
Polyhedral Analysis for Synchronous Languages

Frdric Besson, Thomas Jensen, and Jean-Pierre Talpin

Irisa/Cnrs/Inria
Campus de Beaulieu, F-35042 Rennes Cedex, France

{fbesson,jensen,talpin}@irisa.fr

Abstract. We define an operational semantics for the Signal language
and design an analysis which allows to verify properties pertaining to the
relation between values of the numeric and boolean variables of a reactive
system. A distinguished feature of the analysis is that it is expressed
and proved correct with respect to the source program rather than on
an intermediate representation of the program. The analysis calculates a
safe approximation to the set of reachable states by a symbolic fixed point
computation in the domain of convex polyhedra using a novel widening
operator based on the convex hull representation of polyhedra.

1 Introduction

Synchronous languages [11] such as Signal [2], Lustre [6] and Esterel [4]
have been designed to facilitate the development of reactive systems. They enable
a high-level specification and a modular design of complex reactive systems by
structurally decomposing them into elementary processes. In this paper we show
that semantics-based program analysis techniques originally developed for the
imperative language paradigm can be applied to Signal programs, facilitating
the design of static analyses for reactive systems.

The verification of a reactive system written in a synchronous language is
traditionally done by elaborating a finite model of the system (often as a finite-
state machine) and then checking a property (e.g. liveness, dead-lock freedom,
etc) against this model (i.e. model checking). For instance, model checking has
been used at an industrial scale to Signal programs to check properties such
as liveness, invariance and reachability [5]. Whereas model checking efficiently
decides properties of finite state systems, the use of techniques from static anal-
ysis enables to prove properties about infinite state systems such as properties
on the linear relations between numerical quantities in the system.

In this paper we design an analysis for the Signal programming language
that allows to verify properties pertaining to the relation between values of
the numeric and boolean variables in a Signal program. The interest of the
approach is that we analyse programs at the source language level, rather than
doing the verification on some intermediate representation (often in the form of
an automaton) of the program. In particular, it allows a proof of correctness of
the analysis with respect to the operational semantics of the source language.

The paper is structured as follows. In Sect. 2 and Sect. 3 we define the syn-
tax and the operational semantics of Signal. The analysis itself has three parts.
First, a Signal program is abstracted into a collection of constraint sets over
the variables of the program. In Sect. 4 we present a syntax-directed program
analysis that extracts these sets of constraints. A solution to one of these con-
straint sets describes a possible behaviour of the program. An approximation to
the set of reachable states of the program is obtained by a symbolic fixed point
computation (Sect. 5) whose result is invariant for all the behaviours described
by the constraint sets. This iterative calculation is done in the infinite domain of
convex polyhedra. In order to ensure its convergence a novel widening technique
that is described in Sect. 6 is used in the iterations. Section 7 discusses related
work and Sect. 8 concludes.

2 The SIGNAL Core Language

We use a reduced version of the synchronous language Signal which we detail
in this section. In Signal, a process p is either an equation or the synchronous
composition p ‖ p′ of processes. Parallel composition p ‖ p′ synchronises the
events produced by p and p′. The core language has the syntax defined below.
We assume given a set of integer and boolean constants, ranged over by c, and a
set, MonoOp, of basic operators such as addition and equality, ranged over by f .

Syntax of Core SIGNAL

pgm → (eqn ‖ . . . ‖ eqn) init mem
eqn → x := e | synchro e1 e2

e → x | zx | c | f(e1 . . . en) | e1 when e2 | e1 default e2

mem → zx = c | mem ; mem

where mem gives an initial value to all delay variables. Within a Signal pro-
gram, three kinds of operators can be distinguished.

– Basic “monochrone” operators such as +,=,≤ . . . which require that their
arguments are synchronised i.e. they are either all present or all absent. When
all the arguments are present, they have their usual arithmetical semantics.

– “Polychrone” operators for which arguments are not necessarily synchronous.
Signal provides two such operators. The when is used for sampling a signal:
the signal defined by the expression x when b is obtained by sampling x at
instances when b is true. The default (union) operator merges two signals
giving precedence to the signal at the left of the operator.

– In classical Signal, the delay operator $ is used to access the previous
value of a signal: the signal x $ 1 is synchronous with x itself and carries the
previous value of x. By replacing 1 by other numbers, this mechanism permits
to access values that were emitted several instances back i.e. it provides a
mechanism for storing values in a memory cell for later access. We modify the
syntax of Signal in a way that makes explicit this memorising by forcing

the user to name the memory cells and specify their initial value. More
precisely, the only way to access the previous value of a signal x is via a
specifically designated delay variable that we shall write zx. Access to values
two instances back in the history of x must then be obtained by assigning
the value of zx to another signal y and accessing its delay variable zy. To
illustrate the last point: the equation x := ((x $ 1) + 1) when tick is
transformed into the program x := (zx + 1) when tick .

The distinction between the two kinds of variables means that we have the set
of variables Var = X ∪ ZX where

– X is the set of (observable) signals in the original program, ranged over by
x, y, z . . .

– ZX = {zx | x ∈ X} is the set the memory (or delay) variables introduced
by the transformation (i.e an isomorphic copy of X).

By convention, variable names prefixed by z will indicate delay variables.

The Bathtub Example A typical yet simple example of reactive system that our
analysis aims at handling is the bathtub problem. Suppose we have a bath which
we wish to control so as to make sure that its water level never gets empty or
overflows. We need both a faucet and a pump and a mechanism to activate them
before some critical condition occurs.

The level in the bathtub is increased by the faucet, decreased by the pump.
The flow of the faucet increases as long as the level is low; likewise, the pump
is emptying more actively at higher levels. An output alarm is raised whenever
the level gets out of bounds.

(level := zlevel + faucet - pump

| faucet := zfaucet + ((1 when zlevel <= 4) default (-1 when zfaucet > 0)

default 0)

| pump := zpump + ((1 when zlevel >= 7) default (-1 when zpump > 0)

default 0)

| alarm := (0 >= level) or (level >= 9)

)

init zlevel = 1; zfaucet = 0; zpump = 0; zalarm = false

Although it is simple to model such a system in Signal, it is not evident
whether the alarm ever can be raised. The analysis presented in this paper allows
such a verification. Even if this example is finite-state, the analysis to come is
not limited to proving properties on such systems since it handles linear numeric
properties for infinite ones.

3 Operational Semantics of Core SIGNAL

A Signal program is modelled by a labeled transition system (Mem,Label ,m0)
with initial state m0 where

– Value, the range of variables, is the union of the boolean and the integer
domains augmented by the element ⊥ to model the absence of value.

Value = Int ∪ Bool ∪ {⊥}
– Label = X → Value is the set of all the potential instantaneous events that

can be emitted by the system.
– Mem = ZX → (Value − {⊥}) is the set of memory states. A state of memory

m ∈ Mem stores the value of each delay variable zx. Since it is the previous
value carried by its corresponding signal x, memory variables never take the
absent value ⊥.

– A memory and a label together specify a value for each variable in Var . Such
a pair is called a state and belongs to the set

State = Mem × Label .

In the following, we assume that variables are typed with either type Int or
Bool and that all labels, memories and states respect this typing. Values named
u, v, ui range over non-⊥ values whereas k will range over the whole domain.

3.1 Semantics of Expressions

Given a memory m ∈ Mem, the semantics of an expression e, written E[e]m, is
a set of pairs (λ, v) where λ ∈ Label is a map from observable signals to values
and v is the current value of the expression. E[e]m : (λ, v) expresses that v is a
possible value of e given that the observable signals of the program take values
as specified by λ. This function has type

E[] : Expr → Mem → P(Label × V alue)

and is defined by a set of inference rules that for a given e and m inductively
define the set E[e]m.

Constants Constants can synchronise with any signal thus for any memory and
label, the constant expression can either evaluate to its value or be absent.

E[c]m : (λ, c) E[c]m : (λ,⊥)

Variables The evaluation of a program (non-delay) variable expression must
yield the value that the variable is assigned in the corresponding label.

E[x]m : (λ, λ(x))

Signal imposes a synchronisation constraint between a signal and its delay:
the delay variable can only be accessed when the signal itself is present. When
present, the delay variable expression retrieves in memory the previous value of
its associated signal; otherwise, both get the ⊥ value.

λ(x) = u

E[zx]m : (λ, m(zx))
λ(x) = ⊥

E[zx]m : (λ,⊥)

Monochrone Operators According to the monochrone rule, if all arguments
of an operator f evaluate to a non-⊥ value then the result is the usual mean-
ing of this operator, otherwise all the arguments are absent and the expression
evaluates to ⊥.

(E[ei]m : (λ,⊥))n
i=1, f ∈ MonoOp

E[f(e1 . . . en)]m : (λ,⊥)
(E[ei]m : (λ, ui))n

i=1, f ∈ MonoOp

E[f(e1 . . . en)]m : (λ, f(u1 . . . un))

When Operator If the condition is satisfied, the evaluation of the when ex-
pression yields its first argument, otherwise ⊥.

E[e1]m : (λ, k),E[e2]m : (λ,⊥)
E[e1 when e2]m : (λ,⊥)

E[e1]m : (λ, k),E[e2]m : (λ, false)
E[e1 when e2]m : (λ,⊥)

E[e1]m : (λ, k),E[e2]m : (λ, true)
E[e1 when e2]m : (λ, k)

Default Operator The evaluation of the default expression yields ⊥ if both
arguments are absent, otherwise its leftmost non-⊥ argument.

E[e1]m : (λ, u),E[e2]m : (λ, k)
E[e1 default e2]m : (λ, u)

E[e1]m : (λ,⊥),E[e2]m : (λ, k)
E[e1 default e2]m : (λ, k)

3.2 Semantics of a System of Equations

A program is the parallel composition of two kinds of equations: assignments
and synchronisations. Each equation imposes constraints on the labels that can
be emitted by the system this equation belongs to. More precisely, given a mem-
ory, the semantics of an equation is a set of possible labels inferred from the
synchronisation and assignment rules.

Eq[] : Eq → Mem → P(Label)

Synchronisation If both sides of the synchronisation equation evaluate either to
⊥ or a value and if their labels agree then these expressions are synchronised.

E[e1]m : (λ, k1),E[e2]m : (λ, k2), k1 = ⊥ ⇔ k2 = ⊥
Eq[synchro e1 e2]m : λ

Assignment If the value of the the right-hand side agrees with the value of the
left-hand side stored in the label then an assignment can occur.

E[e]m : (λ, k), λ(y) = k

Eq[y := e]m : λ

Parallel Composition The parallel composition rule checks that the same label
can be inferred for each equation. It means that this label describes a behaviour
consistent with all the equations.

Eq[eq1]m : λ,Eq[eq2]m : λ

Eq[eq1 ‖ eq2]m : λ

3.3 Transition Semantics of a Set of Equations

For each variable, the memory state stores the value that it was given the step
before. Hence every time an observable signal receives a new value, the memory
state has to be updated with that value. The function

tr : Mem × Label → Mem

defines how the system evolves from one memory state to another when emitting
a label λ.

tr(m, λ)(zx) =
{

λ(x) if λ(x) �= ⊥
m(zx) otherwise

A set of equations defines a transition relation between memory states.

Definition 1. A set of equations Eq induces a transition relation λ−→ defined by

Eq[Eq]m : λ

m
λ−→ tr(m, λ)

3.4 Transition System Semantics of Programs

The Signal syntax imposes that all delay variables are given an explicit initial-
isation; the initial memory m0 that assigns an initial value to all delay variables
can therefore be extracted from the program text directly. We can then define
the semantics of a program as a rooted, labeled transition system as follows:

Definition 2. The semantics of program P = Eq init m0 is defined by

[[P]] = (Mem ,
λ−→, m0)

The Bathtub Example (Continued) Given an initial memory state

m0 = {zlevel 	→ 1, zfaucet 	→ 0, zpump 	→ 0, zalarm 	→ false}
we can derive the following (label,value)-pair for 1 when zlevel <= 4.

Em0 [1 when zlevel <= 4] = (λ, 1)

by considering λ = {level 	→ 2, faucet 	→ 1, pump 	→ 0, alarm 	→ false} since
m0(zlevel) is less than 4. For any equation y := e of the bathtub example,
we can derive for the expression e the (label,value)-pair (λ, λ(y)) thus proving
Eq[Bath]m0 : λ. Since no variable is absent in λ, all the memory variables are
updated. The new memory state calculated by the transition function tr given
m0 and λ is:

tr(m0, λ) = {zx 	→ λ(x) | zx ∈ {zlevel, zfaucet, zpump, zalarm}}

4 Constraint-Based Analysis

In this section we present an analysis for determining invariants of the behaviour
of a given Signal program. These invariants express relations between the val-
ues of the program’s signals that hold at all instances during the execution of
the program. We simplify the problem by considering invariants on the memory
variables only. This is possible because values of observable signals are immedi-
ately stored in their corresponding memory variables hence any relation found
between memory variables is a valid relation between the corresponding observ-
ables. Formally, we want to find M ⊆ Mem such that if m0 is the initial state
of a program and m0 →∗ m then m ∈ M .

4.1 Γ -Invariants

Given a program, each possible transition is completely specified by the memory
m and the label of observable values λ (the resulting state is then tr(m, λ)
cf. Sect. 3.3). Thus, a subset Γ of the set State = Mem×Label can be considered
as a restriction imposed on the behaviour of a program: a transition is only
allowed if it is a member of Γ . We say that a set of memory states is Γ -invariant
if it is invariant under all transitions authorised by Γ . Formally, M ⊆ Mem is
Γ -invariant if

∀(m, λ) ∈ Γ.if m ∈ M then tr(m, λ) ∈ M.

This notion facilitates the handling of non-determinism of Signal programs.
Different behaviours are possible in a given memory state depending on the
absence or presence of a signal. It is then convenient to split the analysis into
finding invariants for each possible combination of absence and presence in a
program. More precisely, we structure the analysis in two phases:

1. Determine a set {Γi}n
i=1 ⊆ P(State) of behaviour restrictions such that all

the Γi together account for any possible behaviour of the program. Each Γi

will be constructed so that a given signal is either always present or always
absent in Γi.

2. Calculate an M ⊆ Mem such that M is Γi-invariant for all the Γi.

Each Γi is the solution to a set of constraints resulting from an analysis
of the source program. The analysis never calculates the Γi explicitly but uses
these sets of constraints in the calculation of the invariant M in phase 2. In
the following we present the constraint-based analysis of the program and prove
that the constraints found for a given program correctly approximate the possible
behaviours of a program.

4.2 Constraint Extraction

In the proof to follow we consider programs in normal form. No loss of generality
is incurred since any program can be translated into this form by recursively

introducing extra variables and equations for each composite expression (see
Appendix A for details). The analysis will be carried out for these programs.

pgm → eqn | eqn || pgm
eqn → x := c | x := x′ | x := zx′ | x := f(x1, . . . , xn)

| x := x1 when x2 | x := x1 default x2

Semantics of Constraints The language of constraints is defined by the fol-
lowing syntax:

cst → y = e | y �= ⊥
e → c | x | f(x1, . . . , xn) | ⊥

Among these constraints, y = f(x1, . . . , xn) reflects the standard meaning of
monochrone operators. The constraints y = ⊥ and y �= ⊥ express presence and
absence of signal y, respectively. A constraint set C built over a set of variables
V ⊆ Var symbolically represents a set S ⊆ State. The precise semantics of C is
therefore given by the solution function Sol defined such that S = Sol(C).

Sol(C) =
�

c∈C

Sol({c})

Sol({y �= ⊥}) = {v | v(y) �= ⊥}
Sol({y = ⊥}) = {v | v(y) = ⊥}
Sol({y = c}) = {v | v(y) = c}
Sol({y = x}) = {v | v(x) = v(y)}

Sol({y = f(x1, . . . , xn)}) = {v | v(y) = f(v(x1), . . . , v(xn)), v(x1) �= ⊥, . . . , v(xn) �= ⊥}
∪ {v | v(y) = ⊥, v(x1) = ⊥, . . . , v(xn) = ⊥}

Fig. 1. Semantics of constraints

Definition 3. We extend the function Sol to sets C of constraint sets as follows:

Sol(C) =
⋃

C∈C
Sol(C)

Constraint Extraction Function

Definition 4. The constraint extraction function CE computes for a program
a set of constraint sets that over-approximates the possible behaviours of the
program.

Const CE(y := c) = {{y = c}, {y = ⊥}}
Var CE(y := x) = {{y = x}}
Delay CE(y := zx) = {{x �= ⊥, y = zx},

{x = ⊥, y = ⊥}}
MonoOp CE(y := f(x1, . . . , xn)) = {{y = f(x1, . . . , xn), y �= ⊥, x1 �= ⊥, . . . , xn �= ⊥},

{y = ⊥, x1 = ⊥, . . . , xn = ⊥}}
When CE(y := x when b) = {{y = x, b = true}, {y = ⊥, b = false},

{y = ⊥, b = ⊥}}
Default CE(y := a default b) = {{y = a, a �= ⊥}, {y = b, a = ⊥}}
Parallel CE(eq1 ‖ . . . ‖ eqn) = {C | C =

⋃n
i=1 Ci and Ci ∈ CE(eqi)}

The Bathtub Example (Analysis) We consider the composition of the equations

level := zlevel + (faucet - pump)
| alarm := ((0 >= level) or (level >= 13))

Applying the constraint extraction function, one obtains a set of constraint sets
for each equation in isolation.

CE(eq1) = {(level = zlevel + faucet − pump level �= ⊥ faucet �= ⊥ pump �= ⊥) ,

(level = ⊥ faucet = ⊥ pump = ⊥)}

CE(eq2) = {(alarm = ((0 >= level) or (level >= 13)) level �= ⊥ alarm �= ⊥) ,

(level = ⊥ alarm = ⊥)}

For composition of equations, a naive computation of the CE function would
yield an exponential number of constraint sets. Fortunately, this worst case com-
plexity can be avoided by incrementally discarding constraint sets for which no
solution exists. For the example, since a signal cannot be both present and ab-
sent, the composition gets rid of 50% of the constraint sets originally obtained.

4.3 Correctness

The following theorem formalises how constraint sets serve to determine a safe
approximation to the set of reachable memory states of a program.

Theorem 1. Given program P = Eq init m0 . Let C = CE(Eq) and let M ⊆
Mem. If M is a Sol(C)-invariant and m0 ∈ M then Reach(P) ⊆ M .

Proof. The core of the proof is Lemma 1 which states that the set of constraint
sets extracted from a program over-approximates the set of transitions that the
program can make in a given memory state. As a consequence, all sets of memory
states that are invariant under Sol(C) will be an invariant of the program. Thus,
if a Sol(C)-invariant M ⊆ Mem contains the initial state m0, an induction on
the number of transitions shows that if m0 →∗ m then m ∈ M .

Lemma 1. Given set of equations Eq. Let Obsm = {λ | Eq[Eq]m : λ} and
C = CE(Eq) then {m} × Obsm ⊆ Sol(C).

Proof. For each equation, we consider any derivation path allowed by the s-
tandard semantics. The constraints on values gathered along each derivation
describe Obsm (i.e the set of labels that can be deduced for a given memory).
For example, the deducible derivations for the equation y := a default b are:

E[a]m : (λ, λ(a)) E[b]m : (λ, λ(b)) λ(a) = u
E[a default b]m : (λ, u) λ(y) = u

Eq[y := a default b] : λ

E[a]m : (λ, λ(a)) E[b]m : (λ, λ(b)) λ(a) = ⊥
E[a default b]m : (λ, λ(b)) λ(y) = λ(b)

Eq[y := a default b] : λ

Since, by definition u ∈ Value − {⊥}, Obsm is given the intentional definition

Obsm = {λ | λ(y) = λ(a), λ(a) �= ⊥} ∪ {λ | λ(y) = λ(b), λ(a) = ⊥}
This set is then proved to be a subset of the solutions to the set of constraint
sets extracted from this equation. This proof scheme allows to prove Lemma 1
for equations in isolation. Finally, for parallel composition, suppose that both
Eq1 and Eq2 admit a label λ in memory m. By induction hypothesis there exist
(Ci ∈ CE(Eqi))i=1,2 such that (m, λ) belongs to a solution of both C1 and
C2. Moreover, from the standard semantics (Eq[Eq1 ‖ Eq2]m : λ) and from the
constraint extraction function C1 ∪ C2 ∈ CE(Eq1 ‖ Eq2). As a result, since
(m, λ) belongs to a solution of C1 ∪ C2, it follows that Lemma 1 is verified.

5 Fixed Point Computation

The goal of this section is twofold. First, we provide a sufficient condition for
Sol(C)-invariance (Property 1). Based on this criterion, an over-approximation
of the reachable memory states can be defined as the solution of a system of fixed
point equations. Second, we abstract this system in the domain of convex poly-
hedra to compute a solution (i.e a finite set of polyhedra that over-approximates
the set of reachable memory states).

5.1 Fixed Point Systems

A constraint set C induces a symbolic transition function; this leads to another
characterisation of Sol(C)-invariance.

Definition 5. Given a set of memories M ⊆ Mem and a constraint set C such
that Sol(C) ⊆ State, we denote TrC(M) such that:

TrC(M)
�
= {m′ : ∀m ∈ Sol(M), ∀(m, λ) ∈ Sol(C).m′ = tr(m, λ)}

It follows that Sol(C)-invariance can be reformulated by the following statement:

Corollary 1. M is Sol(C)-invariant if and only if TrC(M) ⊆ M .

Property 1 Let C be a constraint set, and let Cov = {Ri}n
i=1 a finite cover of

M ⊆ Mem. If
∀R ∈ Cov ∃R′ ∈ Cov

such that
TrC(R) ⊆ R′

then M is Sol(C)-invariant.

The Property 1 gives a strategy for verifying Sol(C)-invariance. As a result,
Theorem 1 and this straightforward property characterise the invariants of pro-
gram’s behaviour as post fixed points of the operator Tr(Γ) and can thereby be
calculated by iteration. More precisely, it yields a family of fixed point system-
s parameterised by the cover. For example, consider the fixed point system to
solve when the cover is reduced to a singleton:

{M ⊇ TrC(M)}C∈C ∪ {M ⊇ m0}
A more refined system can be built by associating each item of the cover to

a constraint set in C and solve the set of inequalities

{M ⊇ MC}C∈C ∪{M ⊇ m0}∪{MC ⊇ TrC(m0)}C∈C ∪{MC ⊇ TrC(MD)}C,D∈C

5.2 Convex Approximation

However, two problems have to be addressed:

– the sets in P(Mem) can be infinite.
– there are infinite ascending chains in the lattice (P(Mem),⊆).

A standard solution to these problems is to restrict the sets under consider-
ation to convex polyhedra [8]. This domain provides an interesting trade-off
between precision and computable efficiency: it is precise since it models linear
behaviours (as well as boolean as a special case) and efficient compared with in-
teger programming methods. Moreover, convex polyhedra have a finite, symbolic
description and widening operators can be defined to ensure the convergence of
fixed point iteration.

One inconvenience of using convex polyhedra is that non-linear constraints
cannot be modelled accurately. In the present analysis we simply ignore any
non-linear relation. This is safe but can lead to considerable loss of precision.
Another inconvenience is that the accuracy of the analysis depends on the choice
of the fixed point system to solve. Indeed, convex polyhedra are not closed by
union which must be approximated by the convex hull operation. Due to this
operation widely used by the fixed point iteration process, the precision depends
on how reachable states are grouped into polyhedra. This problem is overcome
by refining the system of fixed point equations according to Property 1.

5.3 Symbolic Transition Function

To provide a computable symbolic transition function for a constraint set in C,
we first normalise C. This transformation that preserves solutions splits each
constraint set according to presence (resp. absence) of signals. As a result, any
normalised constraint set is interpreted by a convex polyhedron stating con-
straints on present signals and delay variables plus a list of absent signals. For
such constraint sets, a symbolic transition function can be defined from the basic
polyhedral operations of intersection and projection by iterating the following
steps

– Calculate the intersection of the polyhedra M and C.
– Project this union onto the memory variables ZX for which the correspond-

ing observable signal is present.
– Add the newly found memory states to those already found.

The first step of the transition consists in selecting the possible behaviours in
C allowed by the memory states M . The second step consists in propagating
the information stored in the obtained polyhedron to the next state by pro-
jecting signals carrying new values on their corresponding delay variables. The
analogy with the concrete semantics is straightforward: if a program signal x is
constrained to ⊥, the memory is unchanged (zx projected on zx), otherwise, x
carries the update of zx (x projected on zx).

The Bathtub Example (Fixed Point) For this example, the constraints extraction
algorithm yields 32 constraint sets that summarise any potential behaviour of
the program. Among these, 20 sets raise alarm under given conditions on the
memory states. The analysis will find that none of these conditions are met by
any reachable state (i.e no reachable memory state raises alarm).

The bathtub example does not require sophisticated fixed point iteration to
check the property. Yet, we apply a general scheme that yields a trade-off between
accuracy and efficiency. This strategy consists in gathering in a polyhedron PCi

memory states reached by a constraint set Ci that does not raise the alarm
whereas memory states that raise the alarm are gathered in a single polyhedron.
For example, the constraint sets

C1 =
(

level = zlevel + faucet − pump faucet = zfaucet + 1 pump = zpump
zfaucet ≤ 0 zpump ≤ 0 zlevel ≤ 4 1 ≤ level ≤ 8 alarm = false

)

C2 =
(

level = zlevel + faucet − pump faucet = zfaucet + 1 pump = zpump
zfaucet ≥ 1 zpump ≤ 0 zlevel ≤ 4 1 ≤ level ≤ 8 alarm = false

)

C3 =
(

level = zlevel + faucet − pump faucet = zfaucet − 1 pump = zpump + 1
zfaucet ≥ 1 zpump ≤ 0 zlevel ≥ 7 level ≤ 8 alarm = false

)

lead to an iteration the first steps of which are

M0 =
(

zlevel = 1 zalarm = false
zfaucet = 0 zpump = 0

)

M0
C1

= TrC1(M0) =
(

zlevel = 2 zalarm = false
zfaucet = 1 zpump = 0

)

M0
C2

= TrC2(M
0
C1

) =
(

zlevel = 4 zalarm = false
zfaucet = 2 zpump = 0

)

M1
C2

= M0
C2

∪ TrC2(M
0
C2

) =
(

zlevel − 3zfaucet + 2 = 0 zalarm = false
2 ≤ zfaucet ≤ 3 zpump = 0

)

M0
C3

= TrC3(M
1
C2

) =
(

zlevel = 8 zalarm = false
zfaucet = 2 zpump = 1

)

6 Convex Hull Based Widening

Convex polyhedra have two dual representations. The representation most fre-
quently used in program analysis is as solutions of sets of linear constraints.

P = Sol({
m∑

j=1

ai,j · xj ≥ bj}n
i=1) where ai,j , bj ∈ Z

Another representation is in terms of convex hull of a set of vertices, extended
with a listing of the directions in which the polyhedron extends infinitely:

Definition 6. A vertex of a convex polyhedron P is any point in P that cannot
be expressed as a convex combination of other distinct points in P.

Definition 7. A ray of a convex polyhedron P is a vector r, such that x ∈ P
implies (x + µr) ∈ P for all µ ≥ 0. A ray of a convex polyhedron P is said to
be extreme if and only if it cannot be expressed as a positive combination of any
other two distinct rays of P. The set of extreme rays form a basis which describes
all directions in which the convex polyhedron is open.

Definition 8. A line (or bidirectional ray) of a polyhedron P is a vector l, such
that x ∈ P implies (x + µl) ∈ P for all µ ∈ Q.

Theorem 2. Every polyhedron P can be written as follows:

P = {x | x =
σ∑

i=1

(λi · si) +
ρ∑

j=1

(µj · rj) +
δ∑

k=1

(νk · dk)},

where 0 ≤ λi ≤ 1,
∑σ

i=1(λi) = 1, 0 ≤ µj and si ∈ vertices, rj ∈ rays, dk ∈ lines.

A minimal normalised representation can be exhibited for both representations
[17]. This property is essential for defining a widening operator.

Widening issues for convex polyhedra were first investigated by Cousot and
Halbwachs [8, 10]. Their widening strategy is based on cardinality of the con-
straint form: after a bounded number of iterations, the minimal number of linear

constraints needed to represent a polyhedron must strictly decrease by each it-
eration. Since this number is finite, the convergence is ensured. The widening
operator derived from this strategy only keeps constraints that were invariant
by the previous iteration step. We will highlight the weakness of this widening
and present an improved widening operator.

First, the dimension of a polyhedron is not abstracted correctly by the num-
ber of constraints. According to the standard widening strategy, the widening
of a square by a cube leads to a semi-infinite square section. Our strategy ac-
cepts the initial cube as the result of the widening. Furthermore, intuitively,
closed polyhedra are smaller than open ones. Our strategy will formally take in-
to account this fact. As another weakness, consider the following iteration that
describes a fixed point iteration involving a triangle. The infinite computation

Fig. 2. Limit out of the scope of widening strategy

leads to a solution (a half-band) described by the same number of constraint
than the initial triangle. The standard widening strategy cannot produce this
limit whereas ours does while ensuring convergence.

6.1 Convex Hull Based Widening

The standard widening strategy uses the constraint representation of polyhedra;
we propose an alternative relying on the convex hull representation. Whereas the
first representation is abstracted by one parameter (the number of constraints),
the latter is abstracted by four parameters: the dimension, the number of ver-
tices, extreme rays and lines. Examples argue that these parameters give a more
precise description than the number of constraints. Moreover, we establish that
the following widening strategy respects the finite ascending chain property. Let
v = | vertices |, l = | lines | and d the polyhedron dimension.

Theorem 3. Let P0 ⊆ P1 . . . ⊆ Pn ⊆ . . . be an ascending chain of polyhedra .
If for all i in the chain one of the following statement holds

– dPi < dPi+1

– vPi > vPi+1

– lPi < lPi+1

then the ascending chain stabilises (∃n∀i > n.Pi = Pi+1)

We propose two widening techniques for polyhedra respecting this new widen-
ing strategy: decrease of the number of vertices, increase of the number of lines.
The basic idea consists in pushing a vertex back to the infinite. Technically, a ray
or line that subsumes this particular vertex is added to the convex-hull represen-
tation. The polyhedron obtained after a finite number of such transformations is
ensured to be a correct widening since each of them either decrease the number
of vertices or increase the number of lines.

The first technique consists in selecting a vertex stable but satisfied by con-
traints that evolved since the previous iteration step. Our heuristics is that this
process will lead to a line. This transformation can be interpreted like a projec-
tion along a suitable direction. Typically, it is relevant to apply this heuristics
for the example of Fig. 3.

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

����������
����������
����������
����������

����������
����������
����������
����������

Fig. 3. An infinite band rather than an half-space

On the contrary, the second technique selects a vertex that evolved since the
previous iteration step. Our heuristics is that this process will lead to a ray.
To choose among the infinite number of acceptable directions for such a ray,
two heuristics can be applied. The first one assums that the polyhedral center
follows a linear trajectory and computes the ray closer to this direction. The
second makes a hypothesis similar to the standard widening and give conditions
so that the additional ray does not weaken constraints invariant by the iteration
step. Let C be this set. Formally these conditions are expressed by the following
system:

∀c ∈ C, R · v⊥ ≥ 0

where vc⊥ is the vector orthogonal to c. The solution to the iteration of triangles
Fig. 2 is obtained by this heuristics.

7 Related Work

Semantics Previous works [16] showed how denotational semantics can be used
as a foundation for deriving clock analyses for data-flow synchronous languages
(Lustre and Signal) by abstract interpretation. In this paper we have shown
how a small-step operational semantics can serve to prove correctness of data-
flow analyses for such languages. For this, we have defined an operational seman-
tics for Signal that differs from the existing operational semantics of Signal

[3] and Esterel [4] in the way that delay variables are handled. The exist-
ing semantics rewrite the program such that the value to be memorised appears
syntactically in the program, thus directly incorporating states into the program
syntax. Rather than using rewrite semantics, our operational framework main-
tains an explicit distinction between the system of equations, the state and its
instantaneous valuation. In this respect it is closer to usual operational seman-
tics for imperative languages with state. This proximity makes it in our opinion
simpler to adapt existing static analysis techniques to this new paradigm. The
semantics is defined for the Signal language but we believe that it should be
easy to modify in order to model Lustre and Esterel.

Analysis of Synchronous Programs The notion of synchronous observer provides
a means of expressing safety properties in the programming language itself. A
synchronous observer is a program composed with the system to verify. It does
not influence the system but spies its behaviour and emits an alarm if the desired
property is not satisfied. Verifying that such an alarm will never be emitted
consists in reachability analysis. This methodology is applied to express and
verify boolean safety properties of synchronous Lustre programs [13, 14, 12].
Under these conditions, the effective computation of reachable states is done by
model checking techniques. Our approach extends this to integer-valued signals.

Polyhedra-Based Analyses In the framework of abstract interpretation [7], linear
constraint analysis was first defined for an imperative language [8]. It associates
to each program point a polyhedron that safely approximates the set of mem-
ory states that can reach that point. First, the analysis derives a system of
equations that describes safely in terms of polyhedra the meaning of each im-
perative construct. Second, this system is solved by fixed point iteration with a
widening operator to ensure the convergence. We have shown how to apply this
analysis strategy to the synchronous programming paradigm. Analyses based on
convex polyhedra have been applied to linear hybrid automata: an extension of
finite-state machine that models time requirements. A configuration of such an
automaton consists of a control location and a clock valuation. Clocks evolve
linearly with time in a control location and can be assigned linear expressions
when a transition, guarded by linear constraints, occurs. Halbwachs et al. adapt
the analysis of [8] to deal with a class of linear hybrid automata and approx-
imate the reachable configurations of any location by a polyhedron [15]. The
time elapse is modelled by a polyhedron transformation. Following the previous
method, a system of equations is derived and solved by fixed point iteration.
For a restricted class of linear hybrid automata, the timed automata, the model
checking of TCTL formula is proved decidable [1]. This is used in the Kronos
tool [9]. Apart from our time model being discrete the main difference is that
we handle arbitrary linear assignments and guards. The price for this generali-
ty is that we in general calculate an over-approximation of the real answer. In
synchronous programming, linear relation analysis is also applied to approxi-
mate the behaviour of delay counters [10]. The polyhedral equations are derived
for the interpreted automaton produced by the Esterel compiler. In practice,

it allows to check properties and to remove unreachable states and transitions
from the interpreted automaton. We use the same technology based on polyhe-
dra but propose a new widening operator that can ensure convergence where
the standard widening based on decreasing the number of constraints would fail.
Furthermore, our framework allows us to prove correctness of the analysis with
respect to the original program semantics—this is to our knowledge the first
time that this has been done for synchronous programs.

8 Conclusions

We have presented a semantics-based static analysis for determining linear rela-
tions between variables in Signal programs via a fixed point calculation with
widening in the domain of convex polyhedra. The paper contributes with:

– A simple, state-based operational semantics of Signal that clearly separates
the program’s syntax and the transition system that models it.

– A constraint-based analysis that produces a system of equations whose so-
lution is the property analysed for. This analysis is proved correct wrt. the
operational semantics.

– A novel widening operator for the domain of polyhedra based on their
convex-hull representation. This widening operator ensures convergence where
widening based on reducing the number of linear constraints fails.

A prototype implementation of the analysis has allowed preliminary experiments
on Signal programs up to approximately 60 equations. The analyser is imple-
mented with the polyhedra library produced by the API project at IRISA1 and is
interfaced with a generic fixed point solver developed by IRISA’s Lande project.
Acknowledgments: Thanks are due to Mirabelle Nebut for extensive com-
ments on an earlier version of the paper.

A Translation

We present a simplified translation scheme by a set of rewrite rules to apply to
equations until they belong to the restricted form.

x := f(e1, . . . , en) � x1 := e1 | . . . | xn := en | x := f(x1, . . . , xn)
x := e1 when e2 � x1 := e1 | x2 := e2 | x := x1 when x2

x := e1 default e2 � x1 := e1 | x2 := e2 | x := x1 default x2

synchro e1 e2 � x1 := e1 | x2 := e2 | t1 := x1 = x1 | t2 := x2 = x2 | s := t1 = t2

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. 5th
Symp. on Logic in Computer Science (LICS 90), pages 414–425, 1990.

1 See http://www.irisa.fr/API

[2] A. Benveniste and P. Le Guernic. Hybrid dynamical systems theory and the
Signal language. IEEE Trans. on Automatic Control, 35(5):535–546, May 1990.

[3] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous programming with
events and relations: the Signal language and its semantics. Science of Computer
Programming, 16(2):103–149, September 1991.

[4] G. Berry and G. Gonthier. The esterel synchronous programming language:
design, semantics, implementation. Science of Computer Programming, 19, 1992.

[5] M. Le Borgne, H. Marchand, E. Rutten, and M. Samaan. Formal verification
of signal programs: Application to a power transformer station controller. In
Proc. of the Fifth International Conference on Algebraic Methodology and Software
Technology, pages 271–285. Springer LNCS vol. 1101, 1996.

[6] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative language
for programming synchronous systems. In Proc. of 14th ACM Symp. on Principles
of Programming Languages, pages 178–188. ACM Press, 1987.

[7] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction of approximation of fixed points. In
Proc. of the 4th ACM Symp. on Principles of Programming Languages, Los An-
geles, pages 238–252, New York, NY, 1977. ACM.

[8] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. In Proc. of the 5th ACM Symp. on Principles of Programming
Languages, pages 84–96. ACM, January 1978.

[9] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In R. Alur,
T. A. Henzinger, and E. D. Sontag, editors, Hybrid Systems III, volume 1066 of
Lecture Notes in Computer Science, pages 208–219. Springer-Verlag, 1996.

[10] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis,
editor, Proc. of the 5th Int. Conference on Computer Aided Verification, volume
697 of LNCS, pages 333–346. Springer, 1993.

[11] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic
Publishers, 1993.

[12] N. Halbwachs. About synchronous programming and abstract interpretation. In
B. Le Charlier, editor, Proc. of the 1st Int. Static Analysis Symposium, LNCS
864, pages 179–192. Springer, 1994.

[13] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-time
systems by means of the synchronous data-flow language Lustre. IEEE Trans. on
Software Engineering, 18(9):785–793, September 1992.

[14] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verifi-
cation of reactive systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors,
3d Int. Conf. on Algebraic Methodology and Software Technology, AMAST’93.
Workshops in Computing, Springer, 1993.

[15] N. Halbwachs, Y.-E. Proy, and P. Raymond. Verification of linear hybrid systems
by means of convex approximations. In B. Le Charlier, editor, Proc. of the 1st
Int. Static Analysis Symposium, LNCS 864, pages 223–237. Springer, 1994.

[16] T. Jensen. Clock analysis of synchronous dataflow programs. In Proc. of ACM
Symposium on Partial Evaluation and Semantics-Based Program Manipulation.
ACM Press, 1995.

[17] D. K. Wilde. A Library for Doing Polyhedral Operations. Research Report 785,
INRIA, December 1993.

