
Information-Flow Preservation in Compiler
Optimisations

Frédéric Besson
Inria, Univ Rennes, IRISA

Rennes, France
frederic.besson@inria.fr

Alexandre Dang
Inria, Univ Rennes, IRISA

Rennes, France
alexandre.dang@inria.fr

Thomas Jensen
Inria, Univ Rennes, IRISA

Rennes, France
thomas.jensen@inria.fr

Abstract—Correct compilers perform program transforma-
tions preserving input/output behaviours of programs. However,
correctness does not prevent program optimisations from in-
troducing information-flow leaks that would make the target
program more vulnerable to side-channel attacks than the
source program. To tackle this problem, we propose a notion
of Information-Flow Preserving (IFP) program transformation
which ensures that a target program is no more vulnerable
to passive side-channel attacks than a source program. To
protect against a wide range of attacks, we model an attacker
who is granted arbitrary memory accesses for a pre-defined
set of observation points. We propose a compositional proof
principle for proving that a transformation is IFP. Using this
principle, we show how a translation validation technique can
be used to automatically verify and even close information-flow
leaks introduced by standard compiler passes such as dead-
store elimination and register allocation. The technique has been
experimentally validated on the COMPCERT C compiler.

Index Terms—Secure compilation; Side-Channel; Information-
Flow

I. INTRODUCTION

When it comes to security, compilers can not be trusted.
They may perform aggressive optimisations which may exploit
undefined behaviours [30] or they may have subtle bugs
and generate invalid code [31]. Compilers may turn secure
constant-time source programs [2], [8] into target programs
vulnerable to timing attacks [17]. Compilers may also increase
the lifetime of sensitive data in memory and therefore make
the target program more vulnerable to attackers with physical
access. The pitfalls of so-called safe erasure in the presence of
compiler optimisations is recognised by the CERT at CMU 1

and protections have recently been proposed e.g., [28], [32].
The overall consequence of this unfortunate state-of-affairs
is that for highly-critical code, manual inspection of the
generated code is standard industrial practice. Furthermore,
even if the proposed counter-measures are effective in practice,
they do not come with a formal security guarantee.

Much progress has been made in the formal verification
of compiler correctness, providing a semantic guarantee that
the behaviour of the compiled program is compliant with
the behaviour of the source code. Prominent examples are
the COMPCERT C compiler [21], verified using the Coq
proof assistant [23], CAKEML [19], an ML compiler verified

1CERT MSC06-C

using HOL4 [1] or seL4 [27] a verified micro-kernel whose
compilation was proven correct through translation valida-
tion [24]. However, compiler correctness does not guarantee
the preservation of certain non-functional properties which are
essential for the security of the compiled code [14].

In this paper, we propose an end-to-end security property to
ensure that a target program does not leak more information
than a source language. We build on our previous work [7] but
enrich the model to a more realistic setting where an attacker
may observe intermediate program states and a strengthened
security property preventing the duplication of potentially
sensitive data. We consider a threat model in which an attacker
is granted physical memory access at specific observation
points, and is parametrised by the amount of information he
is allowed to read. In our setting, a program transformation is
secure if an attacker at the target language does not have an
advantage with respect to an attacker at the source language.
This is formalised using the standard information-flow notion
of Attacker Knowledge [5].

The technical contributions of the paper can be summarised
as follows:

• A formal definition of Information-Flow Preserving (IFP)
transformation based on the notion of Partial Attacker
knowledge.

• A simulation-based proof principle for proving that a
program transformation is IFP.

• A translation validation algorithm which can be instru-
mented to automatically close information-flow leaks in
case the transformation is not IFP.

• An implementation and experiments with an IFP register
allocation pass within the COMPCERT compiler.

The rest of the paper is organised as follows. Section II
explains the rationale for our attacker model. Examples il-
lustrating how compiler optimisations may weaken security
are presented in Section III. Section IV defines formally our
notion of Information-Flow Preservation. In Section V, we
introduce a necessary condition for IFP; this condition takes
the form of a simulation-based principle. We use this principle
in Section VI to design a translation validation approach for
the Register Allocation pass of COMPCERT and present our
experimental results in Section VII. We compare with related
work in Section IX and Section X concludes.

https://wiki.sei.cmu.edu/confluence/display/c/MSC06-C.+Beware+of+compiler+optimizations

II. ATTACKER MODEL

Our overall goal is to prevent information leaks from being
introduced by the compilation process. Compiled code should
be no more vulnerable to passive side-channel attacks than
the source code. Such side channels correspond to an attacker
who is granted physical memory access at specific observation
points, and who is parametrised by the amount of information
he is allowed to read. At the semantic level, side-channels can
be modelled using a leakage function exposing a partial view
of the program state to the attacker [6].

A typical example of a timing channel is the leaking
of information through observations of the memory cache
behaviour. Formally, this channel can be modelled by leaking
the program counter and the memory accesses [2]. Another
example is the power channel that can be modelled by the
so-called Hamming Weight model [18] where what is leaked
is the Hamming Weight of the program state i.e., the number
of information bits that are set to 1.

In our model, in order to protect against an arbitrary side-
channel, we quantify over a hierarchy of attackers An who
have access to the programs code and where n is the number of
bits of information that the attacker is allowed to extract from
the program memory during the program execution. Thus, we
do not fix one leakage function a priori but rather consider
protecting against a hierarchy of leakage functions.

This attacker model is sufficient to formally capture the
leakage of information. However, it does not take into account
the practical difficulty of a physical attack i.e. how hard it is
to extract bits of information when the memory is indirectly
observed through a noisy side-channel. For instance, an at-
tacker would in practice have an advantage if sensitive data is
duplicated multiple times across the memory. We address this
problem by forbidding duplication of data. This, in turn, leads
to the formal requirement that for a given information leakage,
there is an injection between the target attacker observations
and the source attacker observations.

Our attacker model and our notion of Information-Flow Pre-
serving transformation are formally presented in Section IV.
First, we present a few typical program transformations and
explain informally whether they are Information-Flow Preserv-
ing or not.

III. INFORMATION FLOW PRESERVATION BY EXAMPLES

In Figure 1, we present a list of simple programs using
the syntax of an imperative language where a • indicates
program points where the program memory is leaked to the
attacker. In terms of input/output semantics, the program are
indistinguishable: they all return 0. As a result, they could
all be compiled from the original canonical program f that
sets the variable x to 0 and returns 0. The program f leaks
its initial memory (•1) and final memory (•2) to the attacker.
In Figure 1, we mark the programs that are IFP with a X
and those which are not with a 7. We also write v•i for the
observation of the value of the variable v at the leakage point
•i. Consider Program g obtained by removing the assignment
to the variable x from Program f . From a compiler point

Original program:
f : •1 x=0; •2 return 0;

Dead store elimination:
g: •1 skip; •2 return 0; 7

Overwrite with constant value:
h: •1 x=1; •2 return 0; X

Overwrite with leaked value:
i : •1 x=y; •2 return 0; 7

Leaking through direct flow:
j : •1 a=x; x=0; •2 return 0; 7

Leaking through indirect flow:
k: •1 {if(x) a=0 else a=1}; x=0; •2 return 0; 7

Fig. 1. Example of compiled programs

of view, this is a correct transformation because the value
of x does not contribute to the result. However, removing
such a dead store introduces an information-flow leak and
should therefore be ruled out. Intuitively, the principle for a
transformation to be safe is that any observation of a value
made with the target program must have a corresponding
observation in the source code. In particular, the observation
x•2 in g needs to be matched by an observation of x•2 in
f . As the observation of x•2 in g has no counterpart in f
for any v•2, the transformation is rejected. Note that it is
of utmost importance for the source and target observations
to be synchronised i.e. a target observation at •i needs to be
matched by a source observation at the same observation point
•i. Otherwise, Program g would be wrongly deemed secure
under the fallacious argument that the observation of x•2 in
g leaks the same information as x•1 in f . The synchrony of
observations is our solution to make it impossible to remove
or delay the erasure of some information.

Program h overwrites x with a different constant. As
constants carry no information, the observation x•2 in f and
h leak the same (empty) amount of information and therefore
the transformation is information-preserving.

Program i overwrites x with the variable y. Because y•2
is already leaked, this does not introduce any additional
information-flow leak. However, it does lead to duplication
of information which we may want to forbid. In the example,
the duplication may make it easier to get to the information of
y•2 in i (it is also present in x•2) than in f (where it is only
present in y•2). To track duplication, our security definition
can be adjusted to mandate the existence of a bijection
between target and source observations. In the present case,
constructing the bijection is impossible because there are two
target observations i.e. x•2 and y•2 in i, leaking the value of
y while there is a single source one i.e. y•2 in f .

Program j (resp. Program k) leaks the initial value of x
through the variable a using a direct (resp. indirect) flow.
In either case, the observation a•2 has no counterpart in
f and the transformation is rejected. Our Information-Flow
preserving definition is semantic in nature and immune to
syntactic differences.

f : •1 a = x ^ y ; x = 0 ; •2 re turn a ;

g : •1 a = x ^ y ; •2 re turn a ;

Fig. 2. Safe Erasure of One-Time Pad

A. The “Full Information Flow” Paradox
We work with a parametrised attacker model where the

attacker makes partial observations. Partial observations are
essential, because they capture partial information flows that
would go unnoticed if we only had an omniscient attacker
observing the whole memory. In the context of dynamic
information flow policies, Askarov and Chong [3] have already
observed that a program could be secure against a powerful at-
tacker but insecure for a weaker attacker. To see this, consider
the program f and the transformed program g in Figure 2.
Using a cryptographic analogy, Program f is encoding the
plain-text y using the one-time pad key x and erases the key
x. Program g performs the same encryption without erasing the
key. If the attacker observes x•2 in Program g, he obviously
learns the key x. Perhaps surprisingly, the key x can also be
learnt for Program f by an attacker observing both the plain-
text y•2 and the cipher-text a•2. The attacker obtains x by
solving the equation a•2 = x∧y•2 whose unique solution is
x = a•2∧y•2. Thus, no additional information flow is intro-
duced and the transformation is (erroneously) deemed secure.
To rule out this insecure transformation, we stipulate that both
attackers need to observe the same amount of information i.e.,
the same number n of bits. If both attackers observe a single
bit, the observation a•2 in g cannot be simulated in f and
therefore we conclude that the transformation is, as expected,
not information-flow preserving.

IV. INFORMATION-FLOW PRESERVATION

A. Execution model
Without loss of generality, we assume that the program state

is only made of a bit-addressable memory:

Mem = Addr → Bit
Bit = {0, 1}

A structured program state s can always be mapped to a
memory m ∈ Mem at the cost of some encoding. For instance,
a language using program variables would represent them by
reserving certain memory addresses.

The semantics of a program p is given by a one-step
deterministic transition relation · →e · ⊆ Mem×Mem where
e ∈ E = {ε, o} is either ε, denoting a silent transition, or
o indicating that the end state of the transition is leaked to
the attacker. From an initial memory m0, a run of a program
p is given by a sequence of memories m0 · m1

e1 · · ·m
n
en

such that for every i < n we have mi →ei mi+1. Given
such a run, the view of the attacker is given by the sub-
trace of leaked memories i.e. those memories resulting from a
transition tagged o. Formally, we define the transition relation
of the attacker

· · ⊆ Mem ×Mem

as a sequence of silent transitions followed by a transition
leaking its final memory:

m→∗ε m′ m′ →o m
′′

m m′′

As a result, from an initial memory m0, the trace of memories
t = m1 · · ·mn that is leaked to the attacker is such that for
every i < n we have mi mi+1. In the following, we write
(p, c) ⇓ t for a trace of the attacker obtained by running the
program p from an initial memory c.

B. Partial Attacker Knowledge

We next define precisely the information leaked through
a (partial) trace of attacker observations, using the notion of
Attacker Knowledge. Following [5], the Attacker Knowledge
from a trace t of program p is defined by

Kt(p) = {c ∈ Mem | (p, c) ⇓ t},

i.e., the attacker knowledge corresponds to the initial memories
that may lead to (and hence are indistinguishable by) the
observation of the trace t. We generalise the notion of Attacker
Knowledge to partial observations of n bits of the trace t. A
partial observation o is a trace of partial memories, i.e., a
sequence of partial maps from addresses to bits:

(Addr ↪→ Bit)∗

Partial memories m,m′ ∈ Addr ↪→ Bit are ordered so that
m v m′ if m and m′ agree on all the addresses where m is
defined. Formally, this is the standard (point-wise) ordering of
partial functions:

m v m′ 4= ∀x ∈ dom(m).m(x) = m′(x).

Two partial traces are ordered if they have the same length
and the memories (at the same position) are ordered using v.
Formally:

ε v ε
m v m′ o v o′

m · o v m′ · o′
.

The number of bits n of a partial trace o is written |o| and is
obtained by summing the number of bits defined by the partial
memories m in o.

|ε| = 0
|m · o| = |dom(m)|+ |o|.

We can then define the notion of partial observation formally
as follows.

Definition 1 (Partial Observation). The set of partial obser-
vations of n bits of a trace t is defined by

Obs(t ,n) = {o : (Addr ↪→ Bit)∗ | o v t ∧ |o| = n}

Definition 2 generalises the standard notion of Attacker
Knowledge to partial observations.

Definition 2. For a program p and a trace t, the Partial
Attacker Knowledge for a partial observation o ∈ Obs(t ,n)
is given by

Ktn(p, o) =
⋃
ovu

Ku(p).

In Definition 2, we quantify over all the complete traces
u ∈ Mem∗ that are compatible with the partial observation o
i.e., {o | o v u} . The Partial Attacker Knowledge is therefore
defined as the union of the Attacker Knowledge for all the
complete traces that are indistinguishable from the point of
view of o.

C. Information-Flow Preserving Transformation

We shall use Partial Attacker Knowledge to define precisely
what we mean by a secure transformation of a source program
into a target program. Intuitively, a source program p is at least
as vulnerable as a target program p′ if any partial observation
o′ of a (target) trace of p′ can always be matched by a
partial observation o of a (source) trace of p such that the
source observation o leaks more information than the target
observation o′.

The notion of matching observation is formalised by a
function mapping partial observations from Obs(t ′,n) to
Obs(t ,n). To forbid transformations that increase the lifetime
of an information leak, we also enforce that the observations
at the target and source level are performed in lock-step i.e.,
at each instant, both attackers observe the same amount of
information.

Definition 3. The set of lock-step observation mappings Ω is
defined by

Ω(t ′, t ,n) =
{ω : Obs(t′, n)→ Obs(t, n) | ∀o′, sup(o′) = sup(ω(o′))}

where the support of an observation is defined by

sup(ε) = ε sup(m · o) = |dom(m)| · sup(o)}.

Using lock-step mappings, we are ready to define the
security refinement of a source program p by a target program
p′.

Definition 4. A target program p′ is at least as secure as p
for an attacker observing n bits (written p 4n p′) iff

∀c, t, t′.(p, c) ⇓ t ∧ (p′, c) ⇓ t′
⇒ ∃ω ∈ Ω(t, t′, n).∀o′.Ktn(p, ω(o′)) ⊆ Kt′n (p′, o′).

Because it quantifies over every partial observations and
requires a lock-step mapping, Definition 4 ensures that if a
target observation is matched by a source observation, so is
every prefix observation.

In order to rule out the duplication of information, we can
further restrict the function ω to be injective, by adding the
constraint

Ω1 (t ′, t ,n) = Obs(t ′,n)� Obs(t ,n)

where � denotes the set of bijective functions.
In case of duplication of information, several target obser-

vations with the same Partial Attacker Knowledge would need
to be mapped to the same source level observation. The fact
that ω is injective rules out this possibility. In the following,
we take the constraint on matching functions to be either Ω

or Ω∪Ω1 and discuss when the constraint Ω1 is a too strong
requirement.

A transformation T is IFP if T (p) is at least as secure as p
for attackers with any level of observational power.

Definition 5. A transformation T : Prog → Prog is IFP iff

∀p,
∧
n∈N

(p 4n T (p)).

V. A SUFFICIENT CONDITION FOR IFP AND ITS PROOF
PRINCIPLE

The definition of an IFP transformation does not suggest an
immediate composition proof principle, and proving directly
that a program transformation abides to Definition 5 would
be a daunting task. To prove that a transformation is IFP, we
present a simulation-based proof technique, ensuring that a
source memory can be simulated by a target memory.

A. Partition and Simulation Relation

In order to facilitate concrete proofs, we partition the
memories leaked to the attacker. In program terms, a typical
partitioning would assign to the same partition index i all
the memory leaked by a given syntactic observation point
•i. To each partition index i, we attach a simulation function
αi : Addr → Addr + Bit . Given a source memory m and a
target memory m′ mapped to the same partition index i, the
mapping αi explains how m can be effectively simulated by
m′. This is done by showing how any bit in m′ is either a
constant (thus without any information) or a bit that is stored
in m possibly at another address as indicated by αi.

Example 1. Consider the Programs f and h of Figure 1. For
this simple case, each observation point •i (both in the source
and target program) would be mapped to the partition index
i ∈ {1, 2}. For the initial observation point •1, both memories
are the same and therefore α1 is the identity function λa.a.
For •2, the memories are the same except for the address x
which carry the constant 1 in Program h. Therefore, we would
have α2 = λa.if a = x then 1 else a.

As we show in Theorem 1, these are sufficient conditions
to ensure that m′ contains at most the same amount of
information as m.

The source (resp. target) partition is characterised by a
function sid (resp. tid) : Memory → [1 , . . . ,n]. Therefore,
in the following, we write m.sid (resp. m ′.tid) for the source
index (resp. target index) of a memory m (resp. m′).

Definition 6. Let αi : Addr → Addr + Bit be a simulation
function indexed by i ∈ [1, . . . , n]. A source memory m is
simulated by a target memory m′ (written m ∼α m′) iff we
have m.sid = m ′.tid = i and

∀a′.m′(a′) =

{
αi(a

′) if αi(a′) ∈ Bit
m(αi(a

′)) if αi(a′) ∈ Addr

Lifted to traces we get,

ε ∼α ε
m ∼α m′ t ∼α t′

m · t ∼α m′ · t′

In order to avoid duplication of information and enforce the
constraint Ω1, the function αi needs to be further constrained
to forbid mapping distinct target addresses to the same source
address i.e., ∃a ∈ Addr .a = αi(a1) = αi(a2)⇒ a1 = a2 .

Using the previous definitions, our necessary conditions for
IFP can be stated using Theorem 1.

Theorem 1. Consider two programs p and p′, and an indexed
simulation function αi : Addr → Addr + Bit . If

∀c, t, t′.

 (p, c) ⇓ t
∧

(p′, c) ⇓ t′

⇒ t ∼α t′

then ∀n, p 4n p′, i.e., the transformation is IFP.

Proof: Suppose t ∼α t′. We need to prove, for any n,

∃ω.∀o′. Ktn(p, ω(o′)) ⊆ Kt
′

n (p′, o′).

Let t′ = m′0·· · ··m′n and t = m0·· · ··mn. Remember that ω has
type Obs(t ′,n) → Obs(t ,n) and that observations are made
in lock-step fashion. As a result, it is sufficient to provide
a mapping ωi : Obst(m ′i , k) → Obs(mi , k) which given a
partial observation o′ of the target memory m′i reconstructs an
observation ωi(o′) of the source memory mi. As mi ∼αi

m′i,
this can be done as follows. Suppose that o′(a′) 6= ⊥ for
some address a′. If αi(a

′) ∈ Addr , we can obtain the same
observation from memory mi and ωi(o

′)(a′) = mi(α(a′)).
Otherwise, If αi(a

′) ∈ Bit , the observation does not provide
any information and therefore it suffices to pick an arbitrary
fresh address a, and have ωi(o′)(a) = mi(a).

From this construction, for any partial observation o′ ∈
Obs(t ′,n) we can derive a partial observation of the source
execution ω(o′) which contains at least as much information
as in o′. It follows that the target attacker knowledge obtained
from an observation o′ is always bigger than the source
attacker knowledge of the observation ω(o′) and therefore the
property holds.

Theorem 1 does not provide a complete characterisation of
IFP transformations. It captures transformations where infor-
mation is perhaps moved around but is otherwise unmodified.
To illustrate the limitation, consider the following contrived
example

x:=y → x′:= ∼ y

where the bit values of y are flipped bitwise. The variables x
and x′ contain the exact same information i.e., the value of
y. Yet, the transformation of values cannot be modelled by a
simulation function α. We show that standard optimisations
including register allocation and dead store elimination are in
the scope of Theorem 1.

B. Simulation-Based Principle

The pre-condition of Theorem 1 can be proved using a lock-
step backward simulation principle over the attacker semantics.

Definition 7 (Backward Simulation). A simulation function
αi : Addr → Addr + Bit is a backward simulation if:

1) From the initial memory c, the first source memory m and
target memory m′ leaked to the attacker are in relation
(m ∼α m′).

2) Given memories m1 ∼α m′1, for every attacker step of the
target program m′1 m′2 there exists a memory m2 in
the source program such that m1 m2 and m2 ∼α m′2.

Theorem 2. Suppose two programs p and p′ and a simulation
function α. If there is a backward simulation (according to
Definition 7) for α, then the pre-condition of Theorem 1 holds
i.e.,

∀c, t, t′.

 (p, c) ⇓ t
∧

(p′, c) ⇓ t′

⇒ t ∼α t′.

Proof: Thee proof is by induction over the length of the trace
t′ and follows using Condition 1 of Definition 7 for the base
case and Condition 2 of Definition 7 for the inductive case.

VI. TRANSLATION VALIDATION FOR REGISTER
ALLOCATION

Translation validation [24] is a verification technique which
consists in validating a posteriori (and automatically) that
a program p′ is obtained by a valid transformation of a
program p. We adapt this principle and design a specialised
algorithm to validate a posteriori whether programs obtained
through the Register Allocation (RA) pass of the verified
COMPCERT C compiler [20] satisfy our IFP property. This is
done by explicitly constructing a backward simulation using
the sufficient condition of Section V. An interesting feature
of our algorithm is that certain failures can be interpreted as
potential information leak and that these leaks can be closed
automatically by inserting erasing instructions.

A. Register Allocation in a Nutshell

Before RA, programs make use of an unbounded number of
pseudo-registers. The role of RA is to explicit the constraint
that the physical machine has only finitely many registers and
therefore allocate each pseudo-register to a machine register.
RA is also responsible for implementing calling-conventions
i.e. passing arguments in the right register and restoring callee-
saved registers. What makes RA a complex optimisation task
is that this resource allocation task may be impossible due to
a shortage of registers. In that case, a register may be spilled
in the function stack frame i.e. its content copied, for later
reuse. After the last use of a spilled register, a conventional RA
algorithm has no reason to explicitly erase the stack location.
This breaks our IFP property because i) the value is duplicated
(it is stored in both a register and a stack location); ii) this
introduces an information leak if the stack location is not
erased after the last use of the register. This is illustrated by
Example 2.

Example 2. Consider the simple function cipher of Figure 3
and the function cipher ’ obtained by a typical RA pass for
an hypothetical target architecture with only two registers r1
and r2. The code has been arranged to highlight the relation

1 c i p h e r (t e x t)
2 key : = g e t _ k e y () ;
3 s a l t : = g e t _ s a l t () ;
4

5

6 tmp : = t e x t ^ s a l t ;
7

8 key : = key ^ tmp ;
9 r e t u r n (key) •

1 c i p h e r ’ (t e x t ’)
2 r2 : = g e t _ k e y () ;
3 r1 : = g e t _ s a l t () ;
4 key ’ : = r2 ; / / s p i l l
5 r2 : = t e x t ’ ; / / l o a d
6 r2 : = r2 ^ r1 ;
7 r1 : = key ’ / / l o a d
8 r1 : = r1 ^ r2 ;
9 r e t u r n ; •

Fig. 3. Original program (left) After register allocation (right)

between a source instruction and the corresponding sequence
of target instructions. For instance, the source instruction
of Line 6 is compiled into the sequence of target instruc-
tions of Lines 4-6. The Function cipher ’ contains additional
spilling/loading instructions inserted by RA Lines 4,5 and 7.
In Function cipher the secret value in key is overwritten Line 8,
hence an attacker at • cannot observe its value. However in
Function cipher ’, the value of key in stored in register r2 and
copied in variable key’ (see Line 4). As the variable key’ is
never erased, an attacker at • can observe its value. Hence
this transformation is not IFP and will be rejected by our
validation algorithm.

B. Register Allocation in CompCert

1) Register Allocation Languages: In COMPCERT, the RA
pass compiles a source in the Register Transfer Language
(RTL) into a target in the Location Transfer Language (LTL).
RTL and LTL are both fairly classic control-flow graph
program representations where nodes are labelled with three-
address code instructions.

Instructions representative of RTL are given below.

I 3 i ::= nop(s)
| op(op, args, dest, s)
| load(addr, args, dest, s)
| store(addr, args, src, s)
| cond(cond, args, strue, sfalse)
| call(sig, fid, args, dest, s)
| return(arg)

Each instruction i ∈ I , attached to a node n ∈ N, specifies
its immediate successor s which is the node of the instruction
to execute next. The nop instruction does nothing. The op
instruction computes the value of the variable dest using
the values stored in the vector of pseudo-registers args . The
load instruction moves the value at the address computed
by args with the addressing mode addr to the destination
dest. Similarly store move the value from src to the address
computed by args and addr. The call instruction calls the
function fid with signature sig with parameters args; the result
of the call is stored in dest . The instruction cond models a
conditional and has two successors. Depending on the value
of arg , the instruction to execute next is either strue of sfalse.
Finally, return exits the current function and return the value
of arg .

The LTL language is similar to RTL with the differences that
i) so-called locations corresponding to stack slots or machine
registers are used in place of the unlimited pseudo-registers
called temporaries and; ii) call and return instructions are
bounded by the calling conventions of the target architecture.
As a result, in the program syntax, args and dest are locations
made of either machine registers or stack slots used for spilling
registers. Compared to temporaries, stack slots are pointers
into the current stack frame and special care must be taken to
make sure that spilled registers do not overlap. The calling
conventions stipulate where function arguments and return
must be stored and are represented by a list of locations.
For instance, for x86_32, arguments are passed on the stack
and the result is stored in eax while for x86_64, arguments
are passed in different registers depending of the type of the
argument.

2) Translation Validation of RA : COMPCERT is using
an untrusted RA algorithm whose output is verified using a
specialised translation validation approach [25], ensuring that
each target LTL function is a sound compilation of the source
RTL function. Observational correctness of the whole program
is then achieved by composing the validation of each pair
of functions. As our own IFP validator is reusing some key
components, we give a brief overview of their algorithm.

The translation validator of COMPCERT exploits that the
RTL and LTL functions have a very similar structure and only
differ in that the LTL function introduces move instructions
to materialise spills and reloads of stack slots; and data
movements between registers.

The untrusted RA algorithm takes as argument an RTL
function and returns an LTL function. The LTL function is
structured in such a way that it is straightforward to rebuild
a mapping from a single RTL instruction to the list of LTL
instructions it is compiled into. Because RA is only using
a few local transformations, the list of LTL instructions is
always made of move instructions i.e. assignments between
locations, followed by the actual instruction which is obtained
from the original RTL instruction by replacing registers by
locations. The only possibilities are presented in the first
column of Figure 4. Each possible association of instructions
are categorized into block-shape and form whole block-shape
functions. Similar to RTL and LTL, block-shape functions are
structured as a CFG and each block-shape is parametrised with

the nodes of its successors. Moreover each possible block-
shape contains a list of move instructions from the LTL code,
labelled mv in Figure 4, which are executed before the core
instruction.

COMPCERT translation validation algorithm is composed of
two parts. The first one is a structural check which verifies that
the LTL function respects a certain structure with respect to
the RTL function. This check is carried out while constructing
the block-shape function. For example, to construct BSop
the validator needs to find op instructions in both RTL and
LTL and check that the operations match. Another example
is BScond where the condition and successors must be the
same in both cond instructions. If an unexpected pattern is
found between the source and transformed functions then the
structural check fails and so does the validation. To complete
the translation validation algorithm, COMPCERT performs an
additional backward data flow analysis to verify that the two
functions effectively compute and use the same values.

C. Modular IFP Validation Algorithm

Our security policy is determined by the location of obser-
vation points • in both the RTL and LTL programs. In order
to get a translation validation algorithm integrated in the RA
compiler pass, it is necessary to be able to process one function
at a time. Our solution is to set observation points at function
boundaries, more precisely at function calls and returns. From
a security point of view, this ensures that the LTL locations
do not leak information at function return i.e. the stack frame
of LTL only contains information that is also present in the
pseudo-registers of RTL.

In the following, we detail our IFP validation algorithm. In
Section V, we have shown that proving IFP preservation can
be done by exhibiting some mapping αi : Addr → Addr +Bit
used to establish a simulation between the source and the target
memories at every observation point •i. To get to this point,
our IFP validator needs to construct richer objects in order to
cater for the RTL and LTL COMPCERT memory model [22]
and the fact that, for intermediate program points, the existence
of such an αi mapping is too strong a requirement. Hence, the
IFP validator constructs a set of associations between locations
and temporaries βi ∈ P(Loc × Temp); computes the set
of modified location γi ∈ P(Loc) and performs a constant
analysis csti : Loc → Value +{>} such that, given a program
point i,

• (l, t) ∈ βi iff the value of the LTL location l is the same
value as the RTL temporary t,

• l ∈ γi iff the location l may be modified by the current
function,

• csti(l) = v iff for any execution the location l always
contains the value v.

The constant analysis csti and the set of modified locations
γi are computed by iteratively solving standard forward data-
flow equations using the existing data-flow framework of
COMPCERT.

1) Inference of Location Mapping βi: Compared to the
existing RA validator of COMPCERT, a difference is that
we construct βi using a forward data-flow analysis over the
block-shapes of Figure 4. The reason is that, for compiler
correctness, it is just necessary to ensure that the return LTL
register, say eax , is mapped to the return RTL temporary,
say t. For IFP, we need a complete mapping for all the RTL
temporaries and LTL locations.

The transfer functions for the possible block shapes gener-
ated by RA can be found in Figure 4. The transfer functions
are using the following notations. We write (l→ t) for a pair
(l, t) ∈ βi with the interpretation that the LTL location l is
mapped to the RTL temporary t. We extend this notation to
vectors of locations and temporaries and write (l1, . . . , ln)→
(t1, . . . , tn) for the set {(l1 → t1), . . . , (ln → tn)}. Because
of copy instructions, in both LTL and RTL, the mapping is not
unique and there may be several pairs with l as first component
and t as the second component. Given a temporary t, we write
(_ → t) for the set of all pairs such that the second element
is t. Symmetrically, for a given location, we write (l→ _) for
the set of all pairs such that the first element is l.

All block shapes have a sequence of move mv instructions
on the LTL side. A move l1 = l2 assigns l2 to l1. Given an
initial mapping B, the effect of move l1 = l2 is to remove the
existing mappings for l1 ((l1 7→ _)) and map l1 to existing
mappings of l2 in B. As a result, we get

transferl1=l2 = B \ (l1 → _) ∪ ({l1 → x} | {l2 → x} ∈ B).

For valid code, there should always be an existing mapping for
l2. If not, the analysis continues but l2 and l1 would be flagged
as potential information leaks at the next observation point.
A BSnop only consists in a list of LTL move instruction and
its effect is modelled by iterating the transfer function for a
single move instruction. For BSop, we check after computing
the consequence of the moves that the LTL arguments args′
are mapped to the RTL arguments args. If this is the case,
we have the guarantee that the arguments args and args′

have the same values and therefore the destinations tmp and
loc also have the same value. After evaluating the effect
of the moves, the transfer function invalidates the existing
mappings for tmp and loc and adds the mapping (loc → tmp).
For BSLoad, the transfer function is similar but exploits
the additional invariant that the memory of RTL and LTL
agree for every address a that is neither an LTL location
a /∈ Loc nor a temporary a /∈ Temp. For BSstore, we
check that the computed addresses args and args′ compute
the same value in both RTL and LTL. We also check that the
stored value are the same i.e., the current mapping includes
(loc → tmp). Except for the potential move instructions, a
memory store has no effect on the current mapping. Yet, our
verifications ensure that the LTL and RTL memory still agree
for addresses that are neither temporaries nor locations. For
BScall, we check that the arguments of the call are the
same. In RTL, the arguments and return value are explicitly
passed; in LTL, the functions Params(sig) and Ret(sig)
implement the architecture dependent calling conventions of

Block Shape Conditions Transfer Function
BSnop(s) :

nop;
mv;
nop;

transfermv (mv ,B)

BSop(s) :

tmp := op(args);
mv;
loc := op(args′);

(args ′ → args) ⊆ transfermv (B)
transfermv (mv ,B)

\ (_→ tmp) \ (loc → _)
∪ {loc → tmp}

BSload(s) :

tmp := [addr(args)];
mv;
loc := [addr(args′)];

(args ′ → args) ⊆ transfermv (B)
transfermv (mv ,B)

\ (_→ tmp) \ (loc → _)
∪ {loc → tmp}

BSstore(s) :

[addr(args)] := tmp;
mv;
[addr(args′)] := loc;

(loc → tmp) ∈ transfermv (B) ∧
(args ′ → args) ⊆ transfermv (B)

transfermv (mv ,B)

BScall(s) :

tmp := f(sig, args)
mv1;
Ret(sig) := f();
mv2;

(Params(sig)→ args)
⊆ transfermv1 (B)

transfermv (mv2 ,
{Ret(sig)→ tmp} ∪

callee-save(transfermv (mv1 ,B)))

BScond(s1, s2) :

cond(cond, args) ;
mv;
cond(cond, args′);

(args ′ → args) ⊆ transfermv (B) transfermv (mv ,B)

BSreturn() :

ret(arg);
mv;
ret;

(arg′ → arg) ∈ transfermv(B) transfermv (mv ,B)

Fig. 4. Transfer functions for βi

functions arguments and return. In RTL, all the temporaries are
restored after a function call. In LTL, the calling conventions
state that both stack locations and a subset of the registers
i.e., so called callee-saved registers, are restored after a call.
This is modelled in the transfer function by the function
callee-save which invalidates mappings to registers which
are not callee-saved. For BScond, we simply check that the
conditions evaluate to the same value thus ensuring that both
program have the same control-flow. For BSreturn, we also
check that the return values are the same and only update the
mapping to model move instructions.

In order to get βi, we iterate the data-flow equations until
a fixpoint using data-flow framework of COMPCERT.

2) Verification of Sufficient Conditions: If the computation
of βi succeeds, the next step consists in verifying, for every
observation point, the IFP verification conditions. For a given
observation point •i, we verify that for every LTL location
l ∈ γi that may be modified by the current function, there
exists either a mapping to an RTL register t i.e., (l→ t) ∈ βi
or the location l is constant csti(l) = v for some v 6= >.

Theorem 3. Let p be an RTL program and p′ be an LTL
program. Suppose that we have successfully constructed βi, γi
and csti for every program point of p. If for every observation
point •i, the following condition hold:

∀l ∈ γi.(∃t.(l→ t) ∈ βi) ∨ (∃v.csti(l) = v ∧ v 6= >)

then the RA transformation of p to p′ is IFP.

Moreover, if every pair (l1, l2) of distinct locations is
mapped to distinct temporaries, the transformation prevents
data duplication.

In the following section, we give some key insights on how
the previous verification conditions are sufficient to ensure
the existence of a simulation function αi and a backward
simulation between p and p′.

D. Correctness of the Validation Algorithm

We suppose an execution of p and p′ where memories m1

and m′1 are respectively leaked from observation point •1 and
there exists α1 such that m1 ∼α1 m

′
1. Similarly we note •2

the observation point leaking m2. It remains to prove that we

can construct a backward simulation according to Definition 7.
Hence we need to prove two goals: the existence of m2 and
α2 such that m1 m2 and m2 ∼α2 m

′
2.

1) ∃m2, m1 m2: By definition of , there is a
derivation of length n′ such that m′1 →n′

m′2. We have to show
that there is a derivation of length n such that m1 →n m2.
Such a proof is already needed by the original COMPCERT
semantics preservation proof of the RA pass [25] and we
therefore inherit it for free.

2) ∃α2, m2 ∼α2 m′2: The construction of α2 partitions
addresses in the following three categories:

i) addresses which are not LTL locations;
ii) LTL locations that may be modified by the current func-

tion;
iii) and LTL locations that have not been modified.
First, consider addresses that are not locations in the LTL
memory model . The memory content at these addresses can
only be modified via load and store instructions. While
building β2 we check that these memory accesses always
agree on their computes arguments. Therefore in p and p′,
the memory content remains the same and α2 is the identity
function for these addresses.

Second, consider LTL locations that may have been modi-
fied since the start of the current function i.e. l ∈ γ2. We know
from our precondition of Theorem 3 that we are able to map
l to either a temporary or a constant. Thus α2 is equal to β2
or cst2 for every location of l ∈ γ2.

Third, consider for LTL locations that are necessarily un-
modified i.e. l /∈ γ2. We know that when reaching •1 the
memories m1 and m′1 were leaked and that m1 ∼α1

m′1.
Moreover locations and temporaries are local to their functions
and observation points are placed before function calls and
returns. From these facts we deduce that α1(l) still holds at
•2 and gives us ∀(l /∈ γ2), α2 (l) = α1 (l).

Lastly, to ensure the absence of duplication of information,
we need to prove that α2 is injective. For addresses which are
not locations, α2 is the identity function which is injective.
For addresses not in γ2 this is given by the fact that by
induction α1 is also injective. For the other addresses we have
the hypothesis that every location maps to distinct temporaries
which proves that α2 is injective.

E. Validating Dead Store Elimination (DSE)

DSE is an optimisation which replaces an assignment to
RTL temporary tmp by nop when the compiler is able to
show that the value of tmp will not be used by the rest of the
computation. When such instructions have the security purpose
of erasing sensitive values from memory, DSE is introducing
information-flow leaks. A particularity of COMPCERT is that
dead store elimination is not a separate pass but is performed
during RA. The rationale is that a liveness analysis is needed to
both detect dead store and construct the interference graph of
RA algorithms [15]. Therefore the validator of COMPCERT
is capable of validating both RA and DSE. Similarly, we
also adapt our IFP validator to handle DSE. For most cases,
DSE will not be IFP. To cope with this situation, we refer to

Section VI-F where we show how to patch the program on the
fly to close potential information leaks. A typical case where
removing a store is not IFP occurs when it happens just before
an observation point.

The only transformation that may occur in DSE is to replace
an assignment by a nop. To deal with this situation, our
validator considers the additional block shapes and transfer
functions of Figure 5. Those blocks are BSopdead and
BSloaddead where the corresponding core instructions in
LTL has become a nop. In both cases, after evaluating the
move instructions, the transfer functions remove the mappings
for the target RTL temporary tmp.

With these extensions our IFP validator is now able to
check the COMPCERT transformation composed of register
allocation and DSE.

F. Patching algorithm

An interesting property of our IFP validator is that we can
recover from certain validation failures; track down the origin
of the information leak and apply a patch to a function f ′

to automatically close the information leak. When this is the
case, it is possible to run existing optimisations unmodified,
and during a post-treatment, detect and remove potential
information leaks. Suppose that, for a given observation point
•i, the verification conditions needed by Theorem 3 do not
hold. Typically, there is a location l that is neither a constant
(csti = >) nor has a mapping to some RTL temporary
(βi(l) = ∅). In this situation either the validator is not
precise enough or l is responsible for an information leak.
To close the potential leak detected by the IFP validator, our
patching algorithm inserts an erasure instruction and sets the
location to the constant 0 just before the observation point •i.
After the addition of those erasure instructions, we have the
guarantee that the transformed program is IFP. Moreover, those
erasure instructions cannot compromise the correctness of the
transformation. The rationale is that an erasure instruction for
location l is necessarily a dead store. To see this, consider
by contradiction that l is live. In that case, to establish se-
mantics preservation, the original COMPCERT validator needs
to establish a mapping for location l and an RTL temporary
t. As our forward validator always computes more mappings
than the original backward validator of COMPCERT, it would
establish the same mapping. This contradicts our assumption.

As a result, we have the guarantee that inserting erasure
instructions, according to the rules above, is a sound algorithm
to make COMPCERT RA a semantic preserving IFP transfor-
mation.

VII. EXPERIMENTS

The translation validation algorithm of Section VI has
been integrated as part of the register allocation pass of
COMPCERT [20]. We run our IFP validator; close any potential
information leak using the patching algorithm of Section VI-F.
Afterwards, we run the existing validator of COMPCERT, thus,
ensuring the semantics correctness of our security transforma-
tion.

Block Shape Conditions Transfer Function
BSopdead(s) :

tmp := op(args);
mv;
nop;

transfermv (mv ,B) \ (_→ tmp)

BSloaddead(s) :

tmp := [addr(args)];
mv;
nop;

transfermv (mv ,B) \ (_→ tmp)

Fig. 5. Additional transfer functions for DSE

In our model, the attacker can only observe the memory at
so-called observation points. As explain in Section VI, obser-
vation points are set at function boundaries: the attacker may
observe memory just before call and return instructions. With
this policy, our IFP validator enforces that register allocation
does not introduce information leaks due, for instance, to stack
allocated variables (or spilled registers) not being properly
erased at function return; an acknowledged security issue [14],
[28], [32].

A. Results and analysis

The experiments have been conducted on a quad-core Intel
i7-6600U at 2.60GHz with 16GB of RAM running Fedora 27.
We have tested our IFP validator on 24 programs which are
all part of the COMPCERT test suite. For every program,
our validator detected potential information leaks introduced
by COMPCERT RA. All the information leaks have been
successfully closed by our patching algorithm and all the
resulting programs have passed the COMPCERT validator.

The impact of the security transformation on the size of the
programs and their efficiency are summarised in Figure 6. The
first bar represents the runtime overhead of our secured RA
compared to the original RA of COMPCERT. The benchmarks
have a running time ranging from 1 to 10 seconds and are
sorted by increasing overhead that is obtained by averaging
50 runs. The second (grey) bar is the overhead on the size of
the program incurred by the insertion of erasure instructions.
The third (dark) bar represents the overhead in the number of
executed instruction.

As shown in Figure 6, the increase in program size can
be large and is above 20% for most of the benchmarks.
Yet, this increase is not always reflected in the execution
overhead because even when many erasure instructions are
inserted, they may be rarely executed. Actually, for most
functions, the increase of the number of executed instructions
is negligible and for more than half of the programs the
execution overhead is within a range of ±5%. We believe
that speed ups are a lucky side-effect, probably due to an
improved behaviour of the cache of instructions. Yet, there
4 benchmarks for which the execution overhead is above
10%. For chomp, the overhead peaks at 51% but is not quite
correlated with the increase in executed instructions which is
less than 15%. Another extreme phenomenon is the speedup
of 17% of lists for which there is no obvious explanation

lis
ts

sh
a3

sp
ec

tra
l

fan
nk

uc
h

ns
iev

e
ma

nd
elb

ro
t

bis
ec

t
vm

ac
h fft

bin
ar

ytr
ee

s
ns

iev
eb

its fft
w

sip
ha

sh
24 sh
a1

alm
ab

en
ch ae

s
nb

od
y

kn
uc

leo
tid

e fib
fft

sp
pe

rlin
ch

om
p

−20

−10

0

10

20

30

40

50

60

Pe
rce

nt
ag

e

Overhead
Program size
Executed instructions count

Fig. 6. Patched programs compared to original compared programs

and require further investigations. Anyway, these results are
encouraging and show that an improved security can often be
obtained without sacrificing too much efficiency.

For a few benchmarks, the number of inserted instructions
can be quite large. For instance, for programs like almabench
or fftsp we notice a 40% increase in program size. A reason
for this phenomenon is that our IFP validator needs to be
quite conservative about the behaviour of function calls relying
exclusively on guarantees given by calling conventions. This
is illustrated by Example 3 where a potentially spurious
instruction needs to be inserted to protect against a potential
information leak.

Example 3. Consider the code snippet of Figure 7.

r := g (x) ;
x := 2 ;
re turn x ;

eax := g (e d i) ;
eax := 2 ;
re turn ;

Fig. 7. RTL program (left), LTL program (right)

According to standard x86 calling conventions, it is typically
compiled as the LTL program of Figure 7. After the call
of g, we only have the guarantee that registers are either
overwritten or carry the same value as before. Therefore, our
validator makes the conservative assumption that edi (that is

not callee-saved) was not modified by g, may leak the initial
value of the variable x and therefore needs to be explicitly
erased, thus adding a potential spurious erasure instruction
edi := 0.

As programs like almabench or fftsp are using a significant
number of distinct registers, the patching algorithm introduces
for each of them an erasing instruction for each call site.

B. Discussion

The validator is also verifying whether register allocation
satisfies the absence of data duplication. This property is
unfortunately currently violated and cannot be easily fixed be-
cause of constraints imposed by existing calling conventions.
More precisely, calling conventions stipulate that arguments
are copied into specific registers. Moreover, as arguments
are not callee-saved, erasing the original register would be
unsound and, therefore, this duplication is inevitable. At the
price of breaking compatibility with existing code, a solution
would be to adapt the calling-conventions so that arguments
are callee-saved. Other sources of duplication are between a
register and a spilled stack slot. In this case, either the register
or the stack slot is dead and could be erased. The patching
algorithm would have to be enhanced with a liveness analysis
in order to perform this reasoning and erase the dead location.

Reducing the number of erasure instructions would require
to give the validator additional information about the registers
that are either preserved or erased by function calls. For
functions in the same compilation unit, this could be done
using standard static analyses computing unmodified registers
or constant registers. Library calls are more problematic. A
possibility would be to require extended calling conventions
stipulating which registers are preserved (beyond callee-saved)
or erased. However, if the client code is optimised for these
extended calling conventions, it would only be secure if linked
against this specific version of the library.

VIII. SECURING OTHER COMPILER PASSES

In their paper, D’Silva et al. [14] mention that compiler
passes such as Code Motion an Inlining, because they modify
the lifetime of variables, may introduce information leaks. In
the following, we explain how these transformations fit with
our IFP property.

A. Inlining

In our experiments, observation points are attached to
function calls. As inlining consists in replacing a function
call by a function body, if has the effect of removing an
observation point. As observations need to be synchronised,
inlining breaks this property and therefore is simply not an
IFP transformation. As this may seem overly restrictive, a first
solution to accommodate some inlining would be to weaken
the security policy and attach observation points only to
security critical functions. As a result, those critical functions
would not be inlined but other functions could be freely
inlined without modifying observation points. In this restricted
scenario, inlining would be an IFP transformation. Another

tempting approach would be to detach the observation point
from the function call. Yet, this raises the issue of code motion
that we discuss below.

B. Code motion

The risk of code motion is that code, and therefore informa-
tion, could move around observation points and thus modify
the security policy. Consider for instance, the code of Figure 8
where observation points are detached from function calls and
the code is subject to code motion. In this example, both

•1 x := f () ;
x := 0 ;
•2 y := g () ;
y := 0 ;

x := f () ;
y := g () ;
x := 0 ;
y := 0 ;

•1•2

Fig. 8. Code motion and detached observation points

erasure instructions and observation points have been delayed
and moved at the end of the program. The result is that the
transformation is formally IFP but defeats the intention of the
security policy. It follows that a IFP-aware compiler needs to
limit code motion within the bounds of observation points.

IX. RELATED WORK

The correctness-security gap was pinpointed by D’Silva et
al. [14]. In that work, dead-store elimination is identified as a
program transformation that can cause security issues. Deng
and Namjoshi [11]–[13] introduce an information flow notion
of leaky triple and ensure that an adaptation of the standard
DSE transformation [13] and SSA transform [12] preserves
this notion of information flow. Leaky triples do not capture
the amount of information that is leaked. As a consequence,
they ensure that a non-interferent program is transformed into
another non-interferent program but a leaky program may be
transformed into a more leaky program without violating their
property. Because our IFP property is based on the notion of
partial attacker knowledge, it will rule out this possibility and
ensure that the transformed program is no more leaky.

Chong and Myers [9] propose semantics foundations for
defining erasure policies. A main insight behind that work is
that erasure can be seen as the dual of declassification [26].
Later on, Chong and Myers [10], but also Hunt and Sands [16],
propose type-systems for verifying erasure policies of the
source code. Askarov et al. [4] enforce the erasure policies in
the presence of so-called write-once locations which cannot
be overwritten. The key insight is to store encrypted data
in write-once locations and simulate erasure by the erasure
of the cryptographic key. In our work, we do not consider
erasure policies but ensure that program transformations do not
introduce information leaks. We believe that our IFP definition
has the potential to preserve such rich erasure policies. A
difficulty is to specify the observation points relevant to the
source property and make sure that they are preserved across
compiler passes. An attacker observing all the intermediate

memory states would probably suffice but may preclude too
many transformations.

Yang et al. [32] provides a list of techniques used by
developers to prevent compilers from removing security-
sensitive dead-store instructions. They present a secure dead-
store elimination transformation that has been implemented
for LLVM. This transformation verifies our IFP property.
Simon, Chisnall and Anderson [29] investigate how compilers
may break the security of cryptographic code because it is
impossible to control side-effects of compiler optimizations.
They propose compiler support for constant-time selection and
for the secure erasure of secrets, which improves the security
of the generated code.

Besson et al. [7] pursue a goal similar to ours, i.e., pre-
serving information flow under program optimisations. The
attacker in [7] is weaker because the attacker can only observe
memory at the end of the execution. By basing our attacker
model on traces of observations, we obtain a model that is
more realistic and closer to the intuitive notion of an attacker
that probes memory at specific moments during execution.
From a formal point of view, the move to a trace-based
model is necessary to analyse the security of intra-procedural
optimisations. In addition, we show how it is possible to
combine identification and patching of leaky transformations
with a solution to the problem of identifying leaks due to the
duplication of data. Finally, contrary to [7], we have experi-
mentally validated our technique by analysing and enforcing
information preservation properties of passes of a realistic
compiler, the CompCert C compiler.

Barthe et al. [6] propose a general framework for reasoning
about the preservation of information leakage. Their approach
is based on an instrumented semantics which explicitly leaks
information to the attacker and which is used for deriving
reasoning principles based on so-called 2-simulations. As
our attacker may perform arbitrary observations of memory,
we quantify over a set of leakage functions. Moreover, our
reasoning principle is simpler and is sufficient to validate most
transformations. Yet, it also has limitations and 2-simulations
are more flexible when some leaked information of the source
is gradually leaked in the target program.

X. CONCLUSION

We present a notion of Information-Flow Preservation en-
suring that an attacker observing n bits of information during
the run of a target program does not get an advantage over
an attacker observing the same amount of bits of the source
program. This is a strong property which is not tailored to a
specific model of leakage but ensures that a compiler does not
introduce any kind of information-flow leaks. We show that
it is possible to adapt classic aggressive optimisations to this
setting by inserting automatically erasing instructions before
observation points. This approach has the advantage that the
existing compiler code can be reused mostly unchanged. Our
information-flow preservation property may prevent the spatial
duplication of information using an injection between the
observations of the target and source attackers. As future

work, we will investigate how to characterise in the same
framework both spatial and temporal duplication of data,
thus modelling the lifetime of data as temporal duplication.
The notion of injection is unfit for this purpose and would
need to be generalised to allow up-to k duplications of the
same data during the program execution. We also intend to
push our security property to its limit and model an attacker
observing memory at any time. Though the opportunities for
optimisations will most probably be greatly reduced, we are
nonetheless confident that programs can still be compiled in
a reasonable manner under this stringent requirement, at the
cost of some budget for temporal duplication of data.

Acknowledgement: This work has been partially funded
by the French ANR project Scrypt ANR-18-CE25-0014.

REFERENCES

[1] “HOL4,” http://hol.sourceforge.net.
[2] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,

“Verifying constant-time implementations,” in USENIX Security 16.
USENIX, 2016, pp. 53–70.

[3] A. Askarov and S. Chong, “Learning is change in knowledge:
Knowledge-based security for dynamic policies,” in CSF 2012. IEEE
Computer Society, 2012, pp. 308–322.

[4] A. Askarov, S. Moore, C. Dimoulas, and S. Chong, “Cryptographic
Enforcement of Language-Based Information Erasure,” in CSF’15.
IEEE, 2015, pp. 334–348. [Online]. Available: https://doi.org/10.1109/
CSF.2015.30

[5] A. Askarov and A. Sabelfeld, “Gradual Release: Unifying
Declassification, Encryption and Key Release Policies,” in
SP’07. IEEE, 2007, pp. 207–221. [Online]. Available:
https://doi.org/10.1109/SP.2007.22

[6] G. Barthe, B. Grégoire, and V. Laporte, “Secure Compilation of
Side-Channel Countermeasures: The Case of Cryptographic "Constant-
Time",” in CSF 2018. IEEE, 2018, pp. 328–343.

[7] F. Besson, A. Dang, and T. Jensen, “Securing Compilation Against
Memory Probing,” in PLAS’18. ACM, 2018, pp. 29–40.

[8] S. Blazy, D. Pichardie, and A. Trieu, “Verifying Constant-Time Imple-
mentations by Abstract Interpretation,” in ESORICS 2017, ser. LNCS,
vol. 10492. Springer, 2017, pp. 260–277.

[9] S. Chong and A. C. Myers, “Language-Based Information Erasure,”
in CSFW’05. IEEE, 2005, pp. 241–254. [Online]. Available:
https://doi.org/10.1109/CSFW.2005.19

[10] ——, “End-to-End Enforcement of Erasure and Declassification,”
in CSF’08. IEEE, 2008, pp. 98–111. [Online]. Available: https:
//doi.org/10.1109/CSF.2008.12

[11] C. Deng and K. S. Namjoshi, “Securing a Compiler Transformation,”
in SAS, ser. LNCS, vol. 9837. Springer, 2016, pp. 170–188.

[12] ——, “Securing the SSA transform,” in SAS, ser. LNCS, vol. 10422.
Springer, 2017, pp. 88–105.

[13] ——, “Securing a compiler transformation,” Formal Methods in System
Design, vol. 53, no. 2, pp. 166–188, 2018. [Online]. Available:
https://doi.org/10.1007/s10703-017-0313-8

[14] V. D’Silva, M. Payer, and D. Song, “The Correctness-Security Gap
in Compiler Optimization,” in SPW ’15. IEEE, 2015, pp. 73–87.
[Online]. Available: http://dx.doi.org/10.1109/SPW.2015.33

[15] L. George and A. W. Appel, “Iterated register coalescing,” ACM Trans.
Program. Lang. Syst., vol. 18, no. 3, pp. 300–324, 1996. [Online].
Available: http://doi.acm.org/10.1145/229542.229546

[16] S. Hunt and D. Sands, “Just Forget It: The Semantics and Enforcement
of Information Erasure,” in ESOP’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 239–253. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1792878.1792903

[17] T. Kaufmann, H. Pelletier, S. Vaudenay, and K. Villegas, “When
Constant-Time Source Yields Variable-Time Binary: Exploiting
Curve25519-donna Built with MSVC 2015,” in CANS 2016, ser. LNCS,
vol. 10052. Springer, 2016, pp. 573–582.

[18] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
CRYPTO ’99, ser. LNCS, vol. 1666. Springer, 1999, pp. 388–397.

http://hol.sourceforge.net
https://doi.org/10.1109/CSF.2015.30
https://doi.org/10.1109/CSF.2015.30
https://doi.org/10.1109/SP.2007.22
https://doi.org/10.1109/CSFW.2005.19
https://doi.org/10.1109/CSF.2008.12
https://doi.org/10.1109/CSF.2008.12
https://doi.org/10.1007/s10703-017-0313-8
http://dx.doi.org/10.1109/SPW.2015.33
http://doi.acm.org/10.1145/229542.229546
http://dl.acm.org/citation.cfm?id=1792878.1792903
http://dl.acm.org/citation.cfm?id=1792878.1792903

[19] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “Cakeml: a verified
implementation of ML,” in POPL ’14. ACM, 2014, pp. 179–192.

[20] X. Leroy, “Formal certification of a compiler back-end or: Programming
a compiler with a proof assistant,” in POPL’06. ACM, 2006, pp. 42–54.
[Online]. Available: http://doi.acm.org/10.1145/1111037.1111042

[21] ——, “Formal verification of a realistic compiler,” Commun.
ACM, vol. 52, no. 7, pp. 107–115, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1538788.1538814

[22] X. Leroy and S. Blazy, “Formal verification of a C-like memory
model and its uses for verifying program transformations,” Journal of
Automated Reasoning, vol. 41, no. 1, 2008.

[23] The Coq development team, The Coq proof assistant reference manual,
2017, version 8.7. [Online]. Available: http://coq.inria.fr

[24] A. Pnueli, M. Siegel, and E. Singerman, “Translation validation,” in
Tools and Algorithms for Construction and Analysis of Systems, ser.
LNCS, vol. 1384. Springer, 1998, pp. 151–166. [Online]. Available:
https://doi.org/10.1007/BFb0054170

[25] S. Rideau and X. Leroy, “Validating register allocation and spilling,” in
Compiler Construction, 19th International Conference, CC 2010, ser.
LNCS, vol. 6011. Springer, 2010, pp. 224–243.

[26] A. Sabelfeld and D. Sands, “Declassification: Dimensions and
principles,” Journal of Computer Security, vol. 17, no. 5, pp. 517–548,
2009. [Online]. Available: https://doi.org/10.3233/JCS-2009-0352

[27] T. Sewell, M. Myreen, and G. Klein, “Translation validation for a
verified os kernel,” in in PLDI 2013. ACM, 2013.

[28] L. Simon, D. Chisnall, and R. J. Anderson, “What You Get is What You
C: Controlling Side Effects in Mainstream C Compilers,” in EuroS&P.
IEEE, 2018, pp. 1–15.

[29] ——, “What you get is what you C: controlling side effects in main-
stream C compilers,” in EuroS&P. IEEE, 2018, pp. 1–15.

[30] X. Wang, H. Chen, A. Cheung, Z. Jia, N. Zeldovich, and M. Kaashoek,
“Undefined Behavior: What Happened to My Code?” in APSYS ’12,
2012.

[31] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in PLDI 2011. ACM, 2011, pp. 283–294.

[32] Z. Yang, B. Johannesmeyer, A. T. Olesen, S. Lerner, and K. Levchenko,
“Dead Store Elimination (Still) Considered Harmful,” in Proceedings
of the 26th USENIX Conference on Security Symposium, ser. SEC’17.
USENIX Association, 2017, pp. 1025–1040. [Online]. Available:

http://dl.acm.org/citation.cfm?id=3241189.3241269

http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1538788.1538814
http://coq.inria.fr
https://doi.org/10.1007/BFb0054170
https://doi.org/10.3233/JCS-2009-0352
http://dl.acm.org/citation.cfm?id=3241189.3241269

