
A Formal Model of Access Control for
Mobile Interactive Devices

Frédéric Besson, Guillaume Dufay, and Thomas Jensen ?

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract. This paper presents an access control model for program-
ming applications in which the access control to resources can employ
user interaction to obtain the necessary permissions. This model is in-
spired by and improves on the Java MIDP security architecture used in
Java-enabled mobile telephones. We consider access control permissions
with multiplicities in order to allow to use a permission a certain number
of times. An operational semantics of the model and a formal definition
of what it means for an application to respect the security model is
given. A static analysis which enforces the security model is defined and
proved correct. A constraint solving algorithm implementing the analysis
is presented.

1 Introduction

Access control to resources is classically described by a model in which an access
control matrix specifies the actions that a subject (program, user, applet, . . . )
is allowed to perform on a particular object. Recent access control mechanisms
have added a dynamic aspect to this model: applets can be granted permissions
temporarily and the outcome of an access control depends on both the set of
currently held permissions and the state of the machine. The most studied ex-
ample of this phenomenon is the stack inspection of Java (and the stack walks
of C]) together with the privileged method calls by which an applet grants all
its permissions to its callers for the duration of the execution of a particular
method call, see e.g. [1, 4, 6, 9]. Another example is the security architecture
for embedded Java on mobile telephones [14] which uses interactive querying
of the user to grant permissions on-the-fly to the applet executing on a mobile
phone so that it can make internet connections, access files, send SMSs etc. An
important feature of the MIDP model is the “one-shot” permissions that can
be used once for accessing a resource. This quantitative aspect of permissions
raises several questions of how such permissions should be modeled (e.g., “do
they accumulate?” or “which one to choose if several permissions apply?”) and
how to program with such permissions in a way that respects both usability and
security principles such as Least Privilege [13] and the security property stated
below. We review the MIDP model in Section 2.
? This work was partly funded by the IST-FET programme of the European Commis-

sion, under the IST-2005-015905 MOBIUS project.



2 Frédéric Besson, Guillaume Dufay, and Thomas Jensen

In this paper, we present a formal model for studying such programming
mechanisms with the purpose of developing a semantically well-founded and
more general replacement for the Java MIDP model. We propose a semantics of
the model’s programming constructs and a logic for reasoning about the flow of
permissions in programs using these constructs. This logic will notably allow to
prove the basic security property that

a program will never attempt to access a resource for which it does not
have permission.

Notice that this is stronger than just ensuring that the program will never actu-
ally access the resource. Indeed, the latter property can be trivially achieved in
systems with run-time checks—at the expense of accepting a security exception
when an illegal access is detected. The basic security property is pertinent to sys-
tems with or without such dynamic controls. For systems without any run-time
checks, it guarantees the absence of illegal accesses. For dynamically monitored
systems, it guarantees that access control exceptions will never be raised.

The notion of permission is central to our model. Permissions have an internal
structure (formalised in Section 3) that describes the actions that it enables and
the set of objects to which it applies. The “one-shot” permissions alluded to
above have motived a generalisation in which permissions also have multiplicities,
stating how many times the given permission can be used. The security model
we propose have two basic constructs for manipulating permissions:

– grant models the interactive querying of the user, asking whether he grants
a particular permission with a certain multiplicity to the applet, and

– consume models the access to a method which requires (and hence consumes)
permissions.

The choice of where to insert requests for user-granted permissions is important
for the usability of an applet and has a clear impact on its security. We provide a
static analysis that will verify automatically that a given choice will not violate
the basic security property stated above.

The analysis is developed by integrating the grant and consume constructs
into a program model based on control-flow graphs. The model and its opera-
tional semantics is presented in Section 4. In this section, we also formally define
what it means for an execution trace (and hence for a program) to respect the
basic security property. Section 5 defines a constraint-based static analysis for
safely approximating the flow of permissions in a program with the aim of com-
puting what permissions are available at each program point. Section 6 describes
how to solve the constraints produced by the analysis. Section 7 describes related
formal models and verification techniques for language-based access control and
Section 8 concludes. Appendix A contains the formal correctness proof of the
analysis with respect to the semantics.



A Formal Model of Access Control for Mobile Interactive Devices 3

2 The Java MIDP security model

The Java MIDP programming model for mobile telephones [14] proposes a thor-
oughly developed security architecture which is the starting point of our work.
In the MIDP security model, several applications (called midlets in the MIDP
jargon) are loaded into and co-execute in a virtual machine. At load time, the
midlet is assigned a protection domain which determines how the midlet can
access resources. It can be seen as a labelling function which classifies a resource
access as either allowed or user.

– allowed means that the midlet is granted unrestricted access to the resource;
– user means prior to an access, an interaction with the user is initiated in

order to ask for permission to perform the access and to determine how
often this permission can be exercised. The MIDP model operates with three
possibilities:
• blanket: the permission is granted for as long as the midlet remains

installed;
• session: the permission is granted for as long as the MIDlet is running;
• oneshot: the permission is granted for a single use.

The oneshot permissions correspond to dynamic security checks in which each
access is protected by a user interaction. This clearly provides a secure access
to resources but the potentially numerous user interactions are at the detriment
of the usability and makes social engineering attacks easier. At the other end of
the spectrum, the allowed mode which gets granted through signing provides a
maximum of usability but leaves the user with absolutely no assurance on how
resources are used as a signature is only a certificate of integrity and origin.

In the following we will propose a security model which extends the MIDP
model by introducing permissions with multiplicities and by adding flexibility to
the way in which permissions are granted by the user and used by applications.
In this model, we can express:

– the allowed mode and blanket permissions as initial permissions with mul-
tiplicity ∞;

– the session permissions by prompting the user for an infinite number of a
given permission once at application start-up;

– the oneshot permissions by prompting the user for a permission with a
grant just before consuming it with a consume.

The added flexibility is obtained by allowing the programmer to insert user
interactions for obtaining permissions at any point in the program (rather than
only at the beginning and just before an access) and to ask for a batch of
permissions in one interaction. The added flexibility can be used to improve the
usability of access control in a midlet but will require formal methods to ensure
that the midlet correctly asks for the necessary permissions.



4 Frédéric Besson, Guillaume Dufay, and Thomas Jensen

3 The structure of permissions

In classical access control models, permissions held by a subject (user, program,
. . . ) authorise certain actions to be performed on certain resources. Such per-
missions can be represented as a relation between actions and resources. To
obtain a better fit with access control architectures such as that of Java MIDP
we enrich this permission model with multiplicities and resource types. Concrete
MIDP permissions are strings whose prefixes encode package names and whose
suffixes encode a specific permission. For instance, one finds permissions javax.
microedition.io.Connector.http and javax.microedition.io.Connector.
sms.send which enable applets to make connections using the http protocol or
to send a SMS, respectively. Thus, permissions are structured entities that for
a given resource type define which actions can be applied to which resources of
that type and how many times.

To model this formally, we assume given a set ResType of resource types.
For each resource type rt there is a set of resources Resrt of that type and a
set of actions Actrt applicable to resources of that type. We incorporate the
notion of multiplicities by attaching to a set of actions a and a set of resources
r a multiplicity m indicating how many times actions a can be performed on
resources from r. Multiplicities are taken from the ordered set:

Mul
4
= (N ∪ {⊥Mul ,∞},≤).

The 0 multiplicity represents absence of a given permission and the ∞ multi-
plicity means that the permission is permanently granted. The ⊥Mul multiplicity
represents an error arising from trying to decrement the 0 multiplicity. We define
the operation of decrementing a multiplicity as follows:

m− 1 =

∞ if m = ∞
m− 1 if m ∈ N,m 6= 0
⊥Mul if m = 0 or m = ⊥Mul

Several implementations of permissions include an implication ordering on
permissions. One permission implies another if the former allows to apply a
particular action to more resources than the latter. However, the underlying
object-oriented nature of permissions imposes that only permissions of the same
resource type can be compared. We capture this in our model by organising
permissions as a dependent product of permission sets for a given resource type.

Definition 1 (Permissions) Given a set ResType of resource types and ResType-
indexed families of resources Resrt and actions Actrt, the set of atomic permis-
sions Permrt is defined as:

Permrt
4
= (P(Resrt)× P(Actrt)) ∪ {⊥}

relating a type of resources with the actions that can be performed on it. The
element ⊥ represents an invalid permission. By extension, we define the set of



A Formal Model of Access Control for Mobile Interactive Devices 5

permissions Perm as the dependent product:

Perm
4
=

∏
rt∈ResType

Permrt ×Mul

relating for all resource types an atomic permission and a multiplicity stating
how many times it can be used.
For ρ ∈ Perm and rt ∈ ResType, we use the notations ρ(rt) to denote the pair
of atomic permissions and multiplicities associated with rt in ρ. Similarly, 7→
is used to update the permission associated to a ressource type, i.e., (ρ[rt 7→
(p, m)])(rt) = (p, m).

Example 1 Given a ressource type SMS ∈ ResType, the permission ρ ∈ Perm
satisfying ρ(SMS) = ((+1800∗, {send}), 2) gives the permission of twice sending
an SMS to a +1800 number.

Definition 2 The ordering vp ⊆ Perm × Perm on permissions is given by

ρ1 vp ρ2
4
= ∀rt ∈ ResType ρ1(rt) v ρ2(rt)

where v is the product of the subset ordering vrt on Permrt and the ≤ ordering
on multiplicities.

Intuitively, being higher up in the ordering means having more permissions to
access a larger set of resources. The ordering induces a greatest lower bound
operator u : Perm × Perm → Perm on permissions. For example, for ρ ∈ Perm

ρ[File 7→ ((/tmp/∗, {read ,write}), 1)] u ρ[File 7→ ((∗/dupont/∗, {read}),∞)] =
ρ[File 7→ ((/tmp/ ∗ /dupont/∗, {read}), 1)]

Operations on permissions

There are two operations on permissions that will be of essential use in the
following:

– consumption (removal) of a specific permission from a collection of permis-
sions;

– update of a collection of permissions with a newly granted permission.

Definition 3 Let ρ ∈ Perm, rt ∈ ResType and assume that ρ(rt) = (p, m).
The operation consume : Permrt → Perm → Perm is defined by

consume(p′)(ρ) =
{

ρ[rt 7→ (p, m− 1)] if p′ vrt p
ρ[rt 7→ (⊥,m− 1)] otherwise

There are two possible error situations when trying to consume a permission.
Consuming a resource for which the number of multiplicities is zero will result
in setting the multiplicity to ⊥Mul . Similarly, attempting to consume a resource
for which there is no permission (p′ 6vrt p) is an error.



6 Frédéric Besson, Guillaume Dufay, and Thomas Jensen

Definition 4 A permission ρ ∈ Perm is an error, written Error(ρ), if:

∃rt ∈ ResType,∃(p, m) ∈ Permrt ×Mul , ρ(rt) = (p, m) ∧ (p = ⊥ ∨m = ⊥Mul).

Granting a number of accesses to a resource of a particular resource type is
modeled by updating the component corresponding to that resource type.

Definition 5 Let ρ ∈ Perm, rt ∈ ResType, the operation grant : Permrt ×
(N ∪ {∞}) → Perm → Perm for granting a number of permissions to access a
resource of a given type is defined by

grant(p, m)(ρ) = ρ[rt 7→ (p, m)]

Notice that granting such a permission erases all previously held permissions
for that resource type, i.e., permissions do not accumulate. This is a design
choice: the model forbid that permissions be granted for performing one task
and then used later on to accomplish another. Other models might want to
allow the accumulation of permissions, possibly coupled with some time bound.
The grant operation should then add the granted number of permissions to the
existing amount rather than replace it.

4 Program model

We model a program by a control-flow graph (CFG) that captures the manip-
ulations of permissions, the handling of method calls and returns, as well as
exceptions. This model has been used in previous work on modelling access con-
trol for Java—see [1, 4, 9].

Definition 6 A control-flow graph is a 7-uple

G = (NO ,EX ,KD ,TG ,CG ,EG , n0)

where:

– NO is the set of nodes of the graph;
– EX is the set of exceptions;
– KD : NO → {grant(p, m), consume(p), call, return, throw(ex)}, with ex ∈

EX , rt ∈ ResType, p ∈ Permrt and m ∈ Mul associates a kind to each node,
indicating which instruction the node represents;

– TG ⊆ NO ×NO is the set of intra-procedural edges;
– CG ⊆ NO ×NO is the set of inter-procedural edges;
– EG ⊆ EX ×NO ×NO is the set of intra-procedural exception edges that will

be followed if an exception is raised at that node;
– n0 is the entry point of the graph.

In the following, given n, n′ ∈ NO and ex ∈ EX , we will use the notations
n

TG→ n′ for (n, n′) ∈ TG , n
CG→ n′ for (n, n′) ∈ CG and n

ex→ n′ for (ex, n, n′) ∈
EG .



A Formal Model of Access Control for Mobile Interactive Devices 7

Example 2 Figure 1 contains the control-flow graph of grant and consume
operations during a flight-booking transaction (for simplicity, actions related to
permissions, such as {connect} or {read}, are omitted). In this transaction, the
user first transmits his request to a travel agency, site. He can then modify his
request or get additional information. Finally he can either book or pay the de-
sired flight. Corresponding permissions are summarised in the initial permission
pinit, but they could also be granted using the grant operation. In the example,

pinit[http 7→ (∗,∞); https 7→ (site, 1); file 7→ (/wallet/id, 1)]

consume(http(site))

consume(http(∗))

consume(file(/wallet/id))

consume(http(site)) grant(file(/wallet/visa#), 1)

consume(file(/wallet/visa#))

consume(https(site))

Fig. 1. Example of grant/consume permissions patterns

the developer has chosen to delay asking for the permission of accessing credit
card information until it is certain that this permission is indeed needed. Another
design choice would be to grant this permission from the outset. This would min-
imise user interaction because it allows to remove the querying grant operation.
However, the initial permission pinit would then contain file 7→ (/wallet/∗, 2)
instead of file 7→ (/wallet/id, 1) which violates the Principle of Least Privilege.

Operational semantics

Given a control-flow graph, we define the small-step operational semantics of
CFGs in Figure 2. The semantics is stack-based and follows the behaviour of a
standard programming language with exceptions such as Java or C].

The operational semantics operates on a state consisting of a standard control-
flow stack of nodes, enriched with the permissions held at that point in the exe-
cution. Thus, the small-step semantics is given by a relation � between elements
of (NO∗ × (EX ∪ {ε}) × Perm), where NO∗ is a sequence of nodes. For exam-
ple, for the instruction call of Figure 2, if the current node n leads through an



8 Frédéric Besson, Guillaume Dufay, and Thomas Jensen

inter-procedural step to a node m, then the node m is added to the top of the
stack n:s, with s ∈ NO∗. Instantiating this model to such languages consists of
identifying in the code the desired grant and consume operations and describing
the action of the other instructions on the stack.

Instructions may change the value of the permission along with the current
state. E.g., for the instruction grant of Figure 2, the current permission ρ of the
state will be updated with the new granted permissions. The current node of the
stack n will also be updated, at least to change the program counter, depending
on the desired implementation of grant. Note that the instrumentation is non-
intrusive, i.e. a transition will not be blocked due to the absence of a permission.
Thus, for s, s′ in NO∗, e, e′ in (EX ∪ {ε}), if there exists ρ and ρ′ in Perm such
that n, e, ρ � n′, e′, ρ′ then for all ρ and ρ′, the same transition holds.

KD(n) = grant(p, m) n
TG→ n′

n:s, ε, ρ � n′:s, ε, grant(p, m)(ρ)

KD(n) = consume(p) n
TG→ n′

n:s, ε, ρ � n′:s, ε, consume(p)(ρ)

KD(n) = call n
CG→ m

n:s, ε, ρ � m:n:s, ε, ρ

KD(r) = return n
TG→ n′

r:n:s, ε, ρ � n′:s, ε, ρ

KD(n) = throw(ex) n
ex→ h

n:s, ε, ρ � h:s, ε, ρ

KD(n) = throw(ex) ∀h, n
ex9 h

n:s, ε, ρ � n:s, ex, ρ

∀h, n
ex9 h

t:n:s, ex, ρ � n:s, ex, ρ

n
ex→ h

t:n:s, ex, ρ � h:s, ε, ρ

Fig. 2. Small-step operational semantics

This operational semantics will be the basis for the notion of program ex-
ecution traces, on which global results on the execution of a program will be
expressed.

Definition 7 (Trace of a CFG) A partial trace tr ∈ (NO , (EX ∪ {ε}))∗ of a
CFG is a sequence of nodes (n0, ε) :: (n1, e1) :: . . . :: (nk, ek) such that for all
0 ≤ i < k there exists ρ, ρ′ ∈ Perm, s, s′ ∈ NO∗ and verifying ni:s, ei, ρ �
ni+1:s′, ei+1, ρ

′.
For a program P represented by its control-flow graph G, we will denote by

JP K the set of all partial traces of G.

To state and verify the safety of a program that acquires and consumes
permissions, we first define what it means for an execution trace to be safe. We
define the permission set available at the end of a trace by induction over its



A Formal Model of Access Control for Mobile Interactive Devices 9

length.

PermsOf (nil)
4
= pinit

PermsOf (tr :: (consume(p), e))
4
= consume(p,PermsOf (tr))

PermsOf (tr :: (grant(p, m), e))
4
= grant((p, m),PermsOf (tr))

PermsOf (tr :: (n, e))
4
= PermsOf (tr) otherwise

pinit is the initial permission of the program, for the state n0. By default, if no
permission is granted at the beginning of the execution, it will contain ((∅, ∅), 0)
for each resource type. The allowed mode and blanket permissions for a re-
source r of a given resource type can be modeled by associating the permission
(r,∞) with that resource type.

A trace is safe if none of its prefixes end in an error situation due to the
access of resources for which the necessary permissions have not been obtained.

Definition 8 (Safe trace) A partial trace tr ∈ (NO , (EX ∪{ε}))∗ is safe, writ-
ten Safe(tr), if for all prefixes tr′ ∈ prefix (tr), ¬Error(PermsOf (tr′)).

5 Static analysis of permission usage

We now define a constraint-based static flow analysis for computing a safe ap-
proximation, denoted Pn, of the permissions that are guaranteed to be available
at each program point n in a CFG when execution reaches that point. Thus, safe
means that Pn underestimates the set of permissions that will be held at n dur-
ing the execution. The approximation will be defined as a solution to a system of
constraints over Pn, derived from the CFG following the rules in Figure 3. The
rules for Pn are straightforward data flow rules: e.g., for grant and consume
we use the corresponding semantic operations grant and consume applied to
the start state Pn to get an upper bound on the permissions that can be held
at end state Pn′ . Notice that the set Pn′ can be further constrained if there is
another flow into n′. The effect of a method call on the set of permissions will be
modeled by a transfer function R that will be defined below. Finally, throwing
an exception at node n that will be caught at node m means that the set of
permissions at n will be transferred to m and hence form an upper bound on
the set of available permissions at this point.

Our CFG program model includes procedure calls which means that the anal-
ysis must be inter-procedural. We deal with procedures by computing summary
functions for each procedure. These functions summarise how a given procedure
consumes resources from the entry of the procedure to the exit, which can hap-
pen either normally by reaching a return node, or by raising an exception which
is not handled in the procedure. More precisely, for a given CFG we compute the
quantity R : (EX ∪{ε}) → NO → (Perm → Perm) with the following meaning:

– the partial application of R to ε is the effect on a given initial permission of
the execution from a node until return;



10 Frédéric Besson, Guillaume Dufay, and Thomas Jensen

Pn0 vp pinit

KD(n) = grant(p, m) n
TG→ n′

Pn′ vp grant(p, m)(Pn)

KD(n) = consume(p) n
TG→ n′

Pn′ vp consume(p)(Pn)

KD(n) = call n
CG→ m n

TG→ n′

Pn′ vp Rm(Pn)

KD(n) = call n
CG→ m

Pm vp Pn

KD(n) = call n
CG→ m n

ex→ h

Ph vp Rex
m (Pn)

KD(n) = call n
CG→ m ∀h, n

ex9 h

Pn vp Rex
m (Pn)

KD(n) = throw(ex) n
ex→ m

Pm vp Pn

Fig. 3. Constraints on minimal permissions

– the partial application of R to ex ∈ EX is the effect on a given initial
permission of the execution from a node until reaching a node which throws
an exception ex that is not caught in the same method.

Given nodes n, n′ ∈ NO , we will use the notation Rn and Rex
n for the partial

applications of R ε n and R ex n. The rules are written using diagrammatic
function composition ; such that F ;F ′(ρ) = F ′(F (ρ)). We define an order v
on functions F, F ′ : Perm → Perm by extensionality such that F v F ′ if ∀ρ ∈
Perm, F (ρ) vp F ′(ρ).

As for the entities Pn, the function R is defined as solutions to a system
of constraints. The rules for generating these constraints are given in Figure 4
(with e ∈ EX ∪ {ε}). The rules all have the same structure: compose the effect
of the current node n on the permission set with the function describing the
effect of the computation starting at n’s successors in the control flow. This
provides an upper bound on the effect on permissions when starting from n. As
with the constraints for P , we use the functions grant and consume to model
the effect of grant and consume nodes, respectively. A method call at node n is
modeled by the R function itself applied to the start node of the called method
m. The combined effect is the composition Rm;Re

n′ of the effect of the method
call followed by the effect of the computation starting at the successor node n′

of call node n.
The correctness of our analysis is stated on execution traces. For a given

program, if a solution of the constraints computed during the analysis does not
contain errors in permissions, then the program will behave safely. Formally,

Theorem 1 (Basic Security Property) Given a program P :

(∀n ∈ NO ,¬Error(Pn)) ⇒ ∀tr ∈ JP K,Safe(tr)

The proof of this theorem is given in Appendix A.



A Formal Model of Access Control for Mobile Interactive Devices 11

KD(n) = grant(p, m) n
TG→ n′

Re
n v grant(p, m); Re

n′

KD(n) = consume(p) n
TG→ n′

Re
n v consume(p); Re

n′

KD(n) = return

Rn v λρ.ρ

KD(n) = call n
CG→ m n

TG→ n′

Re
n v Rm; Re

n′

KD(n) = call n
CG→ m ∀n′, n

ex9 n′

Rex
n v Rex

m

KD(n) = call n
CG→ m n

ex→ h

Rn v Rex
m ; Rh

KD(n) = throw(ex) n
ex→ h

Re
n v Re

h

KD(n) = throw(ex) ∀n′, n
ex9 n′

Rex
n v λρ.ρ

Fig. 4. Summary functions of the effect of the execution on initial permission

6 Constraint solving

Computing a solution to the constraints generated by the analysis in Section 5
is complicated by the fact that solutions to the R-constraints (see Figure 4)
are functions from Perm to Perm that have infinite domains and hence cannot
be represented by a naive tabulation [15]. To solve this problem, we identify
a class of functions that are sufficient to encode solutions to the constraints
while restricted enough to allow effective computations. Given a solution to
the R-constraints, the P -constraints (see Figure 3) are solved by standard fix-
point iteration starting from the most permissive permission MPP defined by
MPP(rt) = ((Resrt,Actrt),∞) for any rt ∈ ResType.

The rest of this section is devoted to the resolution of the R-constraints. The
resolution technique consists in applying solution-preserving transformations to
our initial set of constraints. The theoretical background is provided by Propo-
sitions 1 and 2. They consider a variable X of type D subject to a finite set of
constraints C =

⋃
i∈I{X v fi(X)} and show how to build abstract systems C]

such that a solution X̂] to C] yields a solution X̂ to C. Proposition 1 shows that
constraints can be solved over an abstract domain. Proposition 2 shows how to
split product types into a product of variables.

Proposition 1 Let the domains (D,v) and (D],v]) be linked by a monotone
function γ : D] → D and let C] =

⋃
i∈I{X] v f ]

i (X])} be a constraint system
satisfying that ∀i ∈ I, x] ∈ D], γ ◦ f ]

i (x]) v f(γ(x])). If X̂] is a solution of C]

then γ(X̂]) is a solution of C.

Proposition 2 Let the product domain D = Πi∈[1,n]Di be ordered component-
wise and let C] =

⋃
i∈I,j∈[1,n]{Xj vj proj j ◦ fi((X1, . . . , Xn))} where projj is

the projection onto the jth component. A mapping [X1 7→ X̂1, . . . , Xn 7→ X̂n] is
a solution of C] if and only if the product X̂ = (X̂1, . . . , X̂n) is a solution of C.

In the following, Propositions 1 and 2 are used to simplify the constraints until
obtaining constraints that can be solved either symbolically or iteratively.



12 Frédéric Besson, Guillaume Dufay, and Thomas Jensen

6.1 On simplifying R-constraints

A solution to the R-constraints is a mapping Re
n which for each node n and ex-

ception e returns a function of type Perm → Perm. However, by inspection of the
constraints, one observes that consume and grant only modify a single resource
type of a permission Perm. Using Proposition 1, we abstract Perm → Perm by
the product

∏
rt∈ResType(Permrt ×Mul → Permrt ×Mul). Proposition 2 then

allows to deal with each resource type separately. Moreover, operations on multi-
plicities and atomic permissions also act separately. Hence, using Proposition 1,
for each resource type rt, we transform Permrt ×Mul → Permrt ×Mul to the
product (Permrt → Permrt)× (Mul → Mul).

Solving the R-constraints now amounts to computing for each exception e,
node n and resource type rt a pair of mappings: an atomic permission trans-
former (Permrt → Permrt) and a multiplicity transformer (Mul → Mul). In
the next sections, we define syntactic representations of these multiplicity trans-
formers that are amenable to symbolic computations.

6.2 Syntactic functions for multiplicities

Before presenting our encoding of multiplicities transformers, we formally define
the kind of constraints that we consider.

Definition 9 A multiplicity constraint is a term x≤̇e where

– x is variable of type Mul → Mul ;
– ≤̇ is the point-wise ordering of multiplicity transformers induced by ≤;
– e is an expression built over the terms

e ::= v|grantMul(m)|consumeMul(m)|id |e; e

where v is a variable; grantMul(m) is the constant function λx.m; consumeMul(m)
is the decrementing function λx.x−m; id is the identity function λx.x and
f ; g is function composition (f ; g = g ◦ f)

We define MulF = {λx.min(c, x− d)|(c, d) ∈ Mul ×Mul} as a restricted class of
multiplicity transformers that is sufficiently expressive to represent the solution
to the constraints. Elements of MulF encode constant functions, decrementing
functions and are closed under function composition as shown by the following
equalities:

grantMul(m) = λx.min(m,x−⊥Mul)
consumeMul(m) = λx.min(∞, x−m)
λx.min(c, x− d′);λx.min(c′, x− d′) = λx.min(min(c− d′, c′), x− (d′ + d))

We represent a function λx.min(c, x − d) ∈ MulF by the pair (c, d) of mul-
tiplicities. Using Proposition 1, we abstract our constraints over the domain
MulF ] = Mul×Mul equipped with the concretization γ(c, d)

4
= λx.min(c, x−d)

and the abstract ordering v] defined as (c, d) v] (c′, d′)
4
= c ≤ c′ ∧ d′ ≤ d.

Note however that because MulF ] is isomorphic to MulF , this abstraction
does not incur any loss of precision.



A Formal Model of Access Control for Mobile Interactive Devices 13

6.3 Solving multiplicity constraints

The domain MulF ] does not satisfy the so-called descending chain condition.
This means that iterative solving of the constraints might not terminate. Instead,
we use an elimination-based algorithm. First, we use Proposition 2 to split our
constraint system over MulF ] = Mul×Mul into two constraint systems over Mul .
Example 3 shows this transformation for a representative set of constraints.

Example 3 C = {Y v] (c, d), Y ′ v] X, X v] Y ;] Y ′} is transformed into
C ′ = C1 ∪ C2 with C1 = {Y1 ≤ c, Y ′

1 ≤ X1, X1 ≤ min(Y1 − Y ′
2 , Y ′

1)} and
C2 = {Y2 ≥ d, Y ′

2 ≥ X2, X2 ≥ Y ′
2 + Y2}.

Notice that C1 depends on C2 but C2 is independent from C1. This result holds
generally and, as a consequence, these sets of constraints can be solved in se-
quence: C2 first, then C1.

To be solved, C2 is converted into an equivalent system of fixpoint equations
defined over the complete lattice (Mul ,≤,max,⊥Mul). The equations have the
general form x = e where e ::= var | max(e, e) | e + e. The elimination-based
algorithm unfolds equations until a direct recursion is found. After a normalisa-
tion step, recursions are eliminated using a generalisation of Proposition 3 for
an arbitrary number of occurences of the x variable.

Proposition 3 x = max(x + e1, e2) is equivalent to x = max(e2 +∞× e1, e2).

Given a solution for C2, the solution of C1 can be computed by standard fix-
point iteration as the domain (Mul ,≤,min,∞) does not have infinite descending
chains. This provides multiplicity transformer solutions of the R-constraints. A
similar methodology allows to compute permission transformers.

7 Related work

To the best of our knowledge, there is no formal model of the Java MIDP access
control mechanism. A number of articles deal with access control in Java and
C] but they have focused on the stack inspection mechanism and the notion of
granting permissions to code through privileged method calls. Earlier work by
some of the present authors [4, 9] proposed a semantic model for stack inspec-
tion but was otherwise mostly concerned with proving behavioural properties
of programs using these mechanisms. Closer in aim with the present work is
that of Pottier et al. [12] on verifying that stack inspecting programs do not
raise security exceptions because of missing permissions. Bartoletti et al. [1] also
aims at proving that stack inspecting applets will not cause security exceptions
and proposes the first proper modelling of exception handling. Both these works
prove properties that allow to execute the program without dynamic permis-
sion checks. In this respect, they establish the same kind of property as we do
in this paper. However, the works cited above do not deal with multiplicities
of permissions and do not deal with the aspect of permissions granted on the



14 Frédéric Besson, Guillaume Dufay, and Thomas Jensen

fly through user interaction. The analysis of multiplicities leads to systems of
numerical constraints which do not appear in the stack inspecting analyses.

Language-based access control has been studied for various idealised pro-
gram models. Igarashi and Kobayashi [8] propose a static analysis for verifying
that resources are accessed according to access control policies specified e.g. by
finite-state automata, but do not study specific language primitives for imple-
menting such an access control. Closer to the work presented in this article is
that of Bartoletti et al. [2] who propose with λ[] a less general resource access
control framework than Igarashi and Kobayashi, and without explicit notions
of resources, but are able to ensure through a static analysis that no security
violations will occur at run-time. They rely for that purpose on a type and effect
system on λ[] from which they extract history expressions further model-checked.
In the context of mobile agent, Hennessy and Riely [7] have developed a type
system for the π-calculus with the aim of ensuring that a resource is accessed
only if the program has been granted the appropriate permission (capability)
previously. In this model, resources are represented by locations in a π-calculus
term and are accessed via channels. Permissions are now capabilities of execut-
ing operations (e.g. read, transmit) on a channel. Types are used to restrict the
access of a term to a resource and there is a notion of sub-typing akin to our
order relation on permissions. The notion of multiplicities is not dealt with but
could probably be accommodated by switching to types that are multi-sets of
capabilities.

Our permission model adds a resource aspect to permissions which means
that the analysis shares some goals with the analysis by Chandar et al. [5] on
dynamic checks for verifying resource consumption. The safety property to verify
here is that a program allocates memory cells before they are consumed. In our
setting this would correspond to having a resource type Memory with one action
‘allocate’ that can be called a number of times according to how much memory
is granted.

8 Conclusions

We have proposed an access control model for programs which dynamically ac-
quire permissions to access resources. The model extends the current access
control model of the Java MIDP profile for mobile telephones by introducing
multiplicities of permissions together with explicit instructions for granting and
consuming permissions. These instructions allow to improve the usability of an
application by fine-tuning the number and placement of user interactions that
ask for permissions. In addition, programs written in our access control model
can be formally and statically verified to satisfy the fundamental property that
a program does not attempt to access a resource for which it does not have the
appropriate permission. The formalisation is based on a model of permissions
which extends the standard object × action model with multiplicities. We have
given a formal semantics for the access control model, defined a constraint-based
analysis for computing the permissions available at each point of a program, and



A Formal Model of Access Control for Mobile Interactive Devices 15

shown how the resulting constraint systems can be solved. To the best of our
knowledge, it is the first time that a formal treatment of the Java MIDP model
has been proposed.

The present model and analysis has been developed in terms of control-
flow graphs and has ignored the treatment of data such as integers etc. By
combining our analysis with standard data flow analysis we can obtain a better
approximation of integer variables and hence the number of times a permission-
consuming loop is executed. In the present model, we either have to require
that there is a grant executed for each consume inside the loop or that the
relevant permission has been granted with multiplicity ∞ before entering the
loop. Allowing a grant to take a variable as multiplicity parameter combined
with a relational analysis (the octagon analysis by Miné [10]) is a straightforward
extension that would allow to program and verify a larger class of programs.

This work is intended for serving as the basis for a Proof Carrying Code
(PCC) [11] architecture aiming at ensuring that a program will not use more
resources that what have been declared. In the context of mobiles devices where
such resources could have an economic (via premium-rated SMS for instance)
or privacy (via address-book access) impact, this would provide improved con-
fidence in programs without resorting to third-party signature. The PCC cer-
tificate would consist of the precomputed Pn and Re

n. The host device would
then check that the transmitted certificate is indeed a solution. Note that no
information is needed for intra-procedural instructions other than grant and
consume—this drastically reduces the size of the certificate.

References

[1] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. Static anal-
ysis for stack inspection. Electronic Notes in Computer Science, 54, 2001.

[2] Massimo Bartoletti, Pierpaolo Degano, and Gian Luigi Ferrari. History-
based access control with local policies. In Proceedings of FOSSACS
2005, volume 3441 of Lecture Notes in Computer Science, pages 316–332.
Springer-Verlag, 2005.

[3] Frédéric Besson, Thomas de Grenier de Latour, and Thomas Jensen. Inter-
faces for stack inspection. Journal of Functional Programming, 15(2):179–
217, 2005.

[4] Frédéric Besson, Thomas Jensen, Daniel Le Métayer, and Tommy Thorn.
Model ckecking security properties of control flow graphs. Journal of Com-
puter Security, 9:217–250, 2001.

[5] Ajay Chander, David Espinosa, Nayeem Islam, Peter Lee, and George C.
Necula. Enforcing resource bounds via static verification of dynamic checks.
In Proceedings of the 14th European Symposium on Programming, ESOP
2005, volume 3444 of Lecture Notes in Computer Science, pages 311–325.
Springer-Verlag, 2005.

[6] Cedric Fournet and Andy Gordon. Stack inspection: theory and variants.
In Proceedings of the 29th ACM Symp. on Principles of Programming Lan-
guages (POPL’02). ACM Press, 2002.



16 Frédéric Besson, Guillaume Dufay, and Thomas Jensen

[7] Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. Information and Computation, 173(1):82–120, 2002.

[8] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. In Pro-
ceedings of the 29th ACM Symp. on Principles of Programming Languages
(POPL’02), pages 331–342, 2002.

[9] Thomas Jensen, Daniel Le Métayer, and Tommy Thorn. Verification of
control flow based security properties. In Proceedings of the 20th IEEE
Symp. on Security and Privacy, pages 89–103. New York: IEEE Computer
Society, 1999.

[10] Antoine Miné. The octogon abstract domain. In Proceedings of the 8th
Working Conference On Reverse Engineering (WCRE 01), pages 310–320.
IEEE, 2001.

[11] George C. Necula. Proof-carrying code. In Neil D. Jones, editor, Pro-
ceedings of the 24th ACM Symp. on Principles of Programming Languages
(POPL’97), pages 106–119, Paris, France, January 1997. ACM Press.

[12] François Pottier, Christian Skalka, and Scott F. Smith. A systematic ap-
proach to static access control. In Proceedings of the 10th European Sym-
posium on Programming, ESOP 2001, volume 2028 of Lecture Notes in
Computer Science, pages 30–45. Springer-Verlag, 2001.

[13] Jerry H. Saltzer and Mike D. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63:1278–1308, 1975.

[14] Sun Microsystems, Inc., Palo Alto/CA, USA. Mobile Information Device
Profile (MIDP) Specification for Java 2 Micro Edition, Version 2.0, 2002.

[15] Hisao Tamaki and Taisuke Sato. OLD resolution with tabulation. In Pro-
ceedings on Third International Conference on Logic Programming, volume
225 of Lecture Notes in Computer Science, pages 84–98. Springer-Verlag,
1986.



A Formal Model of Access Control for Mobile Interactive Devices 17

A Correctness

In this section, we prove the correctness of our analysis, as stated in Theorem 1.
This proof relies on a big-step semantics on CFGs, defined in Figure 5. This
semantics is further from the small-step semantics defined in Figure 2 but is
easier to reason with and forms an important part of the correctness proof of
the analysis.

The big-step semantics is formally defined by a relation . between elements
of (NO × Perm). Note that in the inference rules of Figure 5, the relation

ex
.

denotes that an exception ex has been thrown and not yet caught.

KD(n) = grant(p, m)

n
TG→ n′

n, ρ . n′, grant(p, m)(ρ)

KD(n) = consume(p)

n
TG→ n′

n, ρ . n′, consume(p)(ρ)

KD(n) = throw(ex)

n
ex→ h

n, ρ . h, ρ

n, ρ . n, ρ

n, ρ . n1, ρ1

n1, ρ1 . n′, ρ′

n, ρ . n′, ρ′

KD(n) = call KD(r) = return

n
CG→ m n

TG→ n′ m, ρ . r, ρ′

n, ρ . n′, ρ′

KD(n) = throw(ex)

∀h, n
ex9 h

n, ρ
ex
. n, ρ

n, ρ . n1, ρ1

n1, ρ1
ex
. n′, ρ′

n, ρ
ex
. n′, ρ′

KD(n) = call n
CG→ m

∀h, n
ex9 h m, ρ

ex
. t, ρ′

n, ρ
ex
. n, ρ′

KD(n) = call n
CG→ m

n
ex→ h m, ρ

ex
. t, ρ′

n, ρ . h, ρ′

Fig. 5. Big-step operational semantics

Using the big-step instrumented semantics, we define the set Acc of accessible
nodes and permissions from the initial node n0 as follows:

(n, pinit) ∈ Acc

(n, ρ) ∈ Acc n
CG→ m

(m, ρ) ∈ Acc

(n, ρ) ∈ Acc n, ρ . n′, ρ′

(n′, ρ′) ∈ Acc

It captures all nodes and permissions reachable through the . relation from the
initial node and permission plus those for methods that do not return (second
inference rule). Indeed, in the big-step semantics, in order to relate a node and
permission with . to a call node, a return node must be reached (sixth inference
rule of Figure 5).

This definition of accessibility allows to structure the correctness proof into
two parts. The first part of the proof of Theorem 1 amounts to showing that
if the analysis declares that no abstract state indicates an access without the
proper permission then this is indeed the case for all the accessible states in
program.



18 Frédéric Besson, Guillaume Dufay, and Thomas Jensen

Lemma 1

(∀n ∈ NO ,¬Error(Pn)) ⇒ ∀(n, ρ) ∈ Acc,¬Error(ρ)

Proof. We need two intermediary results:

– First, we have to show a correctness result on the definition of R (which is
used in the definition of Pn), stated as:

∀n n′ ∈ NO ,∀ρ ρ′ ∈ Perm, n, ρ . n′, ρ′ ∧KD(n′) = return⇒ Rn(ρ) vp ρ′

This proof is done by induction over the definition of .. For example, in
the case of a method call (n CG→ m n

TG→ n′ m, ρ . r, ρ′), we will have
to prove Rn(ρ) vp ρ′, which is done using transitivity. The step Rn(ρ) vp

Rn′(Rm(ρ)) is obtained from the constraint on Rn for method calls. The step
Rn′(Rm(ρ)) vp Rm(ρ) is obtained from the constraint on Rn′ for returns.
The last transitivity step, Rm(ρ) vp ρ′ is given by the induction hypothesis.

– Then, we have to relate the notion of accessibility and the definition of Pn:

∀n ∈ NO ,∀ρ ∈ Perm, (n, ρ) ∈ Acc ⇒ Pn vp ρ

We prove this result first by induction over Acc (the two first cases directly
match with the corresponding rule on Pn) then by induction over . for the
third rule of Acc. For the same example of a method call as before, we will
have to prove Pn′ vp ρ′. We split this goal using transitivity into Pn′ vp

Rm(Pn) (deduced from constraints on Pn′ for method calls), Rm(Pn) vp

Rm(ρ) (Rm is proved to be monotone and (Pn) vp ρ by induction hypothesis)
and Rm(ρ) vp ρ′ (from the first intermediary result above, since m, ρ . r, ρ′

with KD(r) = return).

The lemma is a consequence of this last result, using proof by contradiction. We
suppose (n, ρ) ∈ Acc with Error(ρ), then we get Pn vp ρ, which contradicts
¬Error(Pn) given Error(ρ). ut

The second part links the trace semantics with the big-step instrumented
semantics by proving that if no accessible state in the instrumented semantics
has a tag indicating an access control error then the program is safe with respect
to the definition of safety of execution traces. This part amounts to showing that
the instrumented semantics is a monitor for the Safe predicate.

Lemma 2 Given a program P :

∀(n, ρ) ∈ Acc,¬Error(ρ) ⇒ ∀tr ∈ JP K,Safe(tr)

Proof. First, we relate the small-step to the big-step operational semantics:

∀n ∈ NO ,∀s ∈ NO∗,∀ρ ∈ Perm, n0, ε, pinit �∗ n:s, ε, ρ ⇒ (n, ρ) ∈ Acc

where �∗ is the reflexive-transitive closure of �. The sketch of the proof is
similar to [3, Section 2.3]. It amounts to first restraining the result to a fixed



A Formal Model of Access Control for Mobile Interactive Devices 19

stack that can not be popped by transition relations (to relate to intra-procedural
big step transitions) and then to include call, return and exception steps. Finally,
we prove the lemma by contradiction, assuming that for a node n in the trace
is such that the associated permission is an error. By definition of the trace,
this node is accessible from n0, pinit with �∗, then we have (n, ρ) ∈ Acc with
Error(ρ) that contradicts the hypothesis of our lemma. ut

The proof of Theorem 1 is a direct consequence of Lemmas 1 and 2.


