}
methCtx/n(c, m, i, o0, . . . , on, ctx, ctx)← {}
classOf (c, c) ← {}

�	
�CFA Some analyses of object�oriented programs deal with inheritance by
copying the inherited methods into the inheriting class ���
� This syntactic un�
folding adds a certain degree of call context sensitivity to an analysis because
it distinguishes between a method according to which class of object it is called
on� To model this e�ect of unfolding the inheritance mechanism� we keep as call
context the class of the receiver of the current call� This is expressed by the re�
peated occurrence of self in the de�nition of methCtx � We have Object = Class
and Context = Object �

objCtx(c, m, i, c′, ctx, c′) ← {}
methCtx/n(c, m, i, self , o1, . . . , on, ctx, self)← {}
classOf (c, c) ← {}

k�l�CFA The principle of the k�l�CFA hierarchy of analysis is to keep a call
string of length k and a creation string of length l� As a result� the call context
is a tuple of the k call instructions that lead to the call� Similarly� an object o1

now contains information about the object o2 that created it� and the object
o3 that created o2� and . . . the object ol that created the object ol−1� We have
Object = Class × PP l and Context = PPk�

objCtx(c, m, i, c′, ctx, o, o′) ←
{

o = (c′′, (p1, . . . , pl)),
o′ = (c′, ((c, m, i), p1, . . . , pl−1))

}

methCtx/n(c, m, i, o0, . . . , on, ctx, ctx′)←
{

ctx = (p1, . . . , pk),
ctx′ = ((c, m, i), p1, . . . , pk−1),

}

classOf ((c, l), c) ← {object((c, l))}

Cartesian Product Algorithm This kind of context sensitivity for class analysis
was �rst discussed by Agesen ��
� A call context is built from the arguments of
the call� Calls to the same method are distinguished as soon as the arguments
are di�erent� The set of call contexts of a method with n arguments is then
Contextn = Objectn� Thus� the precision of the overall analysis depends on the
object abstraction� Here� we show an instantiation where the object creation
context is the program point of creation �Object = Class × PP��

objCtx(c, m, i, c′, ctx, o, o′) ← {
o′ = (c′, (c, m, i)),

}
methCtx/n(c, m, i, o0, . . . , on, ctx, ctx′)← {

ctx′ = (o0, . . . , on),
}

classOf ((c, l), c) ← {object(c, l)}
Example �� Consider the following contrived program

P = { class main{main()[self �� self .fd ; ret self]}
For the
�CFA analysis� here are the generated constraints�

main/0.call(main) ← {}
define(main, main/0)← {}
main.main/0.self (o) ← {main/0.call(o), lk(o, main/0, main)}
main.main/0.self (o) ← {main.main/0.self (o′), fd(o′, o)}
main/0.ret(o) ← {main.main/0.self (o)}

Next section� we detail how the clauses de�ning self can be reduced using a
combination of modular resolution techniques�

� Modular Resolution

The results in this section form the theoretical basis for analysing a class hier�
archy in a compositional fashion� In this approach� each class is �rst analysed
separately and the resulting datalog programs reduced towards a solved form�
Then� the reduced programs are joined together and further reductions can take
place�

For a class� the generation algorithm yields a set of datalog clauses� How�
ever� because a class is not a stand�alone program� code in one class may invoke
methods de�ned in another class� This means that some predicate symbols ap�
pearing in the clauses modeling a single class may be either partially or totally
unde�ned� For those predicates� other classes may enrich their de�nition� To
make this explicit� we introduce the term open predicates� Being open is a prop�
erty that depends on the scoping rules of the analysed language� For our class
analysis� open predicate symbols arise from the analysis of method calls� method
declaration� method returns and �eld updates� For instance� the return instruc�
tion of a method of signature m de�ned by a class c contributes to the de�nition
of the m.ret predicate� Because any class implementing a method m also con�
tributes to the de�nition of the predicate symbol m.ret� its de�nition is kept
open until all the program is analysed�

��� Open datalog Programs

Bossi et al� �	
 de�ne a compositional semantics for open logic programs� We use
their de�nition of open programs�

De�nition � 	Bossi et al�
���� An open datalog program PΩ is a �data�
log� program P together with a subset Ω of its predicate symbols �Ω ⊆ Pred(P)��
A predicate symbol in Ω is considered to be only partially de�ned in P �

The immediate consequence operator T is extended to open programs by ignoring
the set of open predicates� TP Ω = TP �

Open clauses generated from individual classes are joined to model the anal�
ysis of the whole program� Such union of open programs requires common pred�
icate symbols to be open� Otherwise� union is unde�ned� While analysing a class
in isolation� it is then mandatory to declare open any predicate symbol that may
be referenced elsewhere�

De�nition �� Let PΩ1
1 and PΩ2

2 be open programs� Under the condition that
Pred(P1) ∩ Pred(P2) ⊆ Ω1 ∩Ω2� PΩ1

1 ∪ PΩ2
2 is de�ned by

PΩ1
1 ∪ PΩ2

2 = (P1 ∪ P2)Ω1∪Ω2

Property �� Union of open programs is associative�

This property is essential for our purpose� the order in which analyses of classes
are joined does not matter�

At this point� we are �only� able to map classes to open datalog clauses and
join them incrementally to get the clauses modeling the whole program being
analysed� Since these operations are strictly syntactic� no resolution occurs� Next
sections will characterise and provide modular resolution methods�

��� Approximation of Open Programs

A modular resolution method maps open programs to open programs while
preserving the overall correctness of the whole analysis� We formalize the notion
of approximation by means of a pre�order relation � over open programs� This
generalizes the usual containment relation over datalog programs ���
�

De�nition �� Let PΩ1
1 and PΩ2

2 be datalog open programs� PΩ2
2 is an over�

approximation of PΩ1
1 �PΩ1

1 � PΩ2
2 � if and only if�

� Ω1 = Ω2 and Pred(P1) = Pred(P2)
� for all QΩ such that PΩ1

1 ∪QΩ and PΩ1
2 ∪QΩ are de�ned� we have

lfp(TP1∪Q) ⊆ lfp(TP2∪Q)

Property
� The relation � is re�exive and transitive�

The relation � gives rise to an equivalence relation between open programs�

De�nition
� Let PΩ
1 � PΩ

2 be open programs� PΩ
1 is equivalent to PΩ

2 �PΩ
1 ≡

PΩ
2 � if and only if PΩ

1 � PΩ
2 and PΩ

2 � PΩ
1 �

The relevance of � for modular resolution lies in the following fundamental
lemma� It shows that open programs remain in relation by � when an arbitrary
open program is adjoined to them� This is the key property of modular reso�
lution methods� whatever the unknown clauses that could be added later� the
transformation preserves the correctness of the analysis�

Lemma �� Let PΩ1
1 � PΩ2

2 and QΩ be open programs� If PΩ1
1 � PΩ2

2 and PΩ1
1 ∪

QΩ is de�ned� then we have

PΩ1
1 ∪QΩ � PΩ2

2 ∪QΩ

Proof� To begin with� we observe that PΩ2
2 ∪QΩ is de�ned� This follows trivially

from the de�nition of � �PΩ1
1 � PΩ2

2 ��

Now� consider an arbitrary open program Q′Ω′
� To prove the lemma� we show

that if (PΩ1
1 ∪QΩ)∪Q′Ω′

and (PΩ1
1 ∪QΩ)∪Q′Ω′

are de�ned then the �xpoints
are ordered by set inclusion� lfp(T(P1∪Q)∪Q′) ⊆ lfp(T(P1∪Q)∪Q′)� Because union

of open programs is associative �Prop ��� we have (PΩ1
1 ∪QΩ) ∪Q′Ω′

= PΩ1
1 ∪

(Q ∪ Q′)Ω∪Ω′
and (PΩ2

2 ∪ QΩ) ∪ Q′Ω′
= PΩ2

2 ∪ (Q ∪ Q′)Ω∪Ω′
� Exploiting that

PΩ1
1 � PΩ2

2 � we conclude that lfp(TP1∪(Q∪Q′)) ⊆ lfp(TP1∪(Q∪Q′))� As a result� by
associativity of union of sets� the lemma holds�

Based on the relation � on open programs� we de�ne the notion of correct
and exact resolution methods�

De�nition �� A correct �resp� exact� resolution method R⊆ �resp� R=� is such
that for all open program PΩ� we have

PΩ � R⊆(PΩ) PΩ ≡ R=(PΩ)

It should be noted that equivalence of datalog programs is undecidable ���
�
This is of little concern to us because we are only interested in transformations
that are guaranteed either to preserve equivalence or to yield a safe approxima�
tion�

Finally� theorem � formally states that correct resolution methods as de�ned
above are indeed correct for the global analysis�

Theorem �� Let P =
⋃

i∈[1,... ,n] P
Ωi

i a union of open programs� For any collec�

tion of correct resolution methods R⊆
1 � . . . �R⊆

n the following holds �

lfp(TS
i P

Ωi
i

) ⊆ lfp(TS
i R

⊆
i (P

Ωi
i)

)

Proof� Because R⊆
i are correct resolution methods �Def ��� we have for any

i ∈ [1, . . . , n] that PΩi

i � R⊆
i (PΩi

i)� Because unions are de�ned� by recursively

applying Lemma �� we obtain that
⋃

i PΩi

i � ⋃
i R

⊆
i (PΩi

i)� By de�nition of ��
since TP Ω = TP � the theorem holds� lfp(TS

i P
Ωi
i

) ⊆ lfp(TS
iR

⊆
i (P

Ωi
i)

)�

� Modular Resolution Methods

The previous section showed that resolution methods can be applied locally to
parts of a datalog program� Here� we exhibit a number of resolution methods
and relate them to some of the traditional techniques for modular analysis listed
by Cousot and Cousot in ��

�

�� Fixpoint Based Methods

One type of resolution techniques rely on the �xpoint computation of the least
Herbrand model of datalog programs� These techniques require the ability to
re�construct a datalog program from a Herbrand interpretation�

De�nition �� The extensional database built from a Herbrand interpretation I
is the program edb(I) de�ned by edb(I) = {e← {} | e ∈ I}�

Worst Case Worst case analysis is a usual modular resolution method in which
the worst assumption is made for the unknowns� they are assigned the top el�
ement of the lattice� The worst case consists in computing the �xpoint of this
enriched system� For an open program PΩ� we add an empty clause per open
predicate symbol�

WΩ = {p(x1, . . . , xn)← {} | p ∈ Ω, xi are distinct variables}
Property �� For any Herbrand interpretation I� we have TWΩ (I) = HB(Ω, C)

Because a modular resolution method must yield a program� the least Herbrand
model of P ∪WΩ is computed and translated back to a program� Theorem �
states the correctness of this approximate resolution method�

Theorem �� The worst case resolution of an open program PΩ is de�ned by
WC = edb(lfp(TP∪WΩ))� It is a correct resolution method�

PΩ �WCΩ

Proof� Consider an arbitrary open program QΩ′
and suppose that PΩ ∪ QΩ′

and WCΩ ∪QΩ′
are de�ned� We show that lfp(TP∪Q) ⊆ lfp(TWC∪Q)� To begin

with� we prove the equality

lfp(TP∪WΩ∪Q) = lfp(TWC∪Q)

To do this� we apply several rewriting steps� First� we exploit the distributiv�
ity of T and the property � to rewrite the left�hand side to lfp(λI.TP (I) ∪
H ∪ TQ(I)) where H denotes the Herbrand base generated from the predi�
cate symbols in Ω �H = HB(Ω, C)�� In general� the �xpoint operator does
not distribute with respect to ∪� However� in our case� at each iteration step the
computation of TP (I) ∪ H does not depend on Q� Intuitively� potential inter�
actions are captured by H � As a result� we have lfp(λI.TP (I) ∪ H ∪ TQ(I)) =
lfp(λI.lfp(λI.TP (I) ∪ H) ∪ TQ(I)� We rewrite now the right�hand side of the
equality �lfp(TWC∪Q)�� By de�nition of WC and distributivity of T � we have
lfp(TWC∪Q) = lfp(λI.Tedb(lfp(TP∪WΩ

))(I) ∪ TQ(I))� Since we have Tedb(I1)(I2) =
I1� we obtain lfp(λI.Tedb(lfp(TP∪WΩ

))(I) ∪ TQ(I)) = lfp(λI.lfp(TP∪WΩ) ∪ TQ(I))�
The proof of the equality follows because lfp(TP∪WΩ) = lfp(λI.TP (I) ∪H)�

Given this equality� it remains to show that lfp(TP∪Q) ⊆ lfp(TP∪WΩ∪Q)� It
is a direct consequence of the monotonicity of lfp and T � Hence� the theorem
holds�

In practice� the worst case may lead to a very imprecise global analysis�
However� if the original clauses are kept� some precision can be recovered a
posteriori by techniques such as restarting the iteration ��
 or iterating separate
worst case analyses ���

 Sect� �����

Partial Fixpoint Rather than a worst case assumption� we can make the as�
sumption that free predicate symbols will never be given a de�nition and open
predicate symbols will never be enriched by additional clauses� The minimal
�xpoint of the program can be computed but will only constitute a correct res�
olution as long as the assumption is valid i�e�� nothing is added to the program�
However� we obtain an exact resolution method if we enrich an open program
with this least �xpoint�

Theorem �� Let P be an Ω�open program� PΩ ≡ (P ∪ edb(lfp(TP)))Ω �

The practical interest of this method highly depends on the clauses in P �
Indeed� if the partial �xpoint is empty� nothing is gained� Otherwise� the pre�
computed partial �xpoint will speed�up the convergence of future �xpoint iter�
ations�

�� Unfolding and Minimization

Unfolding is a standard transformation of logic programs� Here we present ex�
act resolution methods based on unfolding� De�nition � recalls the unfolding
operator unf as present in the literature� see e�g�� Levi ��

�

De�nition �� Let P and Q be datalog programs that do not share variable
names�� The unfolding of P with respect to Q is a program de�ned by

unf (P, Q) = {Hσ← ⋃
i∈[1,... ,n] D

′
iσ | ∃(H ← {B1, . . . , Bn} ∈ P).

∃B′
1 ← D′

1 ∈ Q, . . . , B′
n ← D′

n ∈ Q.
σ = mgu((B1, . . . , Bn), (B′

1, . . . , B′
n))}

where mgu is the most general uni�er operator�

Simple Unfolding In the context of logic programs� unfolding has been studied
extensively �see e�g�� ��
���
�� A well�known result is that a datalog program
and its unfolding by itself have the same least Herbrand model�

lfp(TP) = lfp(T 2
P) = lfp(Tunf (P,P))

To cope with open datalog programs� following Bossi et al� �	
� we model in�
complete knowledge by adjoining tautologic clauses�

De�nition ��� The tautological clauses Id of a set S of predicate symbols is
de�ned by IdS = {p(x1, . . . , xn)← p(x1, . . . , xn) | p ∈ S} where x1� . . . � xn are
distinct variables�

To get an exact resolution method� we unfold a datalog program with respect
to itself enriched with tautological clauses for open predicates symbols�

Theorem �� Let PΩ be an open program� PΩ ≡ unf (P, P ∪ IdΩ)

Minimization Syntactically distinct datalog programs may denote the same
T operator� Obviously� such programs are equivalent�

TP1 = TP2 ⇒ P1 ≡ P2

For datalog programs� there exists a minimization procedure Min that com�
putes a normal form such that TP = TMin(P)� Such minimization was �rst pro�
posed by Chandra and Merlin ��
 for conjunctive queries and then extended by
Sagiv and Yannakakis ���
 to sets of clauses� The minimization yields a reduced
clause for which redundant atoms have been eliminated� The idea of the algo�
rithm is to merge variables names to obtain a subset of the initial body� As an
example �due to Chandra and Merlin and rephrased in datalog terms�� the
clause H(x) ← {R(x, v, w), R(x, z, w), S(u, w), S(u, v), S(y, w), S(y, v), S(y, z)}
is minimised to H(x) ← {R(x, v, w), S(u, w), S(u, v)} by the substitution [y
→
u, z
→ v]� The immediate consequence operator T is stable with respect to such
transformations� Hence� minimisation is an exact modular resolution method�
� To lift this restriction� a renaming is needed�

Iterative Unfolding The two previous transformations are complementary�
Minimization procedure gives a normal form to non�recursive programs but ig�
nore recursive dependencies while unfolding is one step unrolling of recursions�
Iterating these transformations until �xpoint yields an exact modular resolution
method�

Theorem �� Let PΩ be an open�program� PΩ ≡ lfp(λq.Min(unf (P, q∪IdΩ)))Ω

If unfolding were considered without minimization� the iteration would diverge
for all recursive program� To improve convergence� it is desirable to normal�
ize programs at each iteration step� If the open predicates are exactly the free
variables �i�e�� there are no partially de�ned predicates� the �xpoint program
is non�recursive �at each iteration step� it is only expressed in terms of the free
variables�� Naugthon ���
 proved that there exists a non�recursive equivalent pro�
gram if and only if the iteration converges� Such programs are said to be bounded�
Unfortunately� boundedness is not decidable ��	
 even for programs with a single
recursive predicate�

If necessary� termination can be enforced by means of a widening opera�
tor ��
� Divergence comes from the fact that� in a clause body� the length of
atoms�variables dependancies cannot be bounded� Typically� we have sets of
atoms like {x(o1, o2), x(o2, o3), . . . , x(on−1, on)}� The idea of the widening pro�
posed by Codish et al� ����
 is to limit the length of such dependencies� They
choose to trigger widening as soon as a dependency chain goes twice through the
same predicate symbol at the same argument position� Each occurrence of the
variable responsible for this �potential� cyclic dependency is then renamed to a
fresh variable� This is a conservative transformation that ensure convergence�

Example
� To illustrate unfolding� normalization and widening transformations�
we extract an open set of clauses from Example ��

P =
{

self (o)← {main.call(o), lk(o, main, main)}
self (o)← {self (o′), fd(o′, o)}

}

The set of open predicate symbols is {main.call, lk, fd}� By iterative unfolding
�no minimization applies�� an in�nite ascending chain of programs is computed�

P0 = {}
P1 = {self (o)← {main.call(o), lk(o, main, main)}}
P2 =

{
self (o)← {main.call(o), lk(o, main, main)}
self (o2)← {main.call(o1), lk(o1, main, main), fd(o1, o2)}

}

. . .

Pn+1 = Pn ∪
{

self (on)←
{

main.call(o1), lk(o1, main, main),
fd(o1, o2), . . . fd(on−1, on)

}}

P3 is widened by renaming the �rst occurrence of o2 by α and the second by β�

�(P2) =
{

self (o)← {main.call(o), lk(o, main, main)}
self (o2)← {main.call(o1), lk(o1, main, main), fd(o1, α), fd(β, o2)}

}

At the next iteration step� widening is also triggered and we obtain�

�(P3) =




self (o)← {main.call(o), lk(o, main, main)}
self (o2)← {main.call(o1), lk(o1, main, main), fd(o1, α), fd(β, o2)}
self (o)←

{
main.call(o2), lk(o1, main, main),
fd(o1, α), fd(β, γ), fd(δ, o2)

}



The last clause is minimized by renaming [β
→ δ, γ
→ o2] and we obtain the
following program

{
self (o)← {main.call(o), lk(o, main, main)}
self (o2)← {main.call(o1), lk(o1, main, main), fd(o1, α), fd(β, o2)}

}

which is stable by the iteration step� While the �rst clause is directly inherited
from the initial clauses� the second is computed by the resolution process� Widen�
ing is responsible for the introduction of the fresh variables α and β� Without
widening� there would be a path via fd �elds between α and β objects�

� Related Work

The use of logic languages such as datalog to specify static analyses is not new
but seems to have stayed within the imperative and logic programming realm�
The approach called abstract compilation evolves around the idea of translating a
program into a set of Horn clauses that can then combined with particular queries
to obtain information about the program being analysed� Reps proposed to use
logic databases in order to have a demand�driven data�ow�analysis for free ���
�
Hill and Spoto studied the use of logic programs to compactly model abstract
denotations of programs ���
� They cite an experiment with class analysis but
do not provide details�

Nielson and Seidl have proposed to use Alternation�Free Least Fixed Point
Logic �ALFP� as a general formalism for expressing static analyses �in particular

�CFA control��ow analysis ���
� in the Flow Logic framework� Hansen ���
 shows
how to encode a �ow logic for an idealized version of Java Card� The ALFP logic
is more expressive than datalog but as shown here� this added expressiveness
does not seem required in the particular case of class analysis� It is unknown
to us how our resolution techniques for open programs carry over to this more
powerful logic�

The notion of context�sensitive analyses has been around for a long time� The
article by Hornof and Noy� ���
 describes various types of context�sensitivity for
static analysis of imperative languages� For object�oriented languages� DeFouw
et al� ���
 describe a parameterized framework to de�ne context�sensitive class
analyses� but in a somewhat more operational setting than here� Jensen and
Spoto ���
 classify a number of low�cost� context�insensitive class analyses such
as Rapid Type Analysis and
�CFA in a language�independent abstract inter�
pretation framework�

In their survey of modular analysis methods� Cousot and Cousot ��

 write
that modular analysis consists in computing a parameterized �xpoint

λ(p1, . . . , pn).lfp(λp′.f(p′)(p1, . . . , pn))

but note that a direct approach is not in general feasible� By restricting attention
to a particular type of analysis that can be expressed in the simple speci�cation
language datalog we have been able to re�express this �xpoint computation
as the solution of a set of open datalog clauses and to propose a number of
resolution techniques that can help in this resolution�

Flanagan and Felleisen ���
 developed a componential set based analysis for
Scheme� Each module gives rise to a constraint set separately minimized under
a notion of observational equivalence� For this particular constraint language�
equivalence under observational equivalence is decidable �though computation�
ally expensive�� It means that a normal form for constraints exists � This is not
the case for datalog� and hence the resolution techniques are not in general
guaranteed to yield a normal form�

Rountev et al� ���
 de�ne a framework to re�ne the result of a whole program
analysis by applying a more precise analysis on program fragments� Basically�
whole program information is used to abstract the behaviour at the boundaries
of the fragment� The pros of this technique is that the fragment is only analysed
in contexts relvant for the whole program being analysed� The cons is that the
fragment is to be re�analysed as other parts of the program change�

Bossi et al� �	
 de�ned a compositional semantics for �open� logic programs for
which the semantics domain is de�ned by syntactic objects� sets of clauses� Based
on this semantics� Codish et al� ��
 proposed a framework for the modular analysis
of logic programs� Alike this line of work� our modular analysis does not require
to give a semantics to open object�oriented programs� Our presentation does not
even explicit a semantics for open datalog programs but formalizes what safe
approximations are through the � relation� Anyway� at the end� our approaches
converge since iterative unfolding of clauses �Section ���� is the semantics of
open programs proposed by Bossi et al�

� Conclusions

We have demonstrated the use of datalog as a speci�cation language for class
analysis of object�oriented languages� by showing how a variety of context�
sensitive analyses can be expressed as instances of a common framework� For
closed programs� this provides a straightforward implementation of the analysis
through a bottom�up evaluator for datalog� We have also shown its use for de�
veloping modular program analyses� Analysis of program fragments gives rise to
datalog programs with partially or unde�ned predicates� Such programs can be
reduced using a number of iteration and normalisation operators� all expressible
in the datalog framework�

As noted in the section on resolution by unfolding and minimisation �Sec�
tion ����� the resolution might in certain cases need a widening operator to

enforce convergence� The next step in our work is to design suitable widenings
in order to be able to experiment with the analysis of realistic code fragments�
Another issue that needs to be treated formally is how to take into account the
structuring mechanisms and scoping rules of the programming language �such as
the visibility modi�ers and package structure in Java� when determining what
predicates can be considered closed and what must be kept open� A precise mod�
eling of this is important since the more predicates can be considered closed� the
more resolution can take place�

References

�� O� Agesen� Constraint�Based Type Inference and Parametric Polymorphism� In
B� Le Charlier� editor� Proc� of the �st International Static Analysis Symposium�
volume
�� of LNCS� pages �
����� Springer�Verlag� �����

�� K� R� Apt� Introduction to logic programming� In J� van Leeuwen� editor� Handbook
of Theoretical Computer Science� Volume B� Formal Models and Semantics� pages
�������� Elsevier� Amsterdam� �����

�� D� F� Bacon and P� F� Sweeney� Fast Static Analysis of C�� Virtual Function
Calls� In Proc� of OOPSLA���� volume ������ of ACM SIGPLAN Notices� pages
�������� New York� ����� ACM Press�

�� A� Bossi� M� Gabbrielli� G� Levi� and M� C� Meo� A Compositional Semantics for
Logic Programs� Theoretical Computer Science� �������������� �����

�� M� G� Burke and B� G� Ryder� A critical analysis of incremental iterative data �ow
analysis algorithms� IEEE Transactions on Software Engineering� ������������
�
�����

�� A� K� Chandra and P� M� Merlin� Optimal implementation of conjunctive queries in
relational data bases� In Proc� of the �th ACM symposium on Theory of computing�
pages ������ �����

�� M� Codish� S� K� Debray� and R� Giacobazzi� Compositional analysis of modular
logic programs� In Proc� of the ��th ACM symposium on Principles of programming
languages� pages �������� ACM Press� �����

� M� Codish� M� Falaschi� and K� Marriott� Suspension analysis for concurrent logic
programs� ACM Transactions on Programming Languages and Systems� ����������
�
�� �����

�� P� Cousot and R� Cousot� Comparing the Galois connection and widen�
ing�narrowing approaches to abstract interpretation� invited paper� In M�
Bruynooghe and M� Wirsing� editors� Proc� of the International Workshop Pro�
gramming Language Implementation and Logic Programming	� volume ��� of
LNCS� pages �������� Springer� �����

��� P� Cousot and R�Cousot� Modular static program analysis� invited paper� In
R�N� Horspool� editor� Proc� of the ��th International Conference on Compiler
Construction� volume ���� of LNCS� pages ������
� Grenoble� France� April �����
Springer�

��� F� Denis and J�P Delahaye� Unfolding� procedural and 	xpoint semantics of logic
programs� In Proc� of the
th Annual Symposium on Theoretical Aspects of Com�
puter Science� volume �
� of LNCS� pages �������� Hamburg� Germany� February
����� Springer�

��� A� Diwan� J� E� B� Moss� and K� S� McKinley� Simple and E�ective Analysis
of Statically Typed Object�Oriented Programs� In Proc� of OOPSLA���� volume
������ of ACM SIGPLAN Notices� pages �������� New York� ����� ACM Press�

��� C� Flanagan and M� Felleisen� Componential set�based analysis� ACM Transactions
on Programming Languages and Systems� �������������� �����

��� H� Gaifman� H� Mairson� Y� Sagiv� and M� Y� Vardi� Undecidable optimization
problems for database logic programs� In Proc� Symposium on Logic in Computer
Science� pages �������� Ithaca� New York� jun ��
�� IEEE Computer Society�

��� D� Grove and C� Chambers� A framework for call graph construction algorithms�
ACM Transactions on Programming Languages and Systems� �������
������ �����

��� R� R� Hansen� Flow logic for carmel� Technical Report Secsafe�IMM����� IMM�
Technical U� of Denamrk� �����

��� P� M� Hill and F� Spoto� Logic Programs as Compact Denotations� Proc� of the
Fifth International Symposium on Practical Aspects of Declarative Languages�
PADL ���� �����

�
� L� Hornof and J� Noy�� Accurate binding�time analysis for imperative languages�
�ow� context� and return sensitivity� Theoretical Computer Science� ��
�����������
�����

��� T� Jensen and F� Spoto� Class analysis of object�oriented programs through ab�
stract interpretation� In F� Honsell and M� Miculan� editors� Proc� of Foundations
of Software Science and Computation Structures �FoSSaCS����� pages ��������
Springer LNCS vol ������ �����

��� G� Levi� Models� unfolding rules and 	xpoint semantics� In Robert A� Kowalski
and Kenneth A� Bowen� editors� Proc� of the
th International Conference and
Symposium on Logic Programming� pages ���������� Seatle� ��

� ALP� IEEE�
The MIT Press�

��� J� F� Naughton� Data independent recursion in deductive databases� Journal of
Computer and System Sciences� �
���������
�� April ��
��

��� F� Nielson and H� Seidl� Control��ow analysis in cubic time� In Proc� of European
Symp� on Programming �ESOP����� pages ������
� Springer LNCS vol� ���
� �����

��� J� Palsberg and M� I� Schwartzbach� Object�Oriented Type�Systems� John Wiley
� Sons� �����

��� J� Plevyak and A� Chien� Precise Concrete Type Inference for Object�Oriented
Languages� In Proc� of OOPSLA���� volume ������ of ACM SIGPLAN Notices�
pages �������� ACM Press� October �����

��� T� Reps� Demand interprocedural program analysis using logic databases� In
Applications of Logic Databases� pages �������� Boston� MA� ����� Kluwer�

��� A� Rountev� B� G� Ryder� and W� Landi� Data��ow analysis of program frag�
ments� In Proc� of the �th international symposium on Foundations of software
engineering� pages �������� Springer�Verlag� �����

��� Y� Sagiv and M� Yannakakis� Equivalences among relational expressions with the
union and di�erence operators� Journal of the ACM� �������������� ��
��

�
� O� Shmueli� Decidability and expressiveness aspects of logic queries� In Proc� of
the �th ACM symposium on Principles of database systems� pages �������� ACM
Press� ��
��

��� J� D� Ullman� Principles of database and knowledge�base systems	 volume �� vol�
ume �� of Principles of Computer Science� Computer Science Press� ��

�

