Modular Class Analysis with DATALOG*

Frédéric Besson and Thomas Jensen

IRISA/INRIA/CNRS
Campus de Beaulieu
F-35042 Rennes, France

Abstract DATALOG can be used to specify a variety of class analyses for
object-oriented programs as variations of a common framework. In this
framework, the result of analyzing a class is a set of DATALOG clauses
whose least fixpoint is the information analysed for. Modular class anal-
ysis of program fragments is then expressed as the resolution of open
DATALOG programs. We provide a theory for the partial resolution of
sets of open clauses and define a number of operators for reducing such
open clauses.

1 Introduction

One of the most important analyses for object-oriented languages is class analysis
that computes an (over-)approximation of the set of classes that an expression
can evaluate to at run-time [1,3,12,23,24]. Class analysis forms the foundation for
static type checking for OO programs aimed at guaranteeing that methods are
only invoked on objects that implement such a method. It is also used for building
a precise call graph for a program which in turn enables other optimisations
and verifications. For example, the information deduced by class analysis can in
certain cases be used to replace virtual method invocations by direct calls to the
code implementing the method.

Existing class analyses are all whole-program analyses that require the entire
program to be present at analysis time. There are several reasons for why it is
desirable to improve this situation. The size of the object-oriented code bases to
be analysed means that a whole-program analysis is lengthy. Having to re-analyse
all the program every time a modification is made means that the analysis is
of little use during a development phase. Furthermore, dealing with languages
that allow dynamic class loading means that not all code is available at analysis
time. These shortcomings must be resolved by developing more incremental and
modular analyses, that can deal with fragments of programs.

Modular program analysis has been the object of several recent studies.
Cousot and Cousot [10] examine the various approaches to modular program
analysis and recast these in a uniform abstract interpretation framework. The
essence of their analysis is a characterisation of modular program analysis as the
problem of calculating approximations to a higher-order fixpoint. In this paper

* This work was partially funded by the IST FET/Open project “Secsafe”.

we demonstrate how this fixpoint characterisation can be instantiated to the case
of class analyses expressed using DATALOG clauses. In this case, the result of the
class analysis is defined as the least solution of the set of clauses generated from
the program in a syntax-directed manner. A modular analysis is a procedure
that transforms a partial set of constraint into an equivalent “more resolved” set,
where “more resolved” means that the number of iterations required to reach the
least solution has been reduced.

The class analysis will be expressed as a translation from a simple object-
oriented programming language into constraints specified using the DATALOG
language. DATALOG is a simple relational query language yet rich enough to give
a uniform description of a number of control flow analyses of object-oriented
languages, including the set-based analysis of Palsberg and Schwartzbach. It has
an efficient bottom-up evaluator that provides an implementation of the analysis
of closed programs for free. The analysis of program fragments gives rise to open
sets of DATALOG clauses, for which a number of powerful normalisation operators
exist. Finally, the semantic theory of open logic programs provides a basis for
defining abstract union operators on constraint systems corresponding to the
union of two program fragments.

The contributions of the paper can be summarised as follows.

— We show how DATALOG can be used for specifying class analyses in a uni-
form manner. We notably show how a number of existing analyses can be
expressed naturally in this framework.

— We extend this to a theory of modular class analysis in which the analysis
of program fragments are modeled using open DATALOG programs.

— We define a number of partial resolution techniques for reducing an open
DATALOG program to a solved form.

Section 2 defines a simple object-oriented programming language. Section 3
recalls basic notions of DATALOG, which is then used to define a number of class
analyses in Section 4. Open DATALOG programs arising from analysis of program
fragments are introduced in Section 5.1. In Section 5.2, we give a characterisation
of correct modular resolution methods. We then show, in Section 6, how several
modular resolution techniques fit into this framework.

2 An Object-Oriented Language

Our analysis is defined with respect to an untyped imperative class-based object-
oriented language. To focus on the class analysis principles, language constructs
are kept to a minimum. The precise syntax is defined in Figure 1.

A program P is made of a set of class declarations. Each class C is identi-
fied by a unique name c and define a set of methods. It may extend an existing
class ¢/. Within a class, each method M is uniquely identified by its signature
m/i where m is the method name and i the number of arguments. The method
body is a sequence of instructions. The instruction z:= new ¢ creates an object
of class c. Instruction x.fd:=y assigns the value of variable y to the field fd of

P :={Cy,...,Cn}
C = class c{M1,... , My} |
class c extends ¢'{Mi,... ,M,}
M :=m(z1,... ,zn) IL
IL == [I,..., 1]
I == newc|z.fd=y|x:=y.fd|
r:=x0.f(x1,... ,xn) | Tet

Figurel. A minimalist object-oriented language

the object referenced by x. Similarly, z:=y.fd transfers the content of field fd of
y to variable x. The instruction x:=z.f(z1,...,2,) invokes the method f on
the object stored in xzg with x1,... ,x, as arguments and stores the result in x.
Finally, ret x ends the execution of an invoked method by returning the value of
x. Except the last instruction that models method return, all the other instruc-
tions are different kinds of assignments: object creation, field update, field access
and dynamic method invocation. Following the object-oriented conventions, in
a method body, the current active object is referenced as self.

Execution of a program starts at the first instruction of the method main of
class main. The inheritance relation between the classes of a program is acyclic.
Because our language does not provide multiple inheritance, the class hierarchy
is a forest (of trees). Virtual method resolution is defined by a method lookup
algorithm that given a class name ¢ and a method signature m returns the class
¢ that implements m for the class c. In order to take inheritance into account,
the method lookup algorithm walks up the class hierarchy from class ¢ and
eventually returns the first class ¢’ that defines a matching method m.

3 DATALOG

We recall some basic facts about DATALOG [29] that will serve as language for
specifying the class analyses. Syntactically, DATALOG can be defined as PROLOG
with only nullary functions symbols é.e., constants. Hence, most of the definitions
and properties of DATALOG programs are inherited from PROLOG. It can also be
presented as a relational query language extended with recursion.

The denotation of a DATALOG program is the least set of atoms that satisfy
the clauses of the program. The fundamental difference with respect to Prolog
is that the least Herbrand model is computable.

Definition 1. Let IT be a (finite) set of predicate symbols and V' (resp. C) a set
of variables (resp. constant symbols).

— An atom is a term p(x1,... ,x,) where p € II is a predicate symbol of arity
n and each x; (i € [1,...,n]) is either a variable or a constant (x; € VW (C).

— A clause is a formula H «— B where H (the head) is an atom while the body
B is a finite set of atoms.
— A program P is a set of clauses.

For atom A, Var(A) is the set of variables occurring in A and Pred(A)
is the predicate symbol of A. Var and Pred are extended the obvious way to
clauses and programs. An atom A is said ground if its set of variables is empty. A
substitution ¢ : V — VWC(C is a mapping from variables to variables or constants.
A ground substitution maps variables to constants. We note Ao the application
of a substitution o to an atom A.

A Herbrand interpretation I is a set of ground atoms. Given a set of pred-
icate symbols IT and a set of constant C, the Herbrand base HB(II, C') is the
(greatest) set of ground atoms that can be built from the predicate symbols in IT
and constants in C. The least Herbrand model of a program P is a Herbrand in-
terpretation defined as the least fixed point of a monotonic, continuous operator
Tp known as the immediate consequence operator [2].

Definition 2. For a program P and a Herbrand interpretation I, the operator
Tp is defined by:

Tp(I)={A|3(H—BePo:V—-C)¥beB)boel, A=Ho}

In the following, the fixed point operator is noted [fp. Hence, the least Herbrand
model of a program P is Ifp(Tp).

4 Class Analysis in DATALOG

In this section we describe a class analysis in the form of a syntax-directed trans-
lation that maps a term L of the object-oriented language defined in Section 2 to
a set of DATALOG clauses. The result of the analysis is the least fixpoint of these
clauses. The analysis presented in this section deals with complete programs;
the following sections will be concerned with showing how to combine separate
analyses of individual classes to eventually recover the result of the analysis of
the complete program.

One of the advantages of DATALOG is that it allows to specify a collection
of class analyses in a common framework, thus allowing to relate a number of
known analyses. To make this point clear, we first give an intuitive description
of the basic analysis and then explain how it can be varied to obtain analyses of
different degree of precision. Intuitively, the basic analysis works as follows. For
each variable x defined in method m of class ¢ in the program we introduce a
unary predicate named c.m.x that characterises the set of objects being stored
in that variable. Each assignment to a variable will result in a clause defining
the corresponding predicate. The heap of allocated objects is represented by a
collection of binary predicates fd(_,), one for each field name fd used in the
program. If an object o1 of class ¢; references an object oo of class ¢ via field
fd then fd(c1,c2) holds. To deal with method calls, each method signature m

gives rise to a pair of predicates m.call and m.ret such that m.call collects the
arguments of all calls to methods named m while m.ret collects the return values
from the different calls to m.

A number of syntactic properties of a program are represented by the pred-
icates class, subclass, sig and define. Given an object-oriented program P, we
have: class(c) if ¢ is a class of P; subclass(c,c’) if ¢ is a direct subclass of ¢
in P; sig(m) if m is a method signature of P and define(c,m) if class ¢ of P
defines a method of signature m. The dynamic method lookup is encoded by the
predicate &k such that lk(o, f,c) if a call to method f on an object of class o is
resolved to the definition of f found in class c.

lk(c,m,c) — {define(c,m)}
lk(c,m,c) — {notDefine(c,m), subclass(c,c"),lk(c",m,)}
notDefine(c,m) — {class(c), sig(m), ~define(c,m)}

A technical note: because of the use of negation (=), the clause defining the pred-
icate notDefine does not strictly comply with our definition of clauses. However,
as long as negations are stratified — recursion cycles are negation free — the least
Herbrand model exists.

4.1 Context-Sensitive Analyses

There are a number of places in which the precision of the basic class analysis
can be fine-tuned:

— Modeling of the heap of objects. In the basic analysis, objects in the heap
are simply abstracted by their class identifier, hence the abstract domain of
objects is defined by Object = Class. Other ways of abstracting objects take
into account the creation context. For instance, objects can be distinguished
by their program point of creation, in which case we get Objet = Class x PP
where PP = Class x Meth x PC is the set of program points.

— Distinguishing different calls to the same method. The precision of an analy-
sis can be improved by keeping track of the program point at which a method
was invoked Context = PP. Other ways of separating the method calls is
by distinguishing them according to the class of their arguments (see the
Cartesian Product abstraction below).

— Distinguishing different occurrences of the same variable. The basic analysis
keeps one set for each variable. All assignments to that variable will con-
tribute to this set. Introducing one set for each occurrence of a variable can
lead to more precise analysis results, see e.g., [18] for the benefits obtained
in the case of binding-time analysis for imperative languages.

The last type of context sensitivity is relatively straightforward to obtain by
syntactic transformations so here we focus on the first two items: creation- and
call-context sensitive analyses.

Context sensitivity is expressed separately by means of the predicates object,
objCtx, methCtx/n and classOf. The predicate object is used to define the ab-
stract domain of objects. The predicate objCtx models a function that given a

Program

main.call(o, ctx) «—
[[{Clv “ee Cn}]] - U |ICZ]] U Ob]Ctl'(Q,Q,Q, w7 Qa Qa O)a
i€(l,... ,n] methCtz/n(0,0,0, 0,0, ctz)

Class

[class ¢ Meths] = [Meths]. U {class(c) — {}}

, B subclass(c,) — {}
[class ¢ extends ¢ Meths] = [Meths].U {claSS(Q) —{}

Methods
KMy, M= | Ml

i€(1,...,n]
[m(z1,...,zn)IL]c = [m(z1,... ,z0)]c U[LL]c;m

(define(c,m/n) — {})
sig(m/n) —{}
m.call(o,01,... ,0n,ctx),
cm.ctz(ctr) { classOf (o, "), lk(c',m/n,c) }
c.m.self (o, ctz) «— {m.call(o,01,... ,on,ctx), c.m.ctz(ctz)}
cem.zy (o1, ctx) — {m.call(o,01,... ,0n,ctz),cm.ctx(ctz)}

[m(zi, ..., zn)]c =

\ c.m.r (0n) — {m.call(o,01,... ,0n,ctx),cm.ctx(ctx)})

Instructions

[[[117 e 7In]]]c,m = U Hliﬂc,m,i

i€[1,...,n]

objCtx(c, m,i,c, ctx,0’,0)
[z.fd := y]lem = {fd(0,0") + c.m.x(o, ctx),c.m.y(0', ctz)}
(c.m.i.call(oo, ... ,0n,ctx, ctx’) — \
zo(00,ctx), ... ,Tn(on,ctx),
{methC’tm/n(g,m,L 0oy« -+ ,0n,ctx, ctx’) }
[z := zo.f(x1,. . 2n)]em,i = f-call(oo, ... ,on,ctz’)
{c.m..call(oo, ... ,on,ctz,ctx’)}
c.m.x(o, ctr) «—
{ {f.ret(o,ctz’), c.m.i.call(oo, . .. ,on,ctx,ctz’)}
{m.ret(o, ctz) — c.m.x(o, ctx)}

[z := new c'Je,m, = {c.m.x(O, ctx) — {C.m.self(o’,ctx)’ }}

[ret z]cm,i

Figure2. Generation algorithm for class analysis

syntactic program point (class, method, program counter), a class to instantiate
and an analysis context yields a new object. If objCta(c, m, i, ¢, ctx, self , newOby)
holds then newObj is a novel object of class ¢’ built from the program point
(¢, m, 1), for the call context ctx and the current object self.

The predicate family methCta/n models a function that given a syntactic
program point (class, method, program point), the n arguments of the call and
the current call context yields a novel call context. If

methCtx/n(c, m,i, self, 01, ... ,0n, ctz,newCtx)

holds then newCtx is a novel call context built from the program point (¢, m,),
for the call context ctx and the argument objects of the call self,o01,...,0,.
Finally, the predicate classOf (o, c) permits to obtain the class ¢ of the object
o. The predicates 0bjCtz and classOf (o, ¢) must satisfy the following coherence
constraint: objCtx(c, m,i,c, ctx,0) = classOf (o,c').

4.2 Example Analyses

In the following we specify a number of known analyses as variations of the
analysis in Figure 2. We do this by specifying the abstract domains of objects
and contexts, and by defining the instantiation of the predicates objCtz, methCtx
and classOf. For certain analyses, we make use of a tuple notation which is not
part of DATALOG. However, this extension is not a theoretical problem: such
finite depth terms can be flattened and encoded by adding extra arguments
to predicate symbols. To give a more uniform presentation, we keep a tuple
notation.

0-CFA 0-CFA is a degenerated context sensitive analysis in which objects are
abstracted by their class and where there exists a single call context identified
by the constant ctz. Hence, we have Object = Class and Context = {ctx}.

objCtx(c, m,i,c, ctx,c) —{}
methCtx/n(c,m,i,00,. .. ,0n,ctx,ctx) — {}
classOf (¢, c) —{}

1/2-CFA Some analyses of object-oriented programs deal with inheritance by
copying the inherited methods into the inheriting class [23]. This syntactic un-
folding adds a certain degree of call context sensitivity to an analysis because
it distinguishes between a method according to which class of object it is called
on. To model this effect of unfolding the inheritance mechanism, we keep as call
context the class of the receiver of the current call. This is expressed by the re-
peated occurrence of self in the definition of methCtz. We have Object = Class
and Context = Object.

objCtx(c, m,i, ¢, ctx,c) —{}
methCtx/n(c,m, 1, self,01,... ,0n,ctx, self) — {}
classOf (¢, c) —{}

k-I-CFA The principle of the k-1-CFA hierarchy of analysis is to keep a call
string of length k& and a creation string of length [. As a result, the call context
is a tuple of the k call instructions that lead to the call. Similarly, an object 01
now contains information about the object oo that created it, and the object
o3 that created o5, and ... the object o; that created the object 0;_1. We have
Object = Class x PP' and Context = PP".

. - / O:(C”a(pla"' 7pl))a
objCtx(c,m,i,c, ctz,0,0") Yo — (@ ((c.m, i), ps - pit) }
ctr = (pla o apk)7
ctx' = ((Ca m, i)apla s 7pk71)a
classOf ((¢, 1), ¢) — {object((c,1))}

methCtx/n(c,m,i,00, ... ,0n,ctx, ctr') —

Cartesian Product Algorithm This kind of context sensitivity for class analysis
was first discussed by Agesen [1]. A call context is built from the arguments of
the call. Calls to the same method are distinguished as soon as the arguments
are different. The set of call contexts of a method with n arguments is then
Context, = Object™. Thus, the precision of the overall analysis depends on the
object abstraction. Here, we show an instantiation where the object creation
context is the program point of creation (Object = Class x PP).

objCtx(c,m,i,c, ctx,0,0") —{d =(d,(e,;m,i)),}
methCtxz/n(c,m, i, 00, ... ,0n,ctz,cta’) — { cta’ = (0o, ... ,0n), }
classOf ((¢,1), ¢) — {object(c,1)}

Ezxample 1. Consider the following contrived program
P ={ class main{main()[self := self.fd; ret self]|}
For the 0-CFA analysis, here are the generated constraints.

main/0.call(main) — {}

define(main, main/0) — {}

main.main/0.self (o) «— {main/0.call(0),lk(o, main/0, main)}
main.main/0.self (o) «— {main.main/0.self (o), fd (o', 0)}
main/0.ret(o) — {main.main/0.self (o) }

Next section, we detail how the clauses defining self can be reduced using a
combination of modular resolution techniques.

5 Modular Resolution

The results in this section form the theoretical basis for analysing a class hier-
archy in a compositional fashion. In this approach, each class is first analysed
separately and the resulting DATALOG programs reduced towards a solved form.
Then, the reduced programs are joined together and further reductions can take
place.

For a class, the generation algorithm yields a set of DATALOG clauses. How-
ever, because a class is not a stand-alone program, code in one class may invoke
methods defined in another class. This means that some predicate symbols ap-
pearing in the clauses modeling a single class may be either partially or totally
undefined. For those predicates, other classes may enrich their definition. To
make this explicit, we introduce the term open predicates. Being open is a prop-
erty that depends on the scoping rules of the analysed language. For our class
analysis, open predicate symbols arise from the analysis of method calls, method
declaration, method returns and field updates. For instance, the return instruc-
tion of a method of signature m defined by a class ¢ contributes to the definition
of the m.ret predicate. Because any class implementing a method m also con-
tributes to the definition of the predicate symbol m.ret, its definition is kept
open until all the program is analysed.

5.1 Open DATALOG Programs

Bossi et al. [4] define a compositional semantics for open logic programs. We use
their definition of open programs.

Definition 3 (Bossi et al. [4]). An open DATALOG program P is a (DATA-
LOG) program P together with a subset (2 of its predicate symbols (2 C Pred(P)).
A predicate symbol in §2 is considered to be only partially defined in P.

The immediate consequence operator 7' is extended to open programs by ignoring
the set of open predicates: Tpe = Tp.

Open clauses generated from individual classes are joined to model the anal-
ysis of the whole program. Such union of open programs requires common pred-
icate symbols to be open. Otherwise, union is undefined. While analysing a class
in isolation, it is then mandatory to declare open any predicate symbol that may
be referenced elsewhere.

Definition 4. Let PlQl and PQQ2 be open programs. Under the condition that
Pred(Py) N Pred(Py) C 2, N 2y, P U P is defined by

P U PR = (P U Ry
Property 1. Union of open programs is associative.

This property is essential for our purpose: the order in which analyses of classes
are joined does not matter.

At this point, we are (only) able to map classes to open DATALOG clauses and
join them incrementally to get the clauses modeling the whole program being
analysed. Since these operations are strictly syntactic, no resolution occurs. Next
sections will characterise and provide modular resolution methods.

5.2 Approximation of Open Programs

A modular resolution method maps open programs to open programs while
preserving the overall correctness of the whole analysis. We formalize the notion
of approximation by means of a pre-order relation C over open programs. This
generalizes the usual containment relation over DATALOG programs [28].

Definition 5. Let P*' and Pi*> be DATALOG open programs. Py is an over-
approzimation of P** (P C Pf%) if and only if:

— (1 = (25 and Pred(P,) = Pred(P,)
— for all Q¥ such that PlQl U QY and P2Ql U QY are defined, we have

fp(Tr,uq) € ifp(Tr,uqQ)
Property 2. The relation C is reflexive and transitive.

The relation C gives rise to an equivalence relation between open programs.

Definition 6. Let P, P§’ be open programs. P is equivalent to P§’ (P’ =
P§?) if and only if P C Py’ and P§* C P{.

The relevance of C for modular resolution lies in the following fundamental
lemma. It shows that open programs remain in relation by C when an arbitrary
open program is adjoined to them. This is the key property of modular reso-
lution methods: whatever the unknown clauses that could be added later, the
transformation preserves the correctness of the analysis.

Lemma 1. Let P/, Py and Q2 be open programs. If P C P32 and P U
QY is defined, then we have

Plgl UQQ EPbe UQQ

Proof. To begin with, we observe that P2Q 2UQ* is defined. This follows trivially
from the definition of C (PlQl C PQQQ).

Now, consider an arbitrary open program Q’ 2 To prove the lemma, we show
that if (P2 UQ?)UQ™™? and (P UQ?)UQ'™ are defined then the fixpoints
are ordered by set inclusion: Ifp(T(p,u0)uq’) € Up(T(p,ug)ug’). Because union
of open programs is associative (Prop 1), we have (PlQl U U Q’Q/ = PlQl U
QUQ)?? and (P2 UQY) UQY = P U(QUQ)?? . Exploiting that
PlQl C PQQ"’, we conclude that Ifp(Tp,uouor)) € ifp(TpuQugr)- As a result, by
associativity of union of sets, the lemma holds.

Based on the relation C on open programs, we define the notion of correct
and exact resolution methods.

Definition 7. A correct (resp. exact) resolution method RE (resp. R=) is such
that for all open program P*, we have

PP CRE(P?) P2 =R7(P9)

It should be noted that equivalence of DATALOG programs is undecidable [28].
This is of little concern to us because we are only interested in transformations
that are guaranteed either to preserve equivalence or to yield a safe approxima-
tion.

Finally, theorem 1 formally states that correct resolution methods as defined

above are indeed correct for the global analysis.
P g union of open programs. For any collec-

Theorem 1. Let P =U,;c;y, . o P

tion of correct resolution methods leg, ... ,RE the following holds :
Up(Ty, poe) W (T ag (b))

Proof. Because fRig are correct resolution methods (Def 7), we have for any
i €[l,...,n] that PiQf' C fR% (PiQ"'). Because unions are defined, by recursively
applying Lemma 1, we obtain that |J, PZ.Q"' C U, Rig (PZQ) By definition of C,

since Tpe = Tp, the theorem holds: lfp(TUi Pini) C lfp(TUi 921"g(Pin,¢)).

6 Modular Resolution Methods

The previous section showed that resolution methods can be applied locally to
parts of a DATALOG program. Here, we exhibit a number of resolution methods
and relate them to some of the traditional techniques for modular analysis listed
by Cousot and Cousot in [10].

6.1 Fixpoint Based Methods

One type of resolution techniques rely on the fixpoint computation of the least
Herbrand model of DATALOG programs. These techniques require the ability to
re-construct a DATALOG program from a Herbrand interpretation.

Definition 8. The extensional database built from a Herbrand interpretation I
is the program edb(I) defined by edb(I) = {e — {} | e € I}.

Worst Case Worst case analysis is a usual modular resolution method in which
the worst assumption is made for the unknowns: they are assigned the top el-
ement of the lattice. The worst case consists in computing the fixpoint of this
enriched system. For an open program P, we add an empty clause per open
predicate symbol.

Wao ={p(x1,...,2n) — {} | p € 2, z; are distinct variables}

Property 3. For any Herbrand interpretation I, we have Ty, (I) = HB(£2,C)

Because a modular resolution method must yield a program, the least Herbrand
model of P U W, is computed and translated back to a program. Theorem 2
states the correctness of this approximate resolution method.

Theorem 2. The worst case resolution of an open program P*’ is defined by
WC = edb(ifp(Tpuw,,)). It is a correct resolution method.

P2 C we?

Proof. Consider an arbitrary open program Q% and suppose that P2 U QY
and WC*? UQ? are defined. We show that Ifp(Tpug) € ifp(Tweoug)- To begin
with, we prove the equality

ifp(Trowaug) = Ufp(Tweuq)

To do this, we apply several rewriting steps. First, we exploit the distributiv-
ity of T' and the property 3 to rewrite the left-hand side to Ifp(A.Tp(I) U
H U To(I)) where H denotes the Herbrand base generated from the predi-
cate symbols in 2 (H = HB(§2,C)). In general, the fixpoint operator does
not distribute with respect to U. However, in our case, at each iteration step the
computation of Tp(I) U H does not depend on Q. Intuitively, potential inter-
actions are captured by H. As a result, we have Ifp(Al.Tp(I) UH UTg(I)) =
Ifp(MLIlfp(M.Tp(I) U H) U Tg(I). We rewrite now the right-hand side of the
equality (Ifp(Twcug))- By definition of WC' and distributivity of 7', we have
lfp(TWCUQ) = lfp(/\I-Tedb(lfp(Tpuwn))(I) U TQ(I)) Since we have Tedb(jl)(IQ) =
I, we obtain lfp()\LTedb(lfp(Tpuwn))(I) U TQ(I)) = lfp()\I.lfp(Tpuwn) U TQ(I))
The proof of the equality follows because Ifp(Tpuw,,) = ifp(M.Tp(I)U H).

Given this equality, it remains to show that Ifp(Tpug) C Ifp(Truw,ug). It
is a direct consequence of the monotonicity of /fp and T. Hence, the theorem
holds.

In practice, the worst case may lead to a very imprecise global analysis.
However, if the original clauses are kept, some precision can be recovered a
posteriori by techniques such as restarting the iteration [5] or iterating separate
worst case analyses ([10] Sect. 8.2).

Partial Fixpoint Rather than a worst case assumption, we can make the as-
sumption that free predicate symbols will never be given a definition and open
predicate symbols will never be enriched by additional clauses. The minimal
fixpoint of the program can be computed but will only constitute a correct res-
olution as long as the assumption is valid i.e., nothing is added to the program.
However, we obtain an exact resolution method if we enrich an open program
with this least fixpoint.

Theorem 3. Let P be an 2-open program, P = (P Uedb(lfp(Tp)))%.

The practical interest of this method highly depends on the clauses in P.
Indeed, if the partial fixpoint is empty, nothing is gained. Otherwise, the pre-
computed partial fixpoint will speed-up the convergence of future fixpoint iter-
ations.

6.2 Unfolding and Minimization

Unfolding is a standard transformation of logic programs. Here we present ex-
act resolution methods based on unfolding. Definition 9 recalls the unfolding
operator unf as present in the literature, see e.g., Levi [20].

Definition 9. Let P and (Q be DATALOG programs that do not share variable
names'. The unfolding of P with respect to Q is a program defined by

unf(P,Q) ={Ho — Uigp,,,,,n] Dio | 3I(H < {Bi,...,Bn} € P).
B «— Dy €Q,...,B, — D, €Q.
o =mgu((B1,...,Bn),(B},...,Bl))}

where mgu is the most general unifier operator.

Simple Unfolding In the context of logic programs, unfolding has been studied
extensively (see e.g., [20,11]). A well-known result is that a DATALOG program
and its unfolding by itself have the same least Herbrand model.

Up(Tp) = Ifp(T3) = Ufp(Tuns(r,P))

To cope with open DATALOG programs, following Bossi et al. [4], we model in-
complete knowledge by adjoining tautologic clauses.

Definition 10. The tautological clauses Id of a set S of predicate symbols is
defined by Ids = {p(x1,... ,xn) — p(x1,... ,2,) | p € S} where x1, ..., x, are
distinct variables.

To get an exact resolution method, we unfold a DATALOG program with respect
to itself enriched with tautological clauses for open predicates symbols.

Theorem 4. Let P be an open program. P = unf(P, P U Idg)

Minimization Syntactically distinct DATALOG programs may denote the same
T operator. Obviously, such programs are equivalent.

Tp1 = sz = P1 = P2

For DATALOG programs, there exists a minimization procedure Min that com-
putes a normal form such that Tp = T, (py. Such minimization was first pro-
posed by Chandra and Merlin [6] for conjunctive queries and then extended by
Sagiv and Yannakakis [27] to sets of clauses. The minimization yields a reduced
clause for which redundant atoms have been eliminated. The idea of the algo-
rithm is to merge variables names to obtain a subset of the initial body. As an
example (due to Chandra and Merlin and rephrased in DATALOG terms), the
clause H(z) — {R(z,v,w), R(z, zw), $(u,w), $(u,v), S(y, w), S(y,v), S(y, 2)}
is minimised to H(z) <« {R(z,v,w), S(u,w), S(u,v)} by the substitution [y —
u, z — v]. The immediate consequence operator T is stable with respect to such
transformations. Hence, minimisation is an exact modular resolution method.

! To lift this restriction, a renaming is needed.

Iterative Unfolding The two previous transformations are complementary.
Minimization procedure gives a normal form to non-recursive programs but ig-
nore recursive dependencies while unfolding is one step unrolling of recursions.
Iterating these transformations until fixpoint yields an exact modular resolution
method.

Theorem 5. Let P be an open-program, P** = Ifp(\q. Min (unf (P, qUIdg)))%

If unfolding were considered without minimization, the iteration would diverge
for all recursive program. To improve convergence, it is desirable to normal-
ize programs at each iteration step. If the open predicates are exactly the free
variables (i.e., there are no partially defined predicates) the fixpoint program
is non-recursive (at each iteration step, it is only expressed in terms of the free
variables). Naugthon [21] proved that there exists a non-recursive equivalent pro-
gram if and only if the iteration converges. Such programs are said to be bounded.
Unfortunately, boundedness is not decidable [14] even for programs with a single
recursive predicate.

If necessary, termination can be enforced by means of a widening opera-
tor [9]. Divergence comes from the fact that, in a clause body, the length of
atoms/variables dependancies cannot be bounded. Typically, we have sets of
atoms like {z(o1, 02),2(02,03), ... ,2(0n—1,0,)}. The idea of the widening pro-
posed by Codish et al. [8,7] is to limit the length of such dependencies. They
choose to trigger widening as soon as a dependency chain goes twice through the
same predicate symbol at the same argument position. Each occurrence of the
variable responsible for this (potential) cyclic dependency is then renamed to a
fresh variable. This is a conservative transformation that ensure convergence.

Ezample 2. Toillustrate unfolding, normalization and widening transformations,
we extract an open set of clauses from Example 1.

[self (o) « {main.call(0), k(o, main, main)}
P sele) — o it o }

The set of open predicate symbols is {main.call,lk, fd}. By iterative unfolding
(no minimization applies), an infinite ascending chain of programs is computed.

b =1}
P(l) = {self (0) — {main.call(0),lk(o, main, main)}}
P self (o) « {main.call(0),k(o, main, main)}
2 7 self (0p) «— {main.call(oy),lk(01, main, main), fd(o1,00)}

main.call(o1),lk(01, main, main), } }

P,y1=P,U {self(on) - {fd(01,02)7 o Jd(op—1,0n)

Pj is widened by renaming the first occurrence of o3 by « and the second by 5.

A(Py) — self (0) « {main.call(0), lk(o, main, main)}
(P2) = self (02) — {main.call(o1),lk(01, main, main), fd(o1, a), fd(5, 02)}

At the next iteration step, widening is also triggered and we obtain.

self (0) « {main.call(0), lk(o, main, main)}
self (02) — {main.call(oy),lk(o1, main, main), fd(o1, &), fd(5,02)}
main.call(oz), lk(01, main, main),

self (0) — {fd(ol,a),fd(6;7)vfd(6’ 02)

A(Ps) =

The last clause is minimized by renaming [+— §,7v +— 02] and we obtain the
following program

self (0) — {main.call(0),lk(o, main, main)}
{ self (02) — {main.call(o1),lk(01, main, main), fd(o1, «), fd(5,02)} }

which is stable by the iteration step. While the first clause is directly inherited
from the initial clauses, the second is computed by the resolution process. Widen-
ing is responsible for the introduction of the fresh variables o and . Without
widening, there would be a path via fd fields between « and 3 objects.

7 Related Work

The use of logic languages such as DATALOG to specify static analyses is not new
but seems to have stayed within the imperative and logic programming realm.
The approach called abstract compilation evolves around the idea of translating a
program into a set of Horn clauses that can then combined with particular queries
to obtain information about the program being analysed. Reps proposed to use
logic databases in order to have a demand-driven dataflow-analysis for free [25].
Hill and Spoto studied the use of logic programs to compactly model abstract
denotations of programs [17]. They cite an experiment with class analysis but
do not provide details.

Nielson and Seidl have proposed to use Alternation-Free Least Fixed Point
Logic (ALFP) as a general formalism for expressing static analyses (in particular
0-CFA control-flow analysis [22]) in the Flow Logic framework. Hansen [16] shows
how to encode a flow logic for an idealized version of Java Card. The ALFP logic
is more expressive than DATALOG but as shown here, this added expressiveness
does not seem required in the particular case of class analysis. It is unknown
to us how our resolution techniques for open programs carry over to this more
powerful logic.

The notion of context-sensitive analyses has been around for a long time. The
article by Hornof and Noyé [18] describes various types of context-sensitivity for
static analysis of imperative languages. For object-oriented languages, DeFouw
et al. [15] describe a parameterized framework to define context-sensitive class
analyses, but in a somewhat more operational setting than here. Jensen and
Spoto [19] classify a number of low-cost, context-insensitive class analyses such
as Rapid Type Analysis and 0-CFA in a language-independent abstract inter-
pretation framework.

In their survey of modular analysis methods, Cousot and Cousot [10] write
that modular analysis consists in computing a parameterized fixpoint

)\(plﬂ A 7pn)'l.fp(>\p/'f(p,)(p1’ A 7p’ﬂ))

but note that a direct approach is not in general feasible. By restricting attention
to a particular type of analysis that can be expressed in the simple specification
language DATALOG we have been able to re-express this fixpoint computation
as the solution of a set of open DATALOG clauses and to propose a number of
resolution techniques that can help in this resolution.

Flanagan and Felleisen [13] developed a componential set based analysis for
Scheme. Each module gives rise to a constraint set separately minimized under
a notion of observational equivalence. For this particular constraint language,
equivalence under observational equivalence is decidable (though computation-
ally expensive). It means that a normal form for constraints exists . This is not
the case for DATALOG, and hence the resolution techniques are not in general
guaranteed to yield a normal form.

Rountev et al. [26] define a framework to refine the result of a whole program
analysis by applying a more precise analysis on program fragments. Basically,
whole program information is used to abstract the behaviour at the boundaries
of the fragment. The pros of this technique is that the fragment is only analysed
in contexts relvant for the whole program being analysed. The cons is that the
fragment is to be re-analysed as other parts of the program change.

Bossi et al. [4] defined a compositional semantics for (open) logic programs for
which the semantics domain is defined by syntactic objects: sets of clauses. Based
on this semantics, Codish et al. [7] proposed a framework for the modular analysis
of logic programs. Alike this line of work, our modular analysis does not require
to give a semantics to open object-oriented programs. Our presentation does not
even explicit a semantics for open DATALOG programs but formalizes what safe
approximations are through the C relation. Anyway, at the end, our approaches
converge since iterative unfolding of clauses (Section 6.2) is the semantics of
open programs proposed by Bossi et al.

8 Conclusions

We have demonstrated the use of DATALOG as a specification language for class
analysis of object-oriented languages, by showing how a variety of context-
sensitive analyses can be expressed as instances of a common framework. For
closed programs, this provides a straightforward implementation of the analysis
through a bottom-up evaluator for DATALOG. We have also shown its use for de-
veloping modular program analyses. Analysis of program fragments gives rise to
DATALOG programs with partially or undefined predicates. Such programs can be
reduced using a number of iteration and normalisation operators, all expressible
in the DATALOG framework.

As noted in the section on resolution by unfolding and minimisation (Sec-
tion 6.2), the resolution might in certain cases need a widening operator to

enforce convergence. The next step in our work is to design suitable widenings
in order to be able to experiment with the analysis of realistic code fragments.
Another issue that needs to be treated formally is how to take into account the
structuring mechanisms and scoping rules of the programming language (such as
the visibility modifiers and package structure in Java) when determining what
predicates can be considered closed and what must be kept open. A precise mod-
eling of this is important since the more predicates can be considered closed, the
more resolution can take place.

References

1.

10.

11.

O. Agesen. Constraint-Based Type Inference and Parametric Polymorphism. In
B. Le Charlier, editor, Proc. of the 1st International Static Analysis Symposium,
volume 864 of LNCS, pages 78-100. Springer-Verlag, 1994.

K. R. Apt. Introduction to logic programming. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science: Volume B: Formal Models and Semantics, pages
493-574. Elsevier, Amsterdam, 1990.

D. F. Bacon and P. F. Sweeney. Fast Static Analysis of C++ Virtual Function
Calls. In Proc. of OOPSLA’96, volume 31(10) of ACM SIGPLAN Notices, pages
324-341, New York, 1996. ACM Press.

A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. A Compositional Semantics for
Logic Programs. Theoretical Computer Science, 122(1-2):3-47, 1994.

M. G. Burke and B. G. Ryder. A critical analysis of incremental iterative data flow
analysis algorithms. IEEE Transactions on Software Engineering, 16(7):723-728,
1990.

A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Proc. of the 9th ACM symposium on Theory of computing,
pages 77-90, 1977.

M. Codish, S. K. Debray, and R. Giacobazzi. Compositional analysis of modular
logic programs. In Proc. of the 20th ACM symposium on Principles of programming
languages, pages 451-464. ACM Press, 1993.

M. Codish, M. Falaschi, and K. Marriott. Suspension analysis for concurrent logic
programs. ACM Transactions on Programming Languages and Systems, 16(3):649—
686, 1994.

P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation, invited paper. In M.
Bruynooghe and M. Wirsing, editors, Proc. of the International Workshop Pro-
gramming Language Implementation and Logic Programming,, volume 631 of
LNCS, pages 269-295. Springer, 1992.

P. Cousot and R.Cousot. Modular static program analysis, invited paper. In
R.N. Horspool, editor, Proc. of the 11th International Conference on Compiler
Construction, volume 2304 of LNCS, pages 159-178, Grenoble, France, April 2002.
Springer.

F. Denis and J-P Delahaye. Unfolding, procedural and fixpoint semantics of logic
programs. In Proc. of the 8th Annual Symposium on Theoretical Aspects of Com-
puter Science, volume 480 of LNCS, pages 511-522, Hamburg, Germany, February
1991. Springer.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

A. Diwan, J. E. B. Moss, and K. S. McKinley. Simple and Effective Analysis
of Statically Typed Object-Oriented Programs. In Proc. of OOPSLA’96, volume
31(10) of ACM SIGPLAN Notices, pages 292-305, New York, 1996. ACM Press.
C. Flanagan and M. Felleisen. Componential set-based analysis. ACM Transactions
on Programming Languages and Systems, 21(2):370-416, 1999.

H. Gaifman, H. Mairson, Y. Sagiv, and M. Y. Vardi. Undecidable optimization
problems for database logic programs. In Proc. Symposium on Logic in Computer
Science, pages 106-115, Ithaca, New York, jun 1987. IEEE Computer Society.

D. Grove and C. Chambers. A framework for call graph construction algorithms.
ACM Transactions on Programming Languages and Systems, 23(6):685-746, 2001.
R. R. Hansen. Flow logic for carmel. Technical Report Secsafe-IMM-001, IMM,
Technical U. of Denamrk, 2002.

P. M. Hill and F. Spoto. Logic Programs as Compact Denotations. Proc. of the
Fifth International Symposium on Practical Aspects of Declarative Languages,
PADL ’03, 2003.

L. Hornof and J. Noyé. Accurate binding-time analysis for imperative languages:
flow, context, and return sensitivity. Theoretical Computer Science, 248(1-2):3-27,
2000.

T. Jensen and F. Spoto. Class analysis of object-oriented programs through ab-
stract interpretation. In F. Honsell and M. Miculan, editors, Proc. of Foundations
of Software Science and Computation Structures (FoSSaCS’01), pages 261-275.
Springer LNCS vol .2030, 2001.

G. Levi. Models, unfolding rules and fixpoint semantics. In Robert A. Kowalski
and Kenneth A. Bowen, editors, Proc. of the 5th International Conference and
Symposium on Logic Programming, pages 1649-1665, Seatle, 1988. ALP, IEEE,
The MIT Press.

J. F. Naughton. Data independent recursion in deductive databases. Journal of
Computer and System Sciences, 38(2):259-289, April 1989.

F. Nielson and H. Seidl. Control-flow analysis in cubic time. In Proc. of European
Symp. on Programming (ESOP’01), pages 252-268. Springer LNCS vol. 2028, 2001.
J. Palsberg and M. I. Schwartzbach. Object-Oriented Type-Systems. John Wiley
& Sons, 1994.

J. Plevyak and A. Chien. Precise Concrete Type Inference for Object-Oriented
Languages. In Proc. of OOPSLA’94, volume 29(10) of ACM SIGPLAN Notices,
pages 324-340. ACM Press, October 1994.

T. Reps. Demand interprocedural program analysis using logic databases. In
Applications of Logic Databases, pages 163—196, Boston, MA, 1994. Kluwer.

A. Rountev, B. G. Ryder, and W. Landi. Data-flow analysis of program frag-
ments. In Proc. of the 7th international symposium on Foundations of software
engineering, pages 235-252. Springer-Verlag, 1999.

Y. Sagiv and M. Yannakakis. Equivalences among relational expressions with the
union and difference operators. Journal of the ACM, 27(4):633-655, 1980.

O. Shmueli. Decidability and expressiveness aspects of logic queries. In Proc. of
the 6th ACM symposium on Principles of database systems, pages 237-249. ACM
Press, 1987.

J. D. Ullman. Principles of database and knowledge-base systems, volume 2, vol-
ume 14 of Principles of Computer Science. Computer Science Press, 1988.

