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Abstract. Semantics preserving compilation of low-level C programs is
challenging because their semantics is implementation defined according
to the C standard. This paper presents the proof of an enhanced and
more concrete memory model for the CompCert C compiler which as-
signs a definite meaning to more C programs. In our new formally verified
memory model, pointers are still abstract but are nonetheless mapped
to concrete 32-bit integers. Hence, the memory is finite and it is possible
to reason about the binary encoding of pointers. We prove that the ex-
isting memory model is an abstraction of our more concrete model thus
validating formally the soundness of CompCert’s abstract semantics of
pointers. We also show how to adapt the front-end of CompCert thus
demonstrating that it should be feasible to port the whole compiler to
our novel memory model.

1 Introduction

Formal verification of programs is usually performed at source level. Yet, a the-
orem about the source code of a safety critical software is not sufficient. Even-
tually, what we really value is a guarantee about the run-time behaviour of the
compiled program running on a physical machine. The CompCert compiler [17]
fills this verification gap: its semantics preservation theorem ensures that when
the source program has a defined semantics, program invariants proved at source
level still hold for the compiled code. For the C language the rules governing so
called undefined behaviours are subtle and the absence of undefined behaviours
is in general undecidable. As a corollary, for a given C program, it is undecidable
whether the semantic preservation applies or not.

To alleviate the problem, the semantics of CompCert C is executable and
it is therefore possible to check that a given program execution has a defined
semantics. Jourdan et al. [12] propose a more comprehensive and ambitious
approach: they formalise and verify a precise C static analyser for CompCert
capable of ruling out undefined behaviours for a wide range of programs. Yet,
these approaches are, by essence, limited by the formal semantics of CompCert
C: programs exhibiting undefined behaviours cannot benefit from any semantic
preservation guarantee. This is unfortunate as real programs do have behaviours
that are undefined according to the formal semantics of CompCert C1. This can
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be a programming mistake but sometimes this is a design feature. In the past,
serious security flaws have been introduced by optimising compilers aggressively
exploiting the latitude provided by undefined behaviours [22,6]. The existing
workaround is not satisfactory and consists in disabling optimisations known to
be triggered by undefined behaviours.

In previous work [3], we proposed a more concrete and defined semantics
for CompCert C able to give a semantics to low-level C idioms. This semantics
relies on symbolic expressions stored in memory that are normalised into genuine
values when needed by the semantics. It handles low-level C idioms that exploit
the concrete encoding of pointers (e.g. alignment constraints) or access partially
undefined data structures (e.g. bit-fields). Such properties cannot be reasoned
about using the existing CompCert memory model [19,18].

The memory model of CompCert consists of two parts: standard operations
on memory (e.g. alloc, store) that are used in the semantics of the languages of
CompCert and their properties (that are required to prove the semantic preser-
vation of the compiler), together with generic transformations operating over
memory. Indeed, certain passes of the compiler perform non-trivial transforma-
tions on memory allocations and accesses: for instance, in the front-end, C local
variables initially mapped to individually-allocated memory blocks are later on
mapped to sub-blocks of a single stack-allocated activation record. Proving the
semantic preservation of these transformations requires extensive reasoning over
memory states, using memory invariants relating memory states during program
execution, that are also defined in the memory model.

In this paper, we extend the memory model of CompCert with symbolic ex-
pressions [3] and tackle the challenge of porting memory transformations and
CompCert’s proofs to our memory model with symbolic expressions. The com-
plete Coq development is available online [1]. Among others, a difficulty is that
we drop the implicit assumption of an infinite memory. This has the consequence
that allocation can fail. Hence, the compiler has to ensure that the compiled pro-
gram is using less memory than the source program.

This paper presents a milestone towards a CompCert compiler adapted with
our semantics; it makes the following contributions.
– We present a formal verification of our memory model within CompCert.
– We prove that the existing memory model of CompCert is an abstraction of

our model thus validating the soundness of the existing semantics.
– We extend the notion of memory injection, the main generic notion of mem-

ory transformation.
– We adapt the proof of CompCert’s front-end passes, from CompCert C until

Cminor, thus demonstrating the feasibility of our endeavour.

The paper is organised as follows. Section 2 recalls the main features of
the existing CompCert memory model and our proposed extension. Section 3
explains how to adapt the operations of the existing CompCert memory model
to comply with the new requirements of our memory model. Section 4 shows
that the existing memory model is, in a provable way, an abstraction of our
new memory model. Section 5 presents our re-design of the notion of memory



injection that is the cornerstone of compiler passes modifying the memory layout.
Section 6 details the modifications for the proofs for the compiler front-end
passes. Related work is presented in Section 7; Section 8 concludes.

2 A More Concrete Memory Model for CompCert

In previous work [3], we propose an enhanced memory model (with symbolic
expressions) for CompCert. The model is implemented and evaluated over a
representative set of C programs. We empirically verify, using the reference in-
terpreter of CompCert, that our extension is sound with respect to the existing
semantics and that it captures low-level C idioms out of reach of the existing
memory model. This section first recalls the main features of the current Comp-
Cert memory model and then explains our extension to this memory model.

2.1 CompCert’s Memory Model

Leroy et al. [18] give a thorough presentation of the existing memory model of
CompCert, that is shared by all the languages of the compiler. We give a brief
overview of its design in order to highlight the differences with our own model.

Abstract values used in the semantics of the CompCert languages (see [19])
are the disjoint union of 32-bit integers (written as int(i) ), 32-bit floating-
point numbers (written as float(f) ), locations (written as ptr(l) ), and the
special value undef representing an arbitrary bit pattern, such as the value of an
uninitialised variable. The abstract memory is viewed as a collection of separated
blocks. A location l is a pair (b, i) where b is a block identifier (i.e. an abstract
address) and i is an integer offset within this block. Pointer arithmetic modifies
the offset part of a location, keeping its block identifier part unchanged. A pointer
ptr(b, i) is valid for a memory M (written valid_pointer (M, b, i) ) if the offset i

is within the two bounds of the block b.

Abstract values are loaded from (resp. stored into) memory using the load

(resp. store) memory operation. Memory chunks appear in these operations, to
describe concisely the size, type and signedness of the value being stored. These
operations return option types: we write ∅ for failure and bxc for a successful
return of a value x. The free operation may also fail (e.g. when the locations to
be freed have been freed already). The memory operation alloc never fails, as
the size of the memory is unbounded.

In the memory model, the byte-level, in-memory representation of integers
and floats is exposed, while pointers are kept abstract [18]. The concrete memory
is modelled as a map associating to each location a concrete value cv that is a
byte-sized quantity describing the current content of a memory cell. It can be
either a concrete 8-bit integer (written as bytev(b)) representing a part of an
integer or a float, ptrv(l, i) to represent the i-th byte (i ∈ {1, 2, 3, 4}) of the
location l, or undefv to model uninitialised memory.



struct {
int a0 : 1; int a1 : 1;

} bf ;

int main() {
bf . a1 = 1; return bf . a1;}

(a) Bitfield in C

1 struct { unsigned char bf1 ;} bf ;
2

3 int main(){
4 bf . bf1 = (bf . bf1 & ˜0x2U) |
5 ((unsigned int ) 1 << 1U & 0x2U) ;
6 return ( int ) (bf . bf1 << 30) >> 31;}

(b) Bitfield in CompCert C

Fig. 1: Emulation of bitfields in CompCert

2.2 Motivation for an Enhanced Memory Model

Our memory model with symbolic expressions [3] gives a precise semantics to
low-level C idioms which cannot be modelled by the existing memory model. The
reason is that those idioms either exploit the binary representation of pointers as
integers or reason about partially uninitialised data. For instance, it is common
for system calls, e.g. mmap or sbrk, to return −1 (instead of a pointer) to indicate
that there is no memory available. Intuitively, −1 refers to the last memory
address 0xFFFFFFFF and this cannot be a valid address because mmap returns
pointers that are aligned – their trailing bits are necessarily 0s. Other examples
are robust implementations of malloc: for the sake of checking the integrity of
pointers, their trailing bits store a checksum. This is possible because those
pointers are also aligned and therefore the trailing bits are necessarily 0s.

Another motivation is illustrated by the current handling of bitfields in
CompCert: they are emulated in terms of bit-level operations by an elabora-
tion pass preceding the formally verified front-end. Fig. 1 gives an example of
such a transformation. The program defines a bitfield bf such that a0 and a1 are
1 bit long. The main function sets the field a1 of bf to 1 and then returns this
value. The expected semantics is therefore that the program returns 1. The trans-
formed code (Fig. 1b) is not very readable but the gist of it is that field accesses
are encoded using bitwise and shift operators. The transformation is correct and
the target code generated by CompCert correctly returns 1. However, using the
existing memory model, the semantics is undefined. Indeed, the program starts
by reading the field __fd1 of the uninitialised structure bf. The value is therefore
undef. Moreover, shift and bitwise operators are strict in undef and therefore
return undef. As a result, the program returns undef. As we show in the next
section, our semantics is able to model partially undefined values and therefore
gives a semantics to bitfields. Even though this case could be easily solved by
modifying the pre-processing step, C programmers might themselves write such
low-level code with reads of undefined memory and expect it to behave correctly.

2.3 A Memory Model with Symbolic Expressions

To give a semantics to the previous idioms, a direct approach is to have a fully
concrete memory model where a pointer is a genuine integer and the memory is



Record compat(cm, m) : Prop := {
addr_space : ∀ b o, [o] ∈ bound(m, b)→ 0 < [cm(b)+o] < Int.max_unsigned;
overlap : ∀ b b’ o o’,

b 6= b’→ [o] ∈ bound(m,b) → [o’] ∈ bound(m, b’) → [cm(b)+o] 6= [cm(b’)+o’];
alignment: ∀ b, cm(b) & alignt(m, b) = cm(b) }.

Fig. 2: Compatibility relation betw. a memory mapping and an abstract memory

an array of bytes. However, this model lacks an essential property of CompCert’s
semantics: determinism. For instance, with a fully concrete memory model, al-
locating a memory chunk returns a non-deterministic pointer – one of the many
that does not overlap with an already allocated chunk. In CompCert, the allo-
cation returns a block that is computed in a deterministic fashion. Determinism
is instrumental for the simulation proofs of the compiler passes and its absence
is a show stopper.

Our approach to increase the semantics coverage of CompCert consists in
delaying the evaluation of expressions which, for the time being, may have a
non-deterministic evaluation. In memory, we therefore consider side-effect free
symbolic expressions of the following form: sv ::= v | opτ1 sv | sv τop2

τ sv , where
v is a value and opτ1 (resp. τopτ2 ) is a unary (resp. binary) arithmetic operator.

Our memory model is still made of a collection of blocks with the dif-
ference that 1) each block possesses an explicit alignment, and 2) memory
blocks contain symbolic byte expressions. The alignment of a block b (written
alignt(m, b) ) states that the address of b has a binary encoding such that its trail-
ing alignt(m, b) bits are zeros. Memory loads and stores cannot be performed
on symbolic expressions which therefore need to be normalised beforehand to a
genuine pointer value. Another place where normalisation is needed is before a
conditional jump to ensure determinism of the jump target. The normalisation
gives a semantics to expressions in terms of a concrete mapping from blocks to
addresses. Formally, we define in Fig. 2 a compatibility relation stating that:2

– a valid location is in the range [0x00000001; 0xFFFFFFFE] (see addr_space);
– valid locations from distinct blocks do not overlap (see overlap);
– a block is mapped to an address abiding to the alignment constraints.

The normalisation is such that normalisem e τ returns a value v of type τ if and
only if the side-effect free expression e evaluates to v for every concrete mapping
cm: block → B32 of blocks to concrete 32 bits addresses which are compatible
with the block-based memory m (written compat(cm, m) ).

We define the evaluation of expressions as the function J·Kcm, parametrised
by the concrete mapping cm. Pointers are turned into their concrete value, as
dictated by cm. For example, the evaluation of ptr(b, o) results in cm(b) + o.
Then, symbolic operations are mapped to the corresponding value operations.

Consider the code of Fig. 1b. Unlike the existing semantics, operators are
not strict in undef but construct symbolic expressions. Hence, in line 4, we store

2The notation [i] denotes the machine integer i when interpreted as unsigned.



in bf. __bf1 the symbolic expression e defined by ( undef&˜0x2U)|(1<<1U&0x2U)

and therefore return the normalisation of the expression (e << 30) >> 31. The
value of the expression is 1 whatever the value of undef and therefore the nor-
malisation succeeds and returns, as expected, the value 1.

3 Proving the Operations of the Memory Model

CompCert’s memory model exports an interface summarising all the properties
of the memory operations necessary to prove the compiler passes. This section
details how the properties and the proofs need to be adapted to accommodate for
symbolic expressions. First, we have to refine our handling of undefined values.
Second, we introduce an equivalence relation between symbolic expressions.

3.1 Precise Handling of Undefined Values

Symbolic expressions (as presented in Section 2.3) feature a unique undef token.
This is a shortcoming that we have identified during the proof. With a single
undef, we do not capture the fact that different occurrences of undef may repre-
sent the same unknown value, or different ones. For instance, consider two unini-
tialised char variables x and y . Expressions x − x and x − y both construct the
symbolic expression undef−undef, which does not normalise. However we would
like x − x to normalise to 0, since whatever the value stored in memory for x, say
v, the result of v−v should always be 0. To overcome this problem, each byte of
a newly allocated memory chunk is initialised with a fresh undef value. After the
allocation of block b, the value stored at location (b, o) is undef(b, o). This value
is fresh because block identifiers are never reused. Hence, x − x constructs the
symbolic expression undef(b, o)− undef(b, o) for some b and o which obviously
normalises to 0, because undef(b, o) now represents a unique value rather than
the set of all values. Our symbolic expressions do not use the existing CompCert’s
values but the following type sval ::= undef(l) | int(i) | float(f) | ptr(l).

3.2 Memory Allocation

CompCert’s alloc operation always allocates a memory chunk of the requested
size and returns a fresh block to the newly allocated memory (i.e. it models an
infinite memory). In our model, memory consumption needs to be precisely mon-
itored and a memory m is a dependent record which, in addition to a CompCert
block-based memory, provides guarantees about the concrete memories com-
patible (see Fig. 2) with the CompCert block-based memory. Hence, our alloc

operation is partial and returns ∅ if it fails to construct a memory object.

The first guarantee is that for every memory m there exists at least a concrete
memory compatible with the abstract CompCert block-based memory.

Lemma mem_compat : ∀ m, ∃ cm, compat(cm, m).



To get this property, the alloc function runs a greedy algorithm constructing a
compatible cm mapping. Given a memory m, size_mem(m) returns the size of the
constructed memory (i.e. the first fresh address as computed by the allocation).
The algorithm makes the pessimistic assumption that the allocated blocks are
maximally aligned – for CompCert, this maximum is 3 bits (addresses are di-
visible by 23). It places the allocated block at the first concrete address that is
free and compliant with a 3-bit alignment. Allocation fails if no such address can
be found. The rationale for the pessimistic alignment assumption is discussed
in Section 5: it is essential to ensure that certain memory re-arrangements are
always feasible (i.e. would not exhaust memory).

Without the mem_compat property, a symbolic expression e could have a nor-
malisation v before allocation and be undefined after allocation. The existence
of a concrete compatible memory ensures that the normalisation of expressions
is strictly more defined after allocation.

Lemma normalise_alloc : ∀ m lo hi m’ b e τ v,
alloc m lo hi = b(m’, b)c ∧ normalise m e τ = v ∧ v 6= undef →
normalise m’ e τ = v.

3.3 Good Variable Properties

In CompCert, the so-called good variable properties axiomatise the behaviour
of the memory operations. For example, the property load_store_same states
that, starting from memory m1, if we store value v at location l with some
chunk κ, then when we read at l with κ, we get back the value v. During
a store, a symbolic expression is split into symbolic bytes using the function
extr(sv, i) which extracts the ith byte of a symbolic expression sv. The re-
verse operation is the concatenation of a symbolic expression sv1 with a sym-
bolic expression sv2 representing a byte. These operations can be defined as
extr(sv, i) = (sv shr (8∗ i)) & 0xFF and concat(sv1,sv2) = sv1 shl 8 + sv2.

As a result, the axiom load_store_same needs to be generalised because the
stored value v is not syntactically equal to the loaded value v1 but is equal modulo
normalisation (written v1 ≡ v2). This equivalence relation is a key insight for
generalising the properties and the proofs of the memory model.

Axiom load_store_same : ∀ κ m1 b ofs v m2, store κ m1 b ofs v = b m2 c →
∃ v1, load chunk m2 b ofs = b v1 c ∧ v1 ≡ Val.load_result κ v.

We have generalised and proved the axioms of the memory model using the same
principle. The proof effort is non-negligible as the memory model exports more
than 150 lemmas. Moreover, if the structure of the proofs is similar, our proofs
are complicated by the fact that we reason modulo normalisation of expressions.

4 Cross-validation of Memory Models

The semantics of the CompCert C language is part of the trusted computing base
of the compiler. Any modelling error can be responsible for a buggy, though for-
mally verified, compiler. To detect a glitch in the semantics, a first approach



consists in running tests and verifying that the CompCert C interpreter com-
putes the expected value. With this respect, the CompCert C semantics success-
fully run hundreds of random test programs generated by CSmith [23]. Another
indirect but original approach consists in relating formally different semantics
for the same language. For instance, when designing the CompCert C semantics,
several equivalence between alternate semantics were proved to validate this se-
mantics [4]. Our memory model is a new and interesting opportunity to apply
this methodology and perform a cross-validation of the C operators which are
the building blocks of the semantics.

Our memory model aims at giving a semantics to more operations (e.g.
low-level pointer operations). However, when for instance a C binary operation
v1 op v2 evaluates to a defined value v′, using the existing memory model, the
symbolic expression v1 op v2 should normalise to the same value v′. For pointer
values, this property is given in Fig. 3, where sem_binary_operation_expr is our
extension to symbolic expressions of the function sem_binary_operation .

During the proof, we have uncovered several issues. The first issue is that
our normalisation only returns a location within the bounds of the block. This
is not the case for CompCert C that allows, for instance, to increment a pointer
with an arbitrary offset. If the resulting offset is outside the bounds, our nor-
malisation returns undef. For us, this is a natural requirement because we only
apply normalisation when valid pointers are needed (i.e. before a memory read or
write). To cope with this discrepancy, we add in lemma expr_binop_ok_ptr the
precondition valid_pointer (m, b, o) . Another issue was a mistake in our syntac-
tic construction of symbolic expressions: a particular cast operator was mapped
to the wrong syntactic constructor. After the easy fix, we found two interesting
semantics discrepancies with the current semantics of CompCert C.

One issue is related to weakly valid pointers [16] which model a subtlety of C
stating that pointers one past the end of an array object can be compared. As a
result, in CompCert C, if (b, o) is a valid location, then (b, o)<(b, o+1) always re-
turns true. In our model, if (b, o+1) wraps around (because of an integer overflow)
it may return 0 and therefore the property does not hold. To avoid this corner
situation, we state that a valid address of our model excludes Int. max_unsigned

(see Fig. 2). This is sufficient to prevent the offset from wrapping around and to
be compatible with the semantics of CompCert C.

Lemma expr_binop_ok_ptr : ∀ op v1 t1 v2 t2 m b o,
sem_binary_operation op v1 t1 v2 t2 m = bptr(b,o)c → valid_ptr(m, b, o) →
∃ v’, sem_binary_operation_expr op v1 t1 v2 t2 m = bv’c ∧

normalise m v’ Ptr = ptr(b, o).

Fig. 3: Example of cross-validation of binary C operators.

The last issue is related to the comparison with the null pointer. In Comp-
Cert, this is the only pointer which is not represented by a location (b, i) but by
the integer 0. The semantics therefore assumes that a genuine location can never



int main(){ int i=0, ∗p = &i ;
for ( i=0; i < INTMAX; i++) i f (p++ == 0) return 1;
return 0; }

Fig. 4: A null pointer comparison glitch

be equal to the null pointer. In our semantics, a location (b, i) can evaluate to 0
in case of wrap around. This is a glitch in the CompCert semantics that is illus-
trated by the code snippet of Fig. 4. This program initialises a pointer p to the
address of the variable i . In the loop, p is incremented until it equals 0 in which
case the loop exits and the program returns 1. With this program, the executable
semantics of CompCert C returns 0 because p==0 is always false whatever the
value of p. However, when running the compiled program, the pointer is a mere
integer, the integer eventually overflows; wraps around and becomes 0. Hence,
the test holds and the program returns 1. We might wonder how the CompCert
semantic preservation can hold in the presence of such a contradiction. Actually,
the pointers are kept logical all the way through to the assembly level, and the
comparison with the null pointer is treated the same during all the compilation
process, thus even the assembly program in CompCert returns 0. The inconsis-
tency only appears when the assembly program is compiled into binary and run
on a physical machine.

The fix consists in defining the semantics of the comparison with the null

pointer only if the pointer is weakly valid. This causes the program to have
undefined semantics at the C level as soon as we increment the pointer beyond
its bounds. The issue was reported and the fix was incorporated in the trunk
release of CompCert. After adjusting both memory models, we are able to prove
that both semantics agree when the existing CompCert C semantics is defined
thus cross-validating the semantics of operators.

5 Redesign of Memory Injections

Memory injections are instrumental for proving the correctness of several com-
piler passes of CompCert. A memory injection defines a mapping between mem-
ories; it is a versatile tool to explain how passes reorganise the memory (e.g.
construct an activation record from local variables). This section explains how
to generalise this concept for symbolic expressions. It requires a careful handling
of undefined values undef(l) which are absent from the existing memory model.

5.1 Memory Injections in CompCert

In CompCert, a memory injection is a relation between two memories m1 and
m2 parameterised by an injection function f: block → option location mapping
blocks in m1 to locations in m2. The injection relation is defined over values
(and called val_inject) and then lifted to memories (and called inject). The
val_inject relation distinguishes three cases:



1. For concrete values (i.e. integers or floating-point numbers), the relation is
reflexive: e.g. int(i) is in relation with int(i) ;

2. ptr(b, i) is in relation with ptr(b′, i+ δ) when f(b) = b(b′, δ)c;
3. undef is in relation with any value (including undef).

The purpose of the injection is twofold: it establishes a relation between pointers
using the function f but it can also specialise undef by a defined value.

In CompCert, so-called generic memory injections state that every valid loca-
tion in memory m1 is mapped by function f into a valid location in memory m2;
the corresponding location in m2 must be properly aligned with respect to the
size of the block; and the values stored at corresponding locations must be in in-
jection. Among other conditions, we have that if several blocks in m1 are mapped
to the same block in m2, the mapping ensures the absence of overlapping.

5.2 Memory Injection with Symbolic Expressions

The injection of symbolic expressions demands a generalisation because
undef is now parameterised by a location l. The function f is still present and
serves the same purpose. However, the injection must also be applied to unde-
fined values. Moreover, our generalised injection requires an explicit specialisa-
tion function spe: location → option byte. Our injection expr_inject is there-
fore defined as the composition of the function apply_spe spe which specialises
undef(l) into concrete bytes, and the function apply_inj f which injects loca-
tions. Both spe and f are partial functions. If spe(l)=∅, the undefined location is
not specialised. If f(b)=∅ and b appears in the expression, it cannot be injected.

Definition expr_inject spe f e1 e2 := apply_inj f (apply_spe spe e1) = be2 c.

Example 1. Consider the injection f and the specialisation functions spe and
spe’ defined by: f(b1) = b(b0, 1)c, spe(b1, 0) = b0c and spe’ (b1, 0) = b1c. The
val_inject relation (left column) between values becomes in our memory model
the following expr_inject relation (right column).

val_inject f undef undef | expr_inject spe f undef(b1,1) undef(b0,2)
val_inject f undef int(0) | expr_inject spe f undef(b1,0) int(0)
val_inject f undef int(1) | expr_inject spe’ f undef(b1,0) int(1)
val_inject f ptr(b1,1) ptr(b0,2) | expr_inject spe f ptr(b1,1) ptr(b0,2)

Injections of Memories. Like in the existing CompCert, the injection of values
is then lifted to memories. With our memory model, the properties of injections
need to be adapted to accommodate for symbolic expressions.

Alignment constraints are modelled in the existing CompCert as a property of
offsets. Roughly speaking, a value of size s bytes can be stored at a location (b, o)
such that the offset o is a multiple of s. For instance, an integer int(i) could be
stored at offsets 0, 4, 8, and so on. This model makes the implicit assumption



Record inject spe f m1 m2 : Prop := { ...
mi_align: ∀ b b’ z, f b = b(b’, z)c →

alignt(m1, b) ≤ alignt(m2, b’) ∧ 2[alignt(m1,b)] | z;
mi_size_mem : size_mem m2 ≤ size_mem m1; }

Fig. 5: Memory injection: extra constraints

that memory blocks are always sufficiently aligned. In our model, blocks are
given an explicit alignment. As a result, we can precisely state that an injection
preserves alignement and is given by the mi_align property of Fig. 5. Note that
the weaker formulation 2alignt(m1,b)|2alignt(m2,b′)+z is sound. However, the chosen
formulation has the advantage of being backward compatible with the existing
properties of offsets in CompCert.

The size constraint is evaluated using the size_mem function that is the algorithm
used by the allocation function (see Section 3.2). This constraint ensures that
an injection is compatible with allocation as stated by the following lemma. The
hypothesis size_mem m2 ≤ size_mem m1 (called mi_size_mem in Fig. 5) ensures
that the block b2 can be allocated in memory m2.

Theorem alloc_parallel_inject : ∀ spe f m1 m2 lo hi m1’ b1,
0 ≤ lo ≤ hi → inject spe f m1 m2 → alloc m1 lo hi = b(m1’, b1)c →
∃ m2’, ∃ b2, alloc m2 lo hi=b(m2’,b2)c ∧ inject spe f[b1 7→ b(b2,0)c] m1’ m2’.

Absence of offset overflows. The existing formalisation of inject has a property
mi_representable which states that the offset o+ δ obtained after injection does
not overflow. With our concrete memory model, this property is not necessary
anymore as it can be proved for any injection.

5.3 Memory Injection and Normalisation

Our normalisation is defined w.r.t. all the concrete memories compatible with the
CompCert block-based memory (see Section 2.3). Theorem norm_inject shows
that under the condition that all blocks are injected, if e and e′ are in injection,
then their normalisations are in injection too. Thus, the normalisation can only
get more defined after injection. This is expected as the injection can merge
blocks and therefore makes pointer arithmetic more defined. The condition that
all blocks need to be injected is necessary. Without it, there could exist a concrete
memory cm’ in m’ without counterpart in m. The normalisation could therefore
fail when the expression would evaluate differently in cm’ . A consequence of this
theorem is that the compiler is not allowed to reduce the memory usage.

Theorem norm_inject : ∀ spe f m m’ e e’ τ ,
all_blocks_injected f m → inject spe f m m’→ expr_inject spe f e e’→
val_inject f (normalise m e τ ) (normalise m’ e’ τ ).



6 Proving the Front-end of the CompCert Compiler

The architecture of the front-end of CompCert is given in Fig. 6. The front-
end compiles CompCert C programs down to Cminor programs. Later compiler
passes are architecture dependent and are therefore part of the back-end. This
section explains how to adapt the semantics preservation proofs of the front-end
to our memory model with symbolic expressions.

CompCert C Clight C]minor Cminor
Side-effect

removal

Type

elimination

Stack frame

allocation

Fig. 6: Architecture of CompCert’s front-end

6.1 CompCert Front-end with Symbolic Expressions

The semantics of all intermediate languages need to be modified in order to
account for symbolic expressions. In principle, the transformation consists in re-
placing values by symbolic expressions everywhere and introducing the normal-
isation function when accessing memory. In reality, the transformation is more
subtle because, for instance, certain intermediate semantic functions explicitly
require locations represented as pairs (b, o). In such situations, a naive solution
consists in introducing a normalisation. This solution proves wrong and breaks
semantics preservation proofs because introduced normalisations may be absent
in subsequent intermediate languages. The right approach consists in delaying
normalisation as much as possible. Normalisations are therefore introduced be-
fore memory accesses. They are also introduced when evaluating the condition
of if statements and to model the lazy evaluation of && and || operators. Us-
ing this strategy we have adapted the semantics (with built-in functions as only
external functions) of the 4 languages of the front-end.

In our experience, the difficulty of the original semantics preservation proofs
is not correlated with the difficulty of adapting the proofs to our memory with
symbolic expressions. For instance, the compilation pass from CompCert C to
Clight is arguably the most complex pass to prove; the proof is almost identical
with symbolic expressions. In the following, we focus on the two other passes
which stress different features of our memory model.

6.2 From Clight to C]minor

The compilation from Clight to C]minor translates loops and switch statements
into simpler control structures. This pass does not transform the memory and
therefore the existing proof can be reused. The pass also performs type-directed
transformations and removes redundant casts. For example, it translates the ex-
pression p + 1 with p of type int ∗ into the expression p + sizeof(int) . For the
existing memory model, both expressions compute exactly the same value. How-
ever, with symbolic expressions, syntactic equality is a too strong requirement
that needs to be relaxed to a weaker equivalence relation. A natural candidate
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Fig. 7: Structure of match_callstack_alloc_variables ’s proof in CompCert

is the equality of the normalisation. However, this relation is too weak and fails
to pass the induction step. Indeed, when expressions e1 and e2 have the same
normalisation (v1 ≡ v2), it is not the case that opτ1(v) ≡ opτ1(v′) when the nor-
malisations are undef. A stronger relation is the equality of the evaluation of
symbolic expressions in any concrete memory (compatible or not).

We lift the equivalence relation to memories in the obvious way. To carry
out the proof, we also extend the interface of the memory model and prove that
the memory operations are morphisms for the equivalence relation. With these
modifications, the compiler pass can be proved semantics preserving using the
existing proof structure.

6.3 From C]minor to Cminor

The compilation from C]minor to Cminor allocates the stack frame, thus trans-
forming significantly the memory. The stack frame is a single block and local
variables are accessed via offsets in this block. The proof introduces a mem-
ory injection stating how the blocks representing local variables in C]minor are
mapped into the single block representing the stack frame in Cminor.

The existing proof can be adapted with our generalised notion of injection
(see Section 5) with the notable exceptions of two intermediate lemmas whose
proofs need to be completely re-engineered. The problem is related with the
preservation of the memory injection when allocating and de-allocating the vari-
ables in C]minor and the stack frame in Cminor. The structure of the original
proof is depicted in Fig. 7 where plain arrows represent hypotheses and the dot-
ted arrow the conclusion. The existing proof first allocates the stack frame in
memory m2 to obtain the memory m′

2. It then establishes that the existing in-
jection between the intial memories m1 and m2 still holds with the memory m′

2.
In a second step, the memory m′

1 is obtained by allocating variables in memory
m1 and the proof constructs an injection thus concluding the proof.

With our memory model, memory injections need to reduce the memory us-
age – this is needed to ensure that allocations cannot fail. Here, this is obviously
not the case because the memory m′

2 contains a stack frame whereas the corre-



Fig. 8: Variables on the left ; stack frame on the right.

sponding variables are not yet allocated in m1. Our modified proof is directly
by induction over the number of allocated variables. In this case, we prove that
if the variables do fit into memory, then so does the stack frame. Note that to
accommodate for alignment and padding the stack frame might allocate more
bytes than the variables. However, our allocation algorithm makes a worst-case
assumption about alignment and padding and therefore ensures that there is
enough room for allocating the stack frame. We therefore conclude that the
memories m′

1 and m′
2 are in injection.

At function exit, the variables and the stack frame are freed from memory.
As before, the arguments of the original proof do not hold with our memory
model. Once again, we adapt the two-step proof with a direct induction over the
number of variables. To carry out this proof and establish an injection we have
to reason about the relative sizes of the memories. We already discussed how the
allocation algorithm rules out the possibility for the stack frame not to fit into
the memory. Here, we have to deal with the opposite situation where the stack
frame could use less memory than the variables.

To avoid this situation, and facilitate the proof, our stack frame currently al-
locates all the padding introduced when allocating the variables. This pessimistic
construction is depicted in Fig. 8 where thick lines identify block boundaries and
padding is identified by grey rectangles. It shows our injection of two 8 bits char-
acter variables and a 32 bit integer variable into a stack frame.

We are currently investigating on how to give a finer account of the necessary
padding to avoid allocating too much memory for the stack frame. Yet, using
the strategy described above, we are able to complete the proof of the front-end
while reusing as much as possible the architecture of the existing proof.

7 Related Work

Examples of low-level memory models include Norrish’s HOL semantics for C [20]
and the work of Tuch et al. [21]. There, memory is essentially a mapping from
addresses to bytes, and memory operations are axiomatised in these terms. Rea-
soning about program transformations is more difficult than with a block-based
model; Tuch et al. use separation logic to alleviate these difficulties.

Memory models have been proposed to ease the reasoning about low-level
code. VCC [7] generates verification conditions using an abstract typed memory
model [8] where the memory is a mapping from typed pointers to structured C
values. This memory model is not formally verified. Using Isabelle/HOL, Au-
tocorres [10,11] constructs provably correct abstractions of C programs. The
memory models of VCC [8] and Autocorres [11] ensure separation properties of



pointers for high-level code and are complete w.r.t. the concrete memory model.
For the CompCert model [18], separation properties of pointers are for free be-
cause pointers are modelled as abstract locations. For our symbolic extension,
the completeness (and correctness) of the normalisation is defined w.r.t. a con-
crete memory model and therefore allows for reasoning about low-level idioms.

Several formal semantics of C are defined over a block-based memory model
(e.g. [9,15,17]). The different models differ upon their precise interpretation of
the ISO C standard. The CompCert C semantics [5] provides the specification
for the correctness of the CompCert compiler [17]. CompCert is used to compile
safety critical embedded systems [2] and the semantics departs from the ISO
C standard to capture existing practices. Our semantics extends the existing
CompCert semantics and benefits from its infrastructure.

Krebbers et al. also extend the CompCert semantics but aim at being as
close as possible to the C standard [16]; he formalises sequence points in non-
deterministic programs [15] and strict aliasing restrictions in union types of
C11 [14]. This is orthogonal to the focus of our semantics which gives a mean-
ing to implementation defined low-level pointer arithmetic and models bit-fields.
Most recently, Kang et al. [13] propose a formal memory model for a C-like
language which allows optimisations in the presence of integer-pointer casts.
Pointers are kept logical until they are cast to integers, then a concrete address
is non-deterministically assigned to the block of the pointer. Their semantics of
C features non-determinism while determinism is a crucial feature of our model.

8 Conclusion

This work is a milestone towards a CompCert compiler proved correct with
respect to a more concrete memory model. Our formal development adds about
10000 lines of Coq to the existing CompCert memory model. A side-product of
our work is that we have uncovered and fixed a problem in the existing semantics
of the comparison with the null pointer. We are very confident that this is the
very last remaining bug that can be found at this semantics level. We also prove
that the front-end of CompCert can be adapted to our refined memory model.
The proof effort is non-negligible: the proof script for our new memory model is
twice as big as the existing proof script. The modifications of the front-end are
less invasive because the proof of compiler passes heavily rely on the interface of
the memory model.

As future work, we shall study how to adapt the back-end of CompCert. We
are confident that program optimisations based on static analyses will not be
problematic. We expect the transformations to still be sound with the caveat
that static analyses might require minor adjustments to accommodate for our
more defined semantics. A remaining challenge is register allocation which may
allocate additional memory during the spilling phase. An approach to solve this
issue is to use the extra-memory that is available due to our pessimistic construc-
tion of stack frames. Withstanding the remaining difficulties, we believe that the



full CompCert compiler can be ported to our novel memory model. This would
improve further the confidence in the generated code.

References

1. Companion website. URL: http://www.irisa.fr/celtique/ext/new-mem.
2. R. Bedin França, S. Blazy, D. Favre-Felix, X. Leroy, M. Pantel, and J. Souyris.

Formally verified optimizing compilation in ACG-based flight control software. In
ERTS2, 2012.

3. F. Besson, S. Blazy, and P. Wilke. A precise and abstract memory model for C
using symbolic values. In APLAS, volume 8858 of LNCS, 2014.

4. S. Blazy. Experiments in validating formal semantics for C. In C/C++ Verification
Workshop. Raboud University Nijmegen report ICIS-R07015, 2007.

5. S. Blazy and X. Leroy. Mechanized Semantics for the Clight Subset of the C
Language. J. Automated Reasoning, 43(3), 2009.

6. A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler. The
scalable commutativity rule: designing scalable software for multicore processors.
In SOSP. ACM, 2013.

7. E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, and al.
VCC: A Practical System for Verifying Concurrent C. In TPHOLs, volume 5674
of LNCS. Springer, 2009.

8. E. Cohen, M. Moskal, S. Tobies, and W. Schulte. A Precise Yet Efficient Memory
Model For C. ENTCS, 254, 2009.
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