
A Nelson-Oppen based Proof System using Theory

Specific Proof Systems∗

Frédéric Besson, Pierre-Emmanuel Cornilleau, David Pichardie
INRIA Rennes – Bretagne Atlantique, France

Abstract

SMT solvers are nowadays pervasive in verification tools. When the verification is about
a critical system, the result of the SMT solver is also critical and cannot be trusted. The
SMT-LIB 2.0 is a standard interface for SMT solvers but does not specify the output of the
get-proof command. We present a proof system that is geared towards SMT solvers and
follows their conceptually modular architecture. Our proof system makes a clear distinction
between propositional and theory reasoning. Moreover, individual theories provide specific
proof systems that are combined using the Nelson-Oppen proof scheme. We propose specific
proof systems for linear real arithmetic (LRA) and uninterpreted functions (EUF) and discuss
proof generation and proof checking. We have evaluated the cost of generating proofs in our
proof system. Our experiments on benchmarks taken from the SMT-LIB library show that
the simple mechanisms used in our approach suffice for a large majority of the selected
benchmarks.

1 Introduction

Modern Satisfiability Modulo Theory (SMT) solvers (e.g., CVC3 [2], VeriT [5], Yices [11] or
Z3 [7]) are able to automatically discharge formula of industrial size combining various logic
fragments such as linear (real or integer) arithmetic, the theory of uninterpreted function symbols
or the theory of arrays. The SMT-LIB 2.0 format [1] is a standard interface for SMT solvers. It
provides a unified syntax for SMT problems and a rich interface for interacting with SMT solvers.
The command check-sat tests the satisfiability of the problem and is the minimal information
that is expected from a SMT solver. More advanced features are unsat cores (get-unsat-core)
or models (get-model).

In case the problem is unsat, the command get-proof outputs a proof of this fact. The
answer to the get-proof command is unspecified and is therefore prover-specific. Actually, the
SMT solvers CVC3, veriT and Z3 all use a different syntax and semantics for their proofs. More-
over, the granularity of the proofs greatly differ. This hinders proof exchanges and significantly
complicates proof checking by third-party entities. Several works show that checking proofs
generated by SMT provers in skeptical proof-assistants (see e.g., [12, 13, 4]) requires substantial
(retro-)engineering.

In this paper, we advocate for a very structured proof system that mimics the (conceptual)
modular architecture of SMT solvers. We provide:

• A new methodology to obtain unsatisfiability proofs from an untrusted, non proof-producing,
SMT solver. Our proof format is modular: it separates boolean reasoning from theory
reasoning. Each multi-theory proof is itself decomposed (using the Nelson-Oppen proof
scheme) into mono-theory proofs.

• A prototype prover that generate proofs. The prover only requires a SMT solver that
extracts unsat cores and boolean models, as expected by the SMT-LIB 2 format. A SMT

∗This work was funded by the ANR Decert projet

1

solver is used to obtain unsat multi-theory cores and any proof-generating multi-theory
prover can be used to obtain certificates for theory specific lemmas.

For uninterpreted functions (EUF) and linear real arithmetic (LRA) we propose specific proof
systems and discuss how to generate proofs using state-of-the-art decision procedures.

We have done preliminary experiments to assess the viability of our proof generation. Using
SMT-LIB 2.0 scripts, we have implemented a lazy SMT loop [9]: a first SMT solver acting as
a SAT solver; the second SMT solver acting as a Theory-reasoner. Such a set-up amounts to
disabling many optimisations and forbidding, for instance, any global pre-processing or theory-
propagation. Nonetheless, the results are rather encouraging as we are able to generate for most
of the benchmarks a proof with an acceptable overhead.

The remainder of this paper is organised as follows. Section 2 covers the needed SMT solving
background and describe a simple SMT proof search. Section 3 defines our proof systems and
describe their interactions. Section 4 presents some experimental evaluation results. We discuss
related work in Section 5 and conclude in Section 6 with a discussion on further work.

2 Background

In this section, we give an overview of some concepts useful to describe the interactions between
the Boolean and the theory part of a SMT proof search.

2.1 Separating Boolean and Theory reasoning

We consider multi-theory unquantified first-order formulas, with terms belonging to combina-
tions of theories. Such a formula will be called T -formula. The following formula is an example
of T -formula combining uninterpreted functions and arithmetic:

f(f(x)− f(y)) 6= f(z) ∧ x ≤ y ∧ ((y + z ≤ x ∧ z ≥ 0) ∨ (y − z ≤ x ∧ z < 0)) (1)

Boolean Abstraction. A simple approach to solve a T -formula is to consider its Boolean
abstraction and search for propositional models, eliminating along the search any model leading
to a contradiction at the theory level. To obtain the Boolean abstraction, the T -formula terms
from the underlying theories are substituted for propositional variables. We will refer to the
resulting propositional formula as the propositional abstraction of the initial T -formula. Each
variable corresponds to a theory literal. For example, the propositional abstraction of the T -
formula (1) is A ∧B ∧ ((C ∧D) ∨ (E ∧ ¬D)), with the following T -mapping :

A ;f(f(x)− f(y)) 6= f(z) B ;x ≤ y C ;y + z ≤ x

D ;z ≥ 0 E ;y − z ≤ x

If the abstracted formula does not have a model, i.e., the propositional abstraction is unsat-
isfiable, then the T -formula is unsatisfiable at the Boolean level. But if the abstraction has a
model, this model needs to be validated at the theory level. To do that, we transform this model
in a conjunction of theory atoms, called T -conjunction, according to the T -mapping between
propositional variables and corresponding atoms. Consider the following propositional model of
the T -formula (1):

A ;True B ;True C ;True D ;True E ;False (2)

2

The corresponding T -conjunction is

f(f(x)− f(y)) 6= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ z ≥ 0 ∧ ¬(y − z ≤ x) (3)

This formula is unsatisfiable (see Section 2.2 for involved theory reasoning), hence model (2)
leads to a contradiction at the theory level, and has to be removed from the search.

We eliminate model (2) from the propositional SAT search by adding to the propositional
abstraction, as a new clause, called a conflict clause: the negation of the abstraction of the
T -conjunction (3), i.e., A ∧ B ∧ C ∧ D ∧ ¬E =⇒ False. We refer to the conjunction of
the propositional abstraction and the discovered conflict clauses as the propositional abstraction
set. At the beginning of the search, this set only contains the propositional abstraction of the
T -formula. We can now continue the search by looking for another model of the propositional
abstraction set, until either the set is unsatisfiable, or a model of the initial T -formula is found.

Shorter Conflict Clauses. Notice that in our example the atom ¬(y−z ≤ x) is not necessary
to prove T -conjunction (3) unsatisfiable. The T -conjunction

f(f(x)− f(y)) 6= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ z ≥ 0 (4)

is already unsatisfiable, it is in fact an unsatisfiable core. The T -conjunction (3) being redundant
it leads to a weak conflict clause that does not eliminate the following model:

A ;True B ;True C ;True D ;True E ;True (5)

By building the conflict clauses from unsatisfiability cores (unsat-cores) instead of whole T -
conjunctions, we eliminate more models, and accelerate the search. If we use unsat-cores in our
example, the conflict clause to add, in order to eliminate model (2), is A∧B∧C∧D =⇒ False,
and it also eliminate model (5). The propositional abstraction set is then

A ∧B ∧ ((C ∧D) ∨ (E ∧ ¬D))

A ∧B ∧ C ∧D =⇒ False

A model of this propositional formula is

A ;True B ;True C ;True D ;False E ;True

and the corresponding T -conjunction is f(f(x)−f(y)) 6= f(z)∧x ≤ y∧y+z ≤ x∧z < 0∧y−z ≤ x.
This is an unsatisfiable formula, and its unsat-core is

x ≤ y ∧ z < 0 ∧ y − z ≤ x (6)

This unsat-core leads to the conflict clause B ∧ ¬D ∧ E =⇒ False. Once we have added this
conflict clause to the propositional abstraction set, the set becomes unsatisfiable, and the model
search ends.

Concluding the Search. Any model of the propositional abstraction set is a model of the
propositional abstraction, because the conflict clauses we add to the set only eliminate models.
Conversely, any model of the propositional abstraction which is not a model of the propositional
abstraction set corresponds to an unsatisfiable T -conjunction. As a result, if the T -conjunction
corresponding to a propositional model is satisfiable, we can obtain a model of the initial T -
formula, i.e., a proof of satisfiability. On the contrary, if all propositional models translate into
unsatisfiable T -conjunctions, the initial T -formula is unsatisfiable. In such case, when the search
ends the propositional abstraction set is an unsatisfiable propositional formula. It is composed
of:

3

• the propositional abstraction; in our example A ∧B ∧ ((C ∧D) ∨ (E ∧ ¬D))

• all the conflict clauses; in our example we found two of them:

A ∧B ∧ C ∧D =⇒ False

B ∧ ¬D ∧ E =⇒ False

Each conflict clause corresponds to an unsatisfiable T -conjunction. In our example, the two
conflict clauses come from the T -conjunctions unsat-cores (4) and (6).

A conflict clause is the abstraction of a tautology, i.e., the negation of an unsatisfiable T -
conjunction. In fact, we could add to the propositional abstraction set the abstraction of any
tautology, conflict clause or not, without endangering the soundness of our proof search. Adding
more clauses to the propositional abstraction would eliminate more models from the search and
accelerate the procedure. Conflict clauses can be more generally seen as abstraction of theory
lemma, i.e., valid formulas whose abstractions are necessary to prove the unsatisfiability of the
T -formula. To optimise the search, other kinds of theory lemmas could be useful, and modern
SMT solvers do use more theory reasoning than mere conflict clauses. Some SMT solvers check
partial models incrementally against the theory in order to build similar subsets. In this example,
it is useless to assign a boolean value to E to obtain a theory conflict. Second, the multi-theory
solver may be able to discover propagation lemmas, i.e theory literals that are consequence of
partial models. In a boolean form, such lemmas allow the SAT solver to perform efficient unit
propagation and reduce its research tree.

2.2 Multi-Theory Conjunction Proofs

We now give an overview of the Nelson-Oppen equality exchange, used to prove unsatisfiability
of T -conjunctions. We illustrate the proof search on the T -conjunction (4) from the previous
example1.

LRA proves x = y

LRA proves t6 = z

f(f(x) − f(y)) �= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ z ≥ 0

purification
LRA

EUF proves t3 = t5

EUF proves UNSAT !

LRA proves t0 = z

EUF

(1) f(y) = t3 (0) t0 = 0
(2) f(x) = t5 (3) t3 − t5 + t6 = 0
(4) f(t6) = t8 (7) y − x ≥ 0
(5) f(z) = t9 (8) −y + x − z ≥ 0
(6) t8 �= t9 (9) z ≥ 0

(11) x = y
(12) t0 = z

(14) t3 − t5 = 0

(18) t6 = z

Figure 1: Example of Nelson-Oppen equality exchange

In this example, we combine the theories of Equality and Uninterpreted Function (EUF) and
Linear Real Arithmetic (LRA). For EUF, a literal is an equality between multi-sorted ground

1The formula is taken from [14].

4

terms and a formula is a conjunction of positive and negative literals. The axioms of this theory
are reflexivity, symmetry and transitivity, and the congruence axiom ∀a∀b, a = b⇒ f(a) = f(b)
for functions. Such a theory is infinitely stable and decidable using an efficient extension of the
union-find algorithm to compute congruence closures [10]. The only way for a set of literals to
be unsatisfiable is to deduce from positive literals an equality trivially negated by one of the
negative literals. For LRA, a literal is a linear constraint c0 + c1 · x1 + · · · + cn · xn 1 0 where
(ci)i=0..n ∈ Q is a sequence of rational coefficients, (xi)i=1..n is a sequence of real unknowns
and 1∈ {=, >,≥}2. Here, a formula is a conjunction of positive literals. Such a theory is also
infinitely stable and decidable using the Simplex procedure [10].

The Nelson-Oppen algorithm is a sound and complete decision procedure for combining
infinitely stable theories with disjoint signatures. Figure 1 presents the deduction steps of this
procedure on an example. We start from the formula at the top of Figure 1 and first apply a
purification step that introduces sufficiently many intermediate variables to flatten each term
and dispatch pure formulas to each theory. Then, each theory exchanges new equalities with
the others, until a contradiction is found.

3 Proof Systems

In this section we discuss the proof system for multi-theory formulas. We begin with a general
discussion on proof searches for whole formulas, then detail what is intended by Nelson-Oppen
proofs. We follow with instances of uninterpreted functions (EUF) and linear real arithmetic
(LRA) proofs.

3.1 Proof Scheme

Preprocessing. The first step of SMT solving is to handle Boolean abstraction and purifica-
tion. Depending on the SAT proof system we use, we also need to put the propositional formulas
in Conjunctive Normal Form (CNF). We can either give a proof for all these preprocessings, or
make sure the checker will be able to find the normal forms itself, by using the same algorithms
in the proof-producing prover and in the checker.

SMT Proofs. Once we are sure that the proof-producing prover and the proof checker agree
on the preprocessing of the formula, the proof of unsatisfiability is composed of two parts:

• a proof of unsatisfiability of the propositional abstraction set, including all conflict clauses;

• the set of unsatisfiable T -conjunctions with their proofs.

With the theory proofs we can check the validity of the theory lemmas, and with the propositional
proof we can check the unsatisfiability of the formula at the Boolean level.

Proof Generation. The proof generation would be facilitated if state-of-the-art SMT solvers
would give direct access to the conflict clauses discovered during a search, or to any kind of
theory reasoning for that matter. Still, we would have to link these discovered formulas to the
initial problem, which would require to take into account any preprocessing done by the solver.
Anyway, using the SMT-LIB 2.0 standard we can access models discovered by a SAT solver
and unsatisfiability cores using a SMT solver. Then we can use off-the-shelf solvers to generate

2Following the Simplify [10] approach, disequality is managed on the EUF side.

5

proofs, if non optimal ones, and try to evaluate our scheme. See Section 4 for experimental
results.

3.2 Propositional SAT Proof System

One part of a SMT proof is a proof of unsatisfiability of the propositional abstraction set. Unsat-
isfiability proofs of propositional formulas have already been discussed in the literature. Several
proof systems [19] and checking procedures [22] exist. State-of-the-art solvers like zChaff [18]
or PicoSAT [3] can output checkable proofs. Formats may vary and we will not go into details,
but all proof systems are based on the resolution rule:

¬x ∨ C x ∨ C ′

C ∨ C ′

The variable x is called the resolution variable and C and C ′ are clauses. Using resolution chains,
new clauses are deduced. Once the empty clause has been deduced, the initial set of clauses has
been proved unsatisfiable; hence a proof is a list of resolution chains, and the checker uses them
to produce new clauses until it reaches the empty clause. Using optimised algorithms, resolution
proofs can be checked efficiently [20]. Other proof systems exist e.g., Reverse Unit Propagation
proofs [21], for checking propositional unsatisfiability.

3.3 Nelson-Oppen Proofs

The second part of a SMT proof is a set of T -conjunctions and their proofs of unsatisfiability.
We have seen on an example in Section 2.2 how to solve such conjunctions and we will now
introduce Nelson-Oppen based proofs using the same example.

Step 1
(LRA)

(11) x = y because
(7) gives y − x ≥ 0 and (8) + (9) gives x− y ≥ 0

Step 2
(EUF)

(14) t3 = t5 because of the following rewriting steps

t3
trans. with (1)−−−−−−−−−→ f(y)

congr. with (11)−−−−−−−−−−→ f(x)
trans. with (2)−−−−−−−−−→ t5

Step 3
(LRA)

(18) t6 = z because
(3) + (7) + (8)− (14) gives t6 − z ≥ 0 and
(7) + (8) + 2 · (9) + (14)− (3) gives z − t6 ≥ 0

Step 4
(EUF)

False by contradiction of (6) with the following rewriting steps

t8
trans. with (4)−−−−−−−−−→ f(t6)

congr. with (18)−−−−−−−−−−→ f(z)
trans. with (5)−−−−−−−−−→ t9

Figure 2: Example of Nelson-Oppen proof

Proof Generation. Figure 2 presents the proofs we consider. The proof generation only has
to consider useful exchanges, based on the whole history of exchanges. In this example, t0 = z
is not required in the final proof. A LRA proof of a = b is made of two Farkas proofs [17] of
b− a ≥ 0 and a− b ≥ 0. Each inequality is obtained by a linear combination of hypotheses that
preserves signs. A EUF proof of a = b is made of a sequence of rewriting steps that allows to
reach b from a. Each proof is expressed in a theory-specific proof format that is complete w.r.t.
to the theory, i.e., if a formula is unsatisfiable, there exists a proof of it.

6

For EUF+LRA, unsatisfiability can always be proved without resorting to case-splits. EUF
and LRA are said to be convex theories. In the general case of non-convex theories (such as
linear integer arithmetic or theories of arrays), disjunctions of equalities may be generated and
case splits are necessary.

The Nelson-Oppen Proof System. The proof system we propose for a combination of n
theories T1,. . . , Tn is given below.

Γi `Ti
prf i : (Γ′

i, eqs)∧
xk=yk∈eqs (Γ1[j 7→ xk = yk], . . . ,Γ′

i, . . . ,Γn[j 7→ xk = yk] `NO sons[k] : False)

Γ1, . . . ,Γn `NO (prf i, sons) : False

In this judgement Γi represents an environment of pure literals of theory Ti. Each theory is
equipped with is own deduction judgement Γi `Ti prf i : (Γ′i, eqs) where Γi and Γ′i are environ-
ments of theory Ti, prf i is a proof specific to theory Ti and eqs is a list of equalities between
variables. Such a judgement reads as follows: assuming that all the literals in Γi hold, we can
prove that all the literals in Γ′i hold and the disjunction equalities in eqs can be proved from
Γi. The judgement Γ1, . . . ,Γn `NO (prf i, sons) : False holds if given an environment Γ1, . . . ,Γn

of the joint theory T1 + . . . + Tn, the proof (prf i, sons) allows to exhibit a contradiction, i.e.,
False. Suppose that proof prf i establishes a judgement of the form Γi `Ti prf i : (Γ′i, eqs). If the
list eqs is empty, we have a proof that Γi is contradictory and therefore the joint environment
Γ1, . . . ,Γn is contradictory and the judgement holds. An important situation is when the list is
always a singleton. This corresponds to the case of convex theories for which the Nelson-Oppen
algorithm never perform case-splits. In the general case, we recursively exhibit a contradiction
for each equality (xk = yk) using the kth proof of sons, i.e., sons[k] for a joint environment
(Γ1[j 7→ xk = yk], . . . ,Γ′i,Γn[j 7→ xk = yk]) enriched with the equality (xk = yk). For complete-
ness, the index j used to store the equality (xk = yk) should be fresh. The judgement holds if
all the branches of the case-split over the equalities in eqs reach a contradiction.

3.4 Proof Checking and Generation for EUF

In this section we introduce a proof system and checker for EUF and present an overview of the
proof-producing procedure. We then propose an overview of an alternative EUF proof system.
After preprocessing and purification, EUF formulas can be encoded with the following types:

type var = int
type term = Var of var | Apply of var * var list
type formula = Eq of term * term | Neq of term * term

The fact that terms are purified and flat is an invariant maintained by the proof-producing
procedure.

Proof System. A proof is a list of commands executed in sequence. Each command operates
on the state of the checker, which is a pair (Γ, eq). The assumption set Γ is a mapping from
indices to assumptions, written Γ(i) 7→ a = b, and eq is the current equality, i.e., the last one
we proved. Each command corresponds to an axiom or a combination of axioms of the EUF
theory. The syntax of the commands is the following:

type command =
| Refl of term | Trans of index * bool
| Congr of index * position * bool | Push index

7

The semantics is given by rules of the form (Γ, eq)
cmd−−→ (Γ

′
, eq

′
) where (Γ′, eq′) is the state

obtained after executing the command cmd from the state (Γ, eq). The Boolean s in Trans and
Congr commands make explicit symmetry: if Γ(i) 7→ t = t′ then we have Γ(i)true 7→ t′ = t and
Γ(i)false 7→ t = t′.

Γ, . = .
Refl(y)−−−−→ Γ, y = y

Γ(i)s 7→ t = t
′

Γ, x = t
Trans(i,s)−−−−−−→ Γ, x = t′

Γ′ = Γ[i 7→ x = t]

Γ, x = t
Push(i)−−−−→ Γ′ , x = t

Γ(i)s 7→ ap = a′p

Γ, x = f(a0..ap..an)
Congr(i,p,s)−−−−−−−→ Γ, x = f(a0..a

′
p..an)

The command Refl(y) corresponds to the reflexivity axiom and initialises the current equality
with the tautology y = y, whatever the previous equality. Subsequent commands will then
rewrite the right hand side of this equality. The command Trans(i, s) updates the right hand
side of the current equality. If we can prove that x = t (current equality) and we know that
t = t′ (equality indexed by i) then we can deduce x = t′. The command Congr(i, p, s) rewrites a
sub-term of the right hand side. In any given context if we can prove x = f(y) (current equality)
and we know that y = z (equality indexed by i) then we can deduce x = f(z) and make it the
new current equality. The parameter p is used to determine where to rewrite. The command
Push(i) is used to update the assumption set Γ with the current equality x = t, creating a
new context Γ′ = Γ[i 7→ x = t] to be used to evaluate the next commands. It allows us some
factorisation of sub-proofs and is mandatory to keep the terms flat.

The rules below detail the transitive closure of the previous relation, explaining how to
evaluate a list of commands prf .

Γ′, eq′
nil−−→∗ Γ′, eq′

Γ, eq
cmd−−→ Γ′, eq′ Γ′, eq′

prf−−→∗ Γ′′, eq′′

Γ, eq
cmd::prf−−−−−→∗ Γ′′ , eq′′

The relation Γ `EUF prf EUF : (Γ
′
, eqs) implements the theory specific judgement seen in Sec-

tion 3.3.

Γ, z = z
prf−−→∗ Γ′, x = y

Γ `EUF EUF Eq(prf) : (Γ′ , [x = y])

Γ, z = z
prf−−→∗ Γ′, x = y Γ(i) 7→ x 6= y

Γ `EUF EUF False(i, prf) : (Γ′ ,nil)

Suppose that we obtain a state (Γ, x = y) after processing a list prf of commands. The proof
EUF False(i, prf) deduces a contradiction if Γ(i) 7→ x 6= y and the proof EUF Eq(prf) deduces
the equality x = y.

Proof Generation. Proof generation follows closely [16] where the proof-producing prover
maintains a proof forest that keeps track of the reasons why two nodes are merged. Besides the
usual merge and find operations, the data structure has a new operator explain(a, b, forest)
which outputs a proof that a = b based on forest. In our case, proofs are lists of commands,
while in the original approach they were unsatisfiable unordered sets of assumptions.

We show below the proof forest corresponding to the example of Section 2.2. Trees represent
equivalence classes and each edges is labelled by assumptions. The prover updates the forest
with each merge. Two distinct classes can be merged for two reasons: an equality between
variables is added or two terms are equal by congruence.

8

(2) f(x) = t5
(1) f(y) = t3

(5) f(z) = t9
(4) f(t6) = t8

(11) x = y

(18) z = t6

(12) t0 = z

t0

z

t6

x

y

t5

t3

t9

t8

Suppose for example that the problem contains (2) f(x) = t5 and (1) f(y) = t3 and we add the
equality (11) x = y. First, we have to add an edge between x and y, labelled by the reason of
this merge, i.e., assumption (11). Then, we have to add an edge between t3 and t5, and label it
with the two assumptions that triggered that merge by congruence, i.e., (1) and (2).

To output a proof that two variables are equal, we travel the path between the two cor-
responding nodes, and each edge yields a list of commands. An edge labelled by an equality

corresponds to a simple transitivity: t6
(18)−−→ z yields

[Trans(18, true)]

An edge labelled by two equalities makes use of the congruence: t3
(1)(2)−−−→ t5 yields

[Trans(1, false); Congr(11, 1, true); Trans(2, true)]

If the equality that triggered the congruence was discovered by EUF and not an assumption,
we have to explain it, and then update the environment accordingly, using the Push command.
This could lead to factorisation issues. We can ensure that any intermediate result is checked
only once during proof-producing, but this may not be enough. We may want to ensure that
any connection between variables, reflected by an edge in the proof forest, is only checked once,
but this is trickier.

Alternative EUF Checker. We now briefly expose a second EUF proof verifier, which aims
at maximum factorisation of subproof. The proof forest maintained by our proof-producing
prover is a compact array-based structure, on which it is very easy and efficient to check equalities
of variables while sharing subproofs. Arrays may be a sensitive data structure depending on the
proof verification context. In Coq for example, only functional style arrays are provided, and
they may not behave like traditional arrays. But if our checker is able to efficiently manipulate
arrays, the proof forest itself is a fine proof. To check an equality a = b, the checker only has
to travel between the trees to ensure that the nodes corresponding to the variables a and b are
in the same equivalence class, i.e., have the same root. During this computation of the root of
a node, any node on the path can store that information. Once the checker is aware of the root
of a node, it doesn’t have to compute it again, hence a high rate of subproof sharing if we can
ensure that any edge in the forest is only crossed once. The forest being linear in the number of
assumptions, we have achieved linear complexity in checking. The checker algorithm mimics the
initial congruence closure algorithm, without any decision making or reordering of the forest.
We take the forest for granted and fail as soon as it does not reflect any needed equality. In
particular the choice of the roots is made by the prover, and the checker relies on it. With this
simplification comes the reduction of algorithmic complexity.

9

A Nelson-Oppen compatible EUF checker needs to be incremental. We need to check equal-
ities between variables, then to assert equalities discovered by other theories, and then to check
more equalities. Fortunately, the proof forest obtained at the end of a Nelson-Oppen cycle re-
flects its history, i.e., a path between two variables only uses equalities asserted or discovered
earlier. We can compute the temporary root of a node, instead of its real root, by stopping as
soon as an edge in the forest is not labelled by an available assumption. We can then check
early equalities without breaking any temporal constraint, and unroot nodes as soon as a new
assumption is available.

This second proof system is checked using different data structures, namely arrays. Depend-
ing on the tools available, one could choose either a very efficient checker, or a checker that
does not rely on arrays. The switch between checkers is easy as long as both implement the
primitives needed by the Nelson-Oppen checker.

3.5 Proof Checking and Generation for LRA

In this section we introduce the proof system for LRA and describe a proof-producing procedure.
Literals are of the form e 1 0 with e a linear expression manipulated in (Horner) normal form
and 1∈ {≥, >,=}.

Proof System. For linear real arithmetic, Farkas’ lemma provides a sound and complete
notion of proof that a conjunction of linear constraints is unsatisfiable [17, Corollary 7.1e].
The following proof system allows to prove an inequality with a list of commands (a Farkas
proof). Each command is a pair Mul(c, i) with c a coefficient (in type Z) and i the index of
an assumption in the current assumption set. Such a command is used below in a judgement

Γ � e 1 0
Mul(c,i)−−−−→ e′ 1′ 0 with 1 and 1′ in {≥, >}. Γ∪{e 1 0} is the current set of assumptions

and e′ 1′ 0 is the new inequality that is deduced.

c > 0 Γ(i) 7→ e′ ≥ 0

Γ � e 1 0
Mul(c,i)−−−−→ (c[∗]e′[+]e) 1 0

Γ(i) 7→ e′ = 0

Γ � e 1 0
Mul(c,i)−−−−→ (c[∗]e′[+]e) 1 0

c > 0 Γ(i) 7→ e′ > 0

Γ � e 1 0
Mul(c,i)−−−−→ (c[∗]e′[+]e) > 0

The operators [∗], [+], [−] model the standard arithmetic operations but maintain the normalised
form of the LRA expressions. The previous rules follow the standard sign rules in arithmetic:
for example, if e′ is non-negative we can add it c times to the right part of the inequality e 1 0,
assuming c is strictly positive.

Contrarily to the EUF checker of Section 3.4, the LRA checker does not change the assump-
tion set Γ; this difference motivates the use of a different type of judgement. It is completely
transparent to the Nelson-Oppen checker as long as the judgement Γi `Ti prf i : (Γ

′
i, eqs) is

implemented.
The transitive closure of the previous relations allows to prove an inequality with a list of

command. It is formalised with the following rules.

Γ
 nil : 0 ≥ 0

Γ
 (c1 :: · · · :: cn−1) : e 1 0 Γ � e 1 0
cn−→ e′ 1′ 0

Γ
 (c1 :: · · · :: cn−1 :: cn) : e′ 1′ 0

A LRA proof is then either a proof of 0 > 0 given by a list of commands or a proof of x = y
given by two lists of commands (one for x− y ≥ 0 and one other for y − x ≥ 0).

10

type LRA_proof =
|LRA False of command list |LRA Eq of command list * command list

Γ ` l : 0 > 0

Γ `LRA (LRA False(l)) : (Γ,nil)

Γ ` l1 : e ≥ 0 e = x[−]y Γ ` l2 : [−]e ≥ 0

Γ `LRA (LRA Eq(l1, l2)) : (Γ, [x = y])

Proof Generation. In order to produce Farkas proofs efficiently, we can use the Simplex
algorithm used in Simplify [10]. This variant of the standard linear programming algorithm
does not require all the variables to be non-negative, and directly handles inequalities (strict or
not) and equalities. Each time a contradiction is found, one line of the Simplex tableau gives us
the expected Farkas coefficients. The algorithm is also able to discover new equalities between
variables. In this case again, the two expected Farkas proofs are read from the current tableau,
up to trivial manipulations.

4 Experiments

For our approach to be viable we first need to make sure that proof generation is feasible. For
the moment, our goal is not to evaluate the proof verifier; hence, to get an idea of what we
can expect at best we used a high-performance solver instead of a solver complying to the proof
systems prensented in Sections 3.4 and 3.5. For this reason we were able to test proof generation
for linear integer arithmetic, whose proof system is left as further work.

Prototype. The SMT-LIB 2.0 standard defines scripts to be run by solvers. First, one declares
the logic used, the types of the terms, then asserts formulas and checks for satisfiability with a
check-sat command. The standard also defines utility commands to obtain more than a verdict
from the solver. A solver can implement a get-model command, which output a valuation of the
variables validating a satisfiable formula, and a get-unsat-core command, which output an
unsatisfiable subformula. Our scheme would benefit from a get-conflict-clauses command,
to obtain the conflict clauses discovered during the search, but we can already use get-model

and get-unsat-core to emulate the simple search described in Section 2.1, with a SAT solver to
discover models of the propositional abstraction and a SMT solver to obtain the unsatisfiability
cores of formulas corresponding to models. Once the conflict clauses have been discovered, we
can build their proofs using the proof-producing prover of our choice.

We have implemented our proof scheme in OCaml, the OCaml programme being in charge
of the abstraction and the communication with the SMT-LIB 2.0 compatible, off-the-shelf SAT
and SMT solvers (we chose Z3 for both). We have isolated several parts of this lazy SMT loop
and distinguished accordingly four times of importance:

• the time spent solving the propositional abstraction and the conflict clauses, and obtaining
the propositional models;

• the time spent obtaining the unsatisfiability cores from the models;

• the time spent obtaining the propositional proof of unsatisfiability;

• the time spent obtaining the proofs of the conflict clauses.

The sum of these four times is the proof generation time. We estimated these times by re-
launching Z3 on the scripts generated by our OCaml programme. We do not take into account

11

the running time of our OCaml programme, whose only part was to make the SAT solver and
the SMT solver communicate.

We have launched this proof-producing prover on SMT-LIB benchmarks to measure the
times described earlier and the number of conflict clauses we discovered for each benchmark.
We compared these measures with the time of a direct run of Z3 on the same benchmark,
referred to as direct solve time, to understand the overhead induced by our scheme. We also
counted the number of atoms of each conflict clause to evaluate the stress put on the multi-theory
conjunctions solver.

We call overhead factor the number obtained through the following division:

generation time

direct solve time

Results. We used 574 unsatisfiable unquantified formulas from the SMT-LIB benchmarks,
combining uninterpreted functions and linear real arithmetic (QF UFLRA) or linear integer
arithmetic (QF UFLIA). Eight of the benchmarks hit timeout at 1000 seconds. They belong to
the same category (QF UFLIA/wisas). The only 3 benchmarks with more than 2000 conflict
clauses, and which took the longest time to prove, belong to that category too. We believe
that theory-propagation is needed to solve them efficiently. As soon as theory-propagation can
be encoded by conflict clauses it is expressible in our proof system but would require a tighter
integration with a SMT solver.

To evaluate the overhead factor of our approach we sort the benchmarks by overhead factor
and draw in the right-hand side graphic of Figure 3 a point by benchmarks, with on Y the
overhead factor and on X the benchmark index in the list of benchmarks. On the left-hand side
graphic we do the same with the proof generation time. For 2/3 of the benchmarks the overhead

0.01

0.1

1

10

100

1000

0 100 200 300 400 500 600

ge
ne

ra
tio

n
tim

e
(s

)

formula index

0.1

1

10

100

1000

10000

0 100 200 300 400 500 600

ov
er

he
ad

 fa
ct

or

formula index
Figure 3: proof generation time and overhead factor

of the generation time w.r.t the solving time is less 10. For only 3%, the overhead climbs up to
more than 100. For certain applications such as interactive theorem proving, wall clock is the
critical factor not the overhead. If we only consider benchmarks that take more than a tenth of
second to be solved, 4% have a overhead factor greater than 100. These cases represent 1.5% of
the whole dataset.

Looking only at the generation time, 91% of the proofs are generated in less then 3 seconds,
96% in less then 30 seconds. Maybe surprisingly, for some benchmarks the generation time
is inferior to the direct solve time, resulting in an overhead factor inferior to 1. These are

12

benchmarks solved by our prototype without any conflict clause, the abstraction being faster to
solve and prove than the initial formula.

Overall, proof generation went quite well, considering how naive our prototype is. We can
expect the overhead factor to vary less with each theory reasoning we take into account; but
with only conflict clauses and no preprocessing, a lot of formulas can be certified in a reasonable
amount of time.

For each benchmark, the number of conflict clauses vary between 0 (for 326 benchmarks of
the QF UFLRA category) and 29873 (only 3 benchmarks have more than 2000 clauses), the
mean being 318.5 conflicts by benchmark and 86% of the benchmarks raising less than 100
conflicts. The mean size of the conflicts is 5.6 atoms by conjunction; therefore, we expect the
proof generation of the conflict clause to amount for a little part of the whole generation time.
In Figure 4 we consider the percentage of the generation time spent proving the conflict clauses.
In 84% of the benchmarks the proof generation of the conflict clauses amounts for less than 10%

1e-05

0.0001

0.001

0.01

0.1

1

0 100 200 300 400 500 600

w
ei

gh
t o

f c
on

fli
ct

 c
la

us
es

 p
ro

vi
ng

formula index
Figure 4: weight of the conflict clauses proof generation

of the generation time, and at most it amounts for less than 20% of the generation time. For
this reason it seems that the proving multi-theory prover is not the bottleneck of our process,
and we can focus on the quality of the proofs rather than the efficiency of the prover. Overall,
once we have reduced a T -conjunction to its unsat-core, the remaining formula is very short and
easy to prove.

5 Related Work

For his Proof Carrying Code framework, Necula has pioneered the area of proof-generating de-
cision procedures [14]. In his Touchstone theorem prover [15], Necula needed to derive complete
proof terms in a unified language. In our approach, each decision procedure comes with its
own proof language thus allowing to choose the level of details to be put in the proofs. Several
authors have examined EUF proofs [8, 16]. They extend a pre-existing decision procedure with
proof-producing mechanisms without degrading its complexity and achieving a certain level of
irredundancy. However, their notion of proof is reduced to unsatisfiable cores of literals rather
than proof trees. Our proof generation builds on such works to produce detailed explanations.

13

Like several modern SMT solvers (CVC3, VeriT), the solver Z3 has its own proof language [6].
It contains a lot of rules reflecting its internal reasoning with different levels of precision, some
rules detailing each computation step, some others accounting for complex reasoning with no
further details. Our approach advocates a strict discipline in the way the proof is conducted
but simplifies its proof-checking. Moreover, we believe that SMT solvers could generate proofs
in our proof system without too much hassle when certain optimisations are disabled.

Previous work has been devoted to reconstruct SMT solvers proofs in proof assistants.
McLaughlin et al. [13] have combined CVC Lite and HOL light for quantifier-free first-order
logic with equality, arrays and linear real arithmetic. Ge and Barrett have continued that work
with CVC3 and have extended it to quantified formulas and linear integer arithmetic. This
approach highlighted the difficulty for proof reconstruction to compare to straightforward im-
plementation of decision procedures in HOL. Independently Fontaine et al. [12] have combined
haRVey with Isabelle/HOL for quantifier free first-order formulas with equality and uninter-
preted functions. Their scheme includes Isabelle solving of EUF sub-proof with hints provided
by haRVey. Our EUF proof system is more detailed and does not require any decision on the
checker side. Böhme and Weber [4] have built a proof reconstruction of Z3 proof in the theorem
provers Isabelle/HOL and HOL4. Their implementation is particularly efficient but their fine
profiling shows that a lot of time is spend re-proving sub-goals for which the Z3 proof does not
give sufficient details.

6 Conclusion and Perspectives

We have presented a proof system for multi-theory unquantified first-order formulas that relies
on theory-specific proofs. We have developed uninterpreted functions and linear real arithmetic
checkers, and combined them using a Nelson-Oppen checker. The proof format of any theory can
be changed as long as a checker is provided, with no modification of the combination scheme.
We have examined feasibility of proof generation based on state-of-the-art SMT solvers, and
implemented simple proof-producing provers to test proof generation for our EUF and LRA
proof systems and combinations of them. Our prover use an extended Union-Find algorithm [16]
for EUF and a Simplex algorithm [10] for LRA. The checkers for EUF, LRA and the generic
Nelson-Oppen combination have been developed and proved in Coq to provide a new reflexive
decision procedure.

As further work we intend to instantiate further the framework and examine checkers and
proof systems for non-convex theories such as the theory of linear integer arithmetic and the
theory of arrays. The Nelson-Oppen verifier is generic enough to handle such theories but we
still need to design specialised checkers and examine proof generation. The experiments have
shown that handling conflict clauses is not always enough to solve formulas in a reasonable time
with a reasonable amount of resources, and we need to explore other kinds of theory reasoning to
shorten the proof search. Closer interaction with SMT solvers and access to theory propagation
decisions would be very beneficial for our proofs because theory propagation can readily be
encoded in our proof system.

References

[1] C. Barret, A. Stump, and C. Tinelli. The SMT-LIB standard: Version 2.0, 2010.

[2] C. Barrett and C. Tinelli. CVC3. In Proc. of CAV 2007, volume 4590 of LNCS, pages 298–302.
Springer, 2007.

14

[3] Armin Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation
(JSAT), 4(2-4):75–97, 2008.

[4] S. Böhme and T. Weber. Fast LCF-style proof reconstruction for Z3. In Proc. of ITP 2010, volume
6172 of LNCS, pages 179–194. Springer, 2010.

[5] T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT: an open, trustable and efficient
SMT-solver. In Proc. of CADE 2009, LNCS. Springer, 2009.

[6] L. M. de Moura and N. Bjørner. Proofs and Refutations, and Z3. In Proc. of the LPAR 2008
Workshops, Knowledge Exchange: Automated Provers and Proof Assistants, volume 418. CEUR-
WS.org, 2008.

[7] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. of TACAS 2008, volume
4963 of LNCS, pages 337–340. Springer, 2008.

[8] L. M. de Moura, H. Rueß, and N. Shankar. Justifying equality. ENTCS, 125(3):69–85, 2005.

[9] L. M. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded model checking over
infinite domains. In Proc. of CADE’02, volume 2392 of LNCS, pages 438–455. Springer, 2002.

[10] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program checking. J. ACM,
52(3):365–473, 2005.

[11] B. Dutertre and L. de Moura. The Yices SMT solver. Tool paper at http://yices.csl.sri.com/tool-
paper.pdf, 2006.

[12] P. Fontaine, J-Y. Marion, S. Merz, L. P. Nieto, and A. F. Tiu. Expressiveness + automation +
soundness: Towards combining SMT solvers and interactive proof assistants. In Proc. of TACAS
2006, volume 3920 of LNCS, pages 167–181. Springer, 2006.

[13] S. McLaughlin, C. Barrett, and Y. Ge. Cooperating theorem provers: A case study combining
HOL-Light and CVC Lite. ENTCS, 144(2):43–51, 2006.

[14] G. C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, 1998.

[15] G. C. Necula and P. Lee. Proof generation in the Touchstone theorem prover. In Proc. of CADE
2000, volume 1831 of LNCS, pages 25–44. Springer, 2000.

[16] R. Nieuwenhuis and A. Oliveras. Proof-producing congruence closure. In Proc. of RTA 2005, volume
3467 of LNCS, pages 453–468. Springer, 2005.

[17] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.

[18] Princeton University. http://www.princeton.edu/ chaff/zchaff.html.

[19] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In Elec. Proc. of ISAIM
2008.

[20] Allen Van Gelder. Verifying propositional unsatisfiability: Pitfalls to avoid. In Proc of SAT’07,
Lisboa, Portugal, 2007.

[21] Allen Van Gelder. Verifying RUP proofs of propositional unsatisfiability. In Proc of ISAIM’08, Fort
Lauderdale, 2008. http://isaim2008.unl.edu/index.php?page=proceedings.

[22] Lintao Zhang. Validating sat solvers using an independent resolution-based checker: Practical im-
plementations and other applications. In Proc. of DATE 2003, pages 10880–10885, 2003.

15

	Introduction
	Background
	Separating Boolean and Theory reasoning
	Multi-Theory Conjunction Proofs

	Proof Systems
	Proof Scheme
	Propositional SAT Proof System
	Nelson-Oppen Proofs
	Proof Checking and Generation for EUF
	Proof Checking and Generation for LRA

	Experiments
	Related Work
	Conclusion and Perspectives

