
Walking through the Forest: a Fast EUF

Proof-Checking Algorithm
Frédéric Besson, Pierre-Emmanuel Cornilleau, Ronan Saillard

Inria Rennes – Bretagne Atlantique, France

Abstract

The quantifier-free logic of equality with uninterpreted function symbols (EUF) is at
the core of SMT solvers. However, there exist several competing proof formats to validate
EUF proofs. As EUF proof, we advocate for the proof forest that is the artifact proposed
by Nieuwenhuis and Oliveras to extract efficiently EUF unsatisfiable cores. An advantage
of this proof format is that it can be generated by the SMT solver for almost free. Our
preliminary experiments show that our proof forest verifier outperforms other EUF verifiers
and that proof forests appear to be more concise than existing EUF proofs.

1 Introduction

SMT solvers (e.g., Z3 [11], Yices [12], CVC3 [3], veriT [7]) are the cornerstone of software
verification tools (e.g., Dafny [14], Why/Krakatoa/Caduceus [13], VCC [8]). They are capable
of discharging proof obligations of impressive size and make possible verification tasks that would
otherwise be unfeasible. Scalability matters, but when it comes to verifying critical software,
soundness is mandatory. SMT solvers are based on highly optimised decision procedures and
proving the correctness of their implementation is probably not a viable option. To sidestep this
difficulty, several SMT solvers are generating proof witnesses that can be validated by external
verifiers. In order to minimise the Trusted Computing Base (TCB), an ambitious approach
consists in validating SMT proofs using a general purpose proof verifier i.e., a proof-assistant
such as Isabelle/HOL or Coq. Recent works [6, 2] show that SMT proofs are big objects and
that the bottleneck is usually the proof-assistant. Ideally, SMT proofs should be i) generated
by SMT solvers with little overhead; ii) verified quickly by proof assistants.

Even for the simplest logic such as the quantifier-free logic of equality with uninterpreted
function symbols (EUF) there are several competing proof formats generated by SMT solvers.
Several of those formats have already been validated by proof-assistants. For instance, Z3 proofs
can be reconstructed in Isabelle/HOL and HOL4 [6] and veriT proofs can be reconstructed in
Coq [2]. Even though the results are impressive, certain SMT proofs cannot be verified because
they are too big.

We consider several proof formats for EUF and compare their efficiency in terms of i) gen-
eration time; ii) checking time; iii) and proof size. Our comparisons are empiric and do not
compare the formats in terms of proof-complexity. Instead, we have implemented the verifiers
using the functional language of Coq and compared their asymptotic behaviour experimentally
over families of handcrafted benchmarks. The contributions of the paper are efficient Coq veri-
fiers for two novel EUF proof format and their comparison with existing ones. The code of the
verifiers is available [17]. The most original verifier validates directly the proof forest that is the
artifact proposed by Nieuwenhuis and Oliveras to extract efficiently unsatisfiable cores [16]. For
the sake of comparison, we have also implemented a Coq verifier for the EUF proof format of Z3
and compared with the existing Coq verifier for the EUF proof format of veriT [2]. The result
of our preliminary experiments is that the running time of all the verifiers is negligible w.r.t the
parsing/type-checking of the textual representation of the EUF proofs. Another result of our
experiments is that the proof forest verifier is very fast and that proof forests appear to be more

1

Walking through the Forest: a Fast EUF Proof-Checking Algorithm

concise that existing EUF proofs. Another advantage is that proof forests should be generated
for almost free by SMT solvers.

The rest of the paper is organised as follows. Section 2 provides basic definitions and known
facts about the EUF logic. Section 3 recalls the nature of proof forests and explains the workings
of our novel EUF proof verifiers. Section 4 is devoted to experiments. Section 5 concludes.

2 Background

We write T (Σ,V) the smallest set of terms built upon a set of variables V and a signature Σ.
For EUF, an atomic formula is a term of the form t = t′ for t, t′ ∈ T (Σ, ∅) and a literal is an
atomic formula or its negation. Equality (=) is reflexive, symmetric, transitive and closed under
congruence:

x = x

x = y

y = x

x = y, y = z

x = z

x1 = y1, . . . , xn = yn
f(x1, . . . , xn) = f(y1, . . . , yn)

Ackermann has proved using a reduction approach that the EUF logic is decidable [1]. The
reduction consists in introducing for each term f(~x) a boolean variable f~x and encoding the
congruence rule by adding the boolean formula x1 = y1 ∧ . . . ∧ xn = yn ⇒ f~x = f~y for each pair
of terms f(~x), f(~y). This encoding is responsible for a quadratic blow up of the formula. Nelson
has proposed an efficient decision procedure for deciding the satisfiability of a set of EUF literals
using a congruence closure algorithm [15]. An unsatisfiable core is a (minimum) set of literals
which conjunction is not satisfiable. Unsatisfiable cores are crucial for the efficiency of modern
SMT solvers. Nieuwenhuis and Oliveras have shown how to efficiently generate unsatisfiable
cores by instrumenting the congruence closure algorithm with a proof forest [16] gathering all
the necessary information for generating proofs (see Section 3.1).

3 Walking through the proof forest

In the following, we assume w.l.o.g. that EUF terms are flat and currified i.e., are of the form
x or f(x) where x is a constant. These transformations can be performed in linear time and
simplify the decision procedure.

3.1 Proof forest

Nieuwenhuis and Oliveras have proposed a proof-producing congruence closure algorithm for
deciding EUF [16]. Their main contribution is an efficient Explain operation which outputs
a (small) set of input equations E needed to deduce an equality, say a = b. If a 6= b is also
part of the input, E ∪ a 6= b is a (small) unsatisfiable core that is used by the SMT solver for
backtracking. As a result, SMT solvers using congruence closure run a variant of the Explain
algorithm – whether or not they are proof producing.

The Explain algorithm is based on a specific data structure: the proof forest. A proof forest
is a collection of trees in which each edge a → b in the proof forest is labelled by a reason
justifying why the equality a = b holds. A reason is either an input equation a = b or a pair of
input equations a1(a2) = a and b1(b2) = b. For the second case, there must be justifications in
the forest for a1 = b1 and a2 = b2.

A recursive version of Explain is given Figure 1. The NearestCommonAncestor and Parent
functions return (if it exists) respectively the nearest common ancestor of two nodes in the

2

Walking through the Forest: a Fast EUF Proof-Checking Algorithm

l e t Explain (a , b) :=
l e t c := NearestCommonAncestor (a , b) in
l e t c := HighestNode c in

ExplainAlongPath (a , c) ;
ExplainAlongPath (b , c)

l e t ExplainAlongPath (a , c) :=
a := HighestNode a
i f a = c then return
e l s e

l e t b := Parent (a) in
i f edge a −> b i s l a b e l l e d with (a = b) then

Output (a = b)
e l s e /∗ edge i s l a b e l l e d with a1 (a2)=a and b1 (b2)=b ∗/

Output a1 (a2)=a and b1 (b2)=b ;
Explain (a1 , b1) ;
Explain (a2 , b2)

Union a b ;
ExplainAlongPath (b , c)

Figure 1: Recursive Explain algorithm

proof forest and the parent of a node in the proof forest. A union-find structure is also used:
Union a b merges the equivalence classes of a and b; HighestNode c is the highest node (in the
proof forest) belonging to the equivalence class of c.

SMT solvers such as Z3 [10] and veriT [7] use different techniques to turn the Explain
algorithm into a proof-producing procedure for EUF. In Section 3.2, we show how to instrument
Explain to generate a list of proof commands to be checked by a specialised proof verifier. In
Section 3.3, we show how the proof forest itself can be used as a EUF proof. In that case, the
verifier is a variant of the Explain algorithm performing extra checks.

3.2 Command verifier

Our proof language is made of a list of commands reminiscent of our previous format [4]. Each
command derives new equalities from initial equalities or already derived equalities. The key
commands correspond to the following deduction rules.

Symmetry
a = b
b = a

Transitivity
a = b b = c

a = c

Congruence
a = a1(a2) b = b1(b2) a1 = b1 a2 = b2

a = b

The commands are obtained by running a version of Explain where the union-find struc-
ture has been replaced by a hash-table keeping track of already derived equalities. Each call
Explain a b appends a Transitivity and a Symmetry command to the commands obtained
by the two successive calls to ExplainAlongPath a c and ExplainAlongPath b c. Each call
ExplainAlongPath a c generates a list of commands justifying the equality a = c. An edge

a
a=b−−→ b is justified by a command Hyp checking that a = b is indeed an input equation. An

3

Walking through the Forest: a Fast EUF Proof-Checking Algorithm

edge a
b=b1(b2)−−−−−−→
a=a1(a2)

b is justified by a Congruence command appended to the result of the recursive

calls to Explain a1 b1 and Explain a2 b2 which generate commands justifying the equalities
a1 = b1 and a2 = b2. The recursive call to ExplainAlongPath b c generates commands justify-
ing the equality b = c. The complete list of commands is then obtained by adding a Transitivity
command to prove a = c from a = b and b = c. The verification of such a proof then consists
in executing in order each command to derive the wanted equality checking that each rule is
correctly applied.

3.3 Proof forest verifier

The Explain algorithm of Figure 1 can be turned into a EUF proof verifier. The verifier is a
version of Explain augmented with additional checks to ensure that the edges obtained from the
SMT solver correspond to a well-formed proof forest. For instance, the verifier checks that edges

are only labelled by input equations. Moreover, for edges of the form a
b=b1(b2)−−−−−−→
a=a1(a2)

b, the recursive

calls to Explain ensure that a1 = b1 and a2 = b2 have proofs in the proof forest i.e., a1 (resp.
a2) is connected with b1 (resp. b2) by some valid path in the proof forest. For efficiency and
simplicity, the least common ancestors are not computed by the verifier but used as untrusted
hints. The soundness of the verifier does not depend on the validity of this information as the
proposed least common ancestor is just used to guide the proof. If the return node is not a
common ancestor, the verifier will simply fail.

For this verifier, a EUF proof is a pruned proof forest corresponding to the edges walked
through during a preliminary run of Explain. As the SMT solver needs to traverse the proof
forest to extract unsatisfiable core, we argue that the proof forest is the EUF proof that requires
the least extra-work from the SMT solver.

Unlike more traditional proof verifiers, this verifier needs more sophisticated data-structures
such as an auxiliary union-find. Our opinion is that the slight complication of the soundness
proof is overweight by the simplicity of the proof generation.

4 Implementation and Experiments

4.1 EUF verifiers in Coq

Our verifiers are implemented using the native version of Coq [5] which features persistent
arrays [9]. Persistent arrays are purely functional data-structures that ensure constant time
accesses and updates of the array as soon as it is used in a monadic way. For maximum
efficiency, all the verifiers make a pervasive use of those arrays.

Compared to other languages, a constraint imposed by Coq is that all programs must be
terminating. The command-based verifier (see Section 3.2) is trivially terminating. Termination
of the proof-forest verifier is more intricate because the Explain algorithm (see Figure 3.3) does
not terminate if the proof forest is ill-formed e.g., has cycles. However, if the proof forest is
well-formed, an edge is only traversed once. As a result, at each recursive call, our verifier
decrements an integer initialised to the size of the proof forest. An interesting observation is
that the original Explain algorithm [16, Section 3.4] always terminates but does not detect

certain ill-formed proof forests e.g., a
b=f(b)−−−−→
a=f(a)

b. In this case, the recursive Explain algorithm of

Figure 1 does not terminate. In Coq, the verifier fails after exhausting the maximum number of
allowed recursive calls.

4

Walking through the Forest: a Fast EUF Proof-Checking Algorithm

For the sake of comparison, we have also implemented the EUF proof format of Z3. Z3
refutations are also generated using Explain [10, Section 3.4.2]. Unlike our verifier described in
Section 3.2, Z3 proofs are using explicit boolean reasoning and modus ponens. As a consequence
formulae do not have a constant size. As already noticed by others [6, 2], efficient verifiers
require a careful handling of sharing. Our terms and formulae are hash-consed ; sharing is
therefore maximum and comparison of terms or formulae is a constant-time operation.

4.2 Benchmarks

We have assessed the efficiency of our EUF verifiers on several families of handcrafted conjunctive
EUF benchmarks. The benchmarks are large and all the literals are necessary to prove non-
satisfiability. For all our benchmarks the running time of the verifiers is negligible especially
compared to the time spent parsing/type-checking the textual representation of the different
EUF proofs. Moreover, the proof size is linear in the size of the formulae.

Figure 2 shows our experimental results for a family of formulae of the general form

x0 = x1 x0 6= x(j+1)·j
f(xi·j , xi·j) = xi·j+1 = ... = xi·j+j for i ∈ {0 . . . j}

The benchmarks are indexed by the number of EUF variables and the results are obtained using
a Linux laptop with a processor Intel Core 2 Duo CPU T9600 (2.80GHz) and 4GB of Ram. The
Figure on the left shows the time needed to construct and compile Coq proof terms. The Figure
on the right shows the size of the compiled proof terms. For all our benchmarks, the proof

 0

 20

 40

 60

 80

 100

 120

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

co
qc

 ti
m

e
(s

ec
.)

benchmark size (number of variables)

Proof Forest
Command

Z3
VeriT

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

co
m

pi
le

d
lib

ra
ry

 s
iz

e
(K

o)

benchmark size (number of variables)

Proof Forest
Command

Z3
VeriT

Figure 2: Comparison of generation time and size of compiled proofs

forest verifier shows a noticeable advantage over the other verifiers. We can also remark that
its behaviour is more predicable. The veriT verifier [2] is using proofs almost as small as proof
forests. This is an impressive result knowing that veriT produces sometimes traces that can be
more than two orders of magnitude bigger. In the timings, the pre-processing needed to perform
the proof reduction is accounted for and might explain why the veriT verifier gets slower as the
benchmark size grows. Remark also that for the biggest benchmarks, the veriT SMT solver fails
to generate proofs. This is also the case for our proof generator for the command verifier. The Z3
verifier is more scalable despite being slightly but constantly overrun by the proof forest verifier.
As all the verifiers are equally optimised we are confident that proof forests are responsible for
smaller EUF proofs in general and that the proof forest verifier scales remarkably well.

5

Walking through the Forest: a Fast EUF Proof-Checking Algorithm

5 Conclusion

We have compared empirically different proof verifiers for EUF proofs that can be generated
by SMT solvers. The conclusion of our experiments is that a proof forest verifier outperforms
existing verifiers for EUF proofs. The proof forest can be generated by the SMT solver with little
overhead, the proof is succinct and the proof checking is fast. Compared to other verifiers, the
soundness of the proof forest verifier is a little more intricate. We are currently completing the
proofs of the different verifiers. As future work, we intend to integrate the proof forest verifier
into the SMT proof verifier developed by several of the current authors [4] and extend its scope
to the logic of constructors.

References

[1] W. Ackermann. Solvable Cases of the Decision Problem. Studies in Logic and the Foundations of
Mathematics. North-Holland, Amsterdam, 1954.

[2] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner. A Modular Integration of
SAT/SMT Solvers to Coq through Proof Witnesses. In CPP, volume 7086 of LNCS, pages 135–150.
Springer, 2011.

[3] C. Barrett and C. Tinelli. CVC3. In Proc. of CAV 2007, volume 4590 of LNCS, pages 298–302.
Springer, 2007.

[4] F. Besson, P-E. Cornilleau, and D. Pichardie. Modular SMT Proofs for Fast Reflexive Checking
Inside Coq. In CPP, volume 7086 of LNCS, pages 151–166. Springer, 2011.

[5] M. Boespflug, M. Dénès, and B. Grégoire. Full Reduction at Full Throttle. In CPP, volume 7086 of
LNCS, pages 362–377. Springer, 2011.

[6] S. Böhme and T. Weber. Fast LCF-style Proof Reconstruction for Z3. In Proc. of ITP 2010, volume
6172 of LNCS, pages 179–194. Springer, 2010.

[7] T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT: an open, trustable and efficient
SMT-solver. In Proc. of CADE 2009, LNCS. Springer, 2009.

[8] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte, and
S. Tobies. VCC: A Practical System for Verifying Concurrent C. In TPHOLs, volume 5674 of LNCS,
pages 23–42. Springer, 2009.

[9] S. Conchon and J-C. Filliâtre. Semi-persistent Data Structures. In ESOP, volume 4960 of LNCS,
pages 322–336. Springer, 2008.

[10] L. M. de Moura and N. Bjørner. Proofs and Refutations, and Z3. In Proc. of the LPAR 2008
Workshops, Knowledge Exchange: Automated Provers and Proof Assistants, volume 418. CEUR-
WS.org, 2008.

[11] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. of TACAS 2008, volume
4963 of LNCS, pages 337–340. Springer, 2008.

[12] B. Dutertre and L. de Moura. The Yices SMT solver. Tool paper at http://yices.csl.sri.com/tool-
paper.pdf, 2006.

[13] J-C Filliâtre and C Marché. The Why/Krakatoa/Caduceus Platform for Deductive Program Verifi-
cation. In CAV, volume 4590 of LNCS, pages 173–177, 2007.

[14] K. Rustan M. Leino. Dafny: An Automatic Program Verifier for Functional Correctness. In LPAR-
16, volume 6355 of LNCS, pages 348–370. Springer, 2010.

[15] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure. J. ACM,
27(2):356–364, April 1980.

[16] R. Nieuwenhuis and A. Oliveras. Proof-Producing Congruence Closure. In Proc. of RTA 2005,
volume 3467 of LNCS, pages 453–468. Springer, 2005.

[17] R. Saillard. EUF Verifiers in Coq. http://www.irisa.fr/celtique/ext/euf.

6

http://www.irisa.fr/celtique/ext/euf

	Introduction
	Background
	Walking through the proof forest
	Proof forest
	Command verifier
	Proof forest verifier

	Implementation and Experiments
	EUF verifiers in Coq
	Benchmarks

	Conclusion

