Fast Reflexive Arithmetic Tactics
the linear case and beyond

Frédéric Besson*

Irisa/Inria, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract. When goals fall in decidable logic fragments, users of proof-
assistants expect automation. However, despite the availability of deci-
sion procedures, automation does not come for free. The reason is that
decision procedures do not generate proof terms. In this paper, we show
how to design efficient and lightweight reflexive tactics for a hierarchy
of quantifier-free fragments of integer arithmetics. The tactics can cope
with a wide class of linear and non-linear goals. For each logic fragment,
off-the-shelf algorithms generate certificates of infeasibility that are then
validated by straightforward reflezive checkers proved correct inside the
proof-assistant. This approach has been prototyped using the Coq proof-
assistant. Preliminary experiments are promising as the tactics run fast
and produce small proof terms.

1 Introduction

In an ideal world, proof assistants would be theorem provers. They would be
fed with theorems and would either generate a proof of them (if one exists) or
reject them (if none exists). Unfortunately, in real life, theorems can be unde-
cidable Yet, theorems often fall in decidable fragments. For those, users of proof
assistants expect the proof process to be discharged to dedicated efficient deci-
sion procedures. However, using off-the-shelf provers is complicated by the fact
that they cannot be trusted. A decision procedure, that when given as input a
supposedly-so theorem, laconically answers back yes is useless. Proof assistants
only accept proofs which they can check by their own means.

Approaches to obtain proofs from decision procedures usually require a sub-
stantial engineering efforts and a deep understanding of the internals of the deci-
sion procedure. A common approach consists in instrumenting the procedure so
that it generates proof traces that are replayed in the proof-assistant. The Coq
omega tactic by Pierre Crégut ([9] chapter 17) is representative of this trend.
The tactics is a decision procedure for quantifier-free linear integer arithmetics.
It generates Coq proof terms from traces obtained from an instrumented version
of the Omega test [22]. Another approach, implemented by the Coq ring tac-
tics [13], is to prove correct the decision procedure inside the proof-assistant and
use computational reflection. In this case, both the computational complexity

* This work was partly funded by the IST-FET programme of the European Commis-
sion, under the IST-2005-015905 MOBIUS project.

of the decision procedure and the complexity of proving it correct are limiting
factors.

In this paper, we adhere to the so-called sceptical approach advocated by
Harrison and Théry [16]. The key insight is to separate proof-search from proof-
checking. Proof search is delegated to fine-tuned external tools which produce
certificates to be checked by the proof-assistant. In this paper, we present the
design, in the Coq proof-assistant, of a tactics for a hierarchy of quantifier-free
fragments of integer arithmetics. The originality of the approach is that proof
witnesses, i.e., certificates, are computed by black-box off-the-shelf provers. The
soundness of a reflexive certificate checker is then proved correct inside the proof-
assistant. For the logic fragments we consider, checkers are considerably simpler
than provers. Hence, using a pair (untrusted prover, proved checker) is a very
lightweight and efficient implementation technique to make decision procedures
available to proof-assistants.

The contributions of this paper are both theoretical and practical. On the
theoretical side, we put the shed on mathematical theorems that provide infea-
sibility certificates for linear and non-linear fragments of integer arithmetics. On
the practical side, we show how to use these theorems to design powerful and
space-and-time efficient checkers for these certificates. The implementation has
been carried out for the Coq proof-assistant. Experiments show that our new
reflexive tactic for linear arithmetics outperforms state-of-the-art Coq tactics.

The rest of this paper is organised as follows. Section 2 recalls the principles
of reflection proofs. Section 3 presents the mathematical results on which our
certificate checkers are based on. Section 4 describe our implementation of these
checkers in the Coq proof-assistant. Section 5 compares to related work and
concludes.

2 Principle of reflection proofs

Reflection proofs are a feature of proof-assistants embedding a programming
language. (See Chapter 16 of the Coq’Art book [2] for a presentation of reflection
proofs in Coq.) In essence, this technique is reducing a proof to a computation.
Degenerated examples of this proof pattern are equality proofs of ground, i.e.,
variable free, arithmetic expressions. Suppose that we are given the proof goal

4+8+15+16+23+42 =108

Its proof is quite simple: evaluate 4 + 8 4+ 15 + 16 + 23 + 42; check that the
result is indeed 108. Reflection proofs become more challenging when goals in-
volves variables. Consider, for instance, the following goal where « is universally
quantified:

dxe+8Xxx+1xx+16xx+23xx+42x 2 =108 X &

Because the expression contain variables, evaluation alone is unable to prove the
equality. The above goal requires a more elaborate reflection scheme.

2.1 Prover-based reflection
Reflection proofs are set up by the following steps:

1. encode logical propositions into symbolic expressions F;

2. provide an evaluation function [.] : Env — F — Prop that given an envi-
ronment binding variables and a symbolic expression returns a logical propo-
sition;

3. implement a semantically sound and computable function prover : F' — bool
verifying Vef, prover(ef) = true = Venv, [ef] env-

A reflexive proof proceeds in the following way. First, we construct an envi-
ronment env binding variables. (Typically, variables in symbolic expressions are
indexes and environments map indexes to variables.) Then, the goal formula f
is replaced by [ef]eny such that, by computation, [ef]en, evaluates to f. As the
prover is sound, if prover(ef) returns true, we conclude that f holds.

Example 1 Following the methodology described above, we show how goals of
the form c1 X &+ ...c, X © = ¢ X & (where the ¢;s are integer constants and x
is the only universally quantified variable) can be solved by reflection.

— Such formulae can be coded by pairs ([c1;...;¢n],¢) € F =7 x Z.

— The semantics function [.] is defined by [I,] 2 listExpr(xz,l) = cxx where
listExpr : Z X 7" — 7 1is defined by

listExpr(z,[]) 20
listExpr(z,[c]) Sexaw
listExpr(z,c:: 1) Sexat listExpr(x,l)

— Given a pair (I,c), the prover computes the sum of the elements in | and
checks equality with the constant c.

prover(l, c) 2 (fold + 10)=c

To make decision procedure available to proof-assistants, the reflexive prover-
based approach is very appealing. It is conceptually simple and can be applied
to any textbook decision procedure. Moreover, besides soundness, it allows to
reason about the completeness of the prover. As a result, the end-user of the
proof-assistant gets maximum confidence. Upon success, the theorem holds; upon
failure, the theorem is wrong.

2.2 Checker-based reflection

On the one hand, provers efficiency is due to efficient data-structures, clever al-
gorithms and fine-tuned heuristics. On the other hand, manageable soundness
proofs usually hinge upon simple algorithms. In any case, reflection proofs re-
quire runtime efficiency. Obviously, these facts are difficult to reconcile. To obtain

a good trade-off between computational efficiency and proof simplicity, we ad-
vocate implementing and proving correct certificate checkers instead of genuine
provers. Compared to provers, checkers take a certificate as an additional input
and verify the following property:

Vef, (3cert, checker(cert, ef) = true) = Venv, [ef] env

The benefits are twofold : checkers are simpler and faster. Complexity theory
ascertains that checkers run faster than provers. In particular, contrary to all
known provers, checkers for NP-complete decision problems have polynomial
complexity. A reflexive proof of [ef]en, now amounts to providing a certificate
cert such that checker(cert,t) evaluates to true. As they are checked inside a
proof-assistant, certificates can be generated by any untrusted optimised proce-
dure.

Using certificates and reflexive checkers to design automated tactics is not a
new idea. For instance, proof traces generated by instrumented decision proce-
dures can be understood as certificates. In this case, reflexive checkers are trace
validators which verify the logical soundness of the proof steps recorded in the
trace. The Coq romega tactic [8] is representative of this trace-based approach:
traces generated by an instrumented version of the Omega test [22] act as cer-
tificates that are validated by a reflexive checker.The drawback of this method
is that instrumentation is an intrusive task and require to dig into the internals
of the decision procedure. In the following, we present conjunctive fragments
of integer arithmetics for which certificate generators are genuine off-the-shelf
provers. The advantage is immediate: provers are now black-boxes. Moreover,
the checkers are quite simple to implement and prove correct.

3 Certificates for integer arithmetics

In this part, we study a hierarchy of three quantifier-free fragments of integer
arithmetics. We describe certificates, off-the-shelf provers and certificate checkers
associated to them. We consider formulae that are conjunctions of inequalities
and we are interested in proving the unsatisfiability of these inequalities. For-
mally, formulae of interest have the form:

k
- </\ei(xl7-"amn) ZO>

i=1

where the e;s are fragment-specific integer expressions and the ;s are universally
quantified variables.
For each fragment, we shall prove a theorem of the following general form:

k
(Jeert, Cond(cert, ey, ... ex)) = V(x1,...,2n), " </\ ei(x,... ,xn)>

i=1

In essence, such a theorem establish that cert is a certificate of the infeasibil-
ity of the e;s. We then show that certificates can be generated by off-the-shelf

algorithms and that Cond is decidable and can be efficiently implemented by a
checker algorithm.

3.1 Potential constraints

To begin with, consider potential constraints. These are constraints of the form
x —y + ¢ > 0. Deciding the infeasibility of conjunctions of such constraints
amounts to finding a cycle of negative weight in a graph such that a edge z — y
corresponds to a constraint z —y + ¢ > 0 [1,21].

Theorem 1

isCycle(m) k
3r € Path, /\ weight(m) < 0 =V, T, ﬁ(/\ @i, — iy i > 0)
mC (Ui:l{mil = xlz}) i=1
Proof. Ad absurdum, we suppose that we have /\f:1 Zi, — iy + ¢; > 0 for some
1, ..., Tp. If we sum the constraints over a cycle m, variables cancel and the

result is the total weight of the path E:L‘—C>y€7T r—y+c= inyew c¢. Moreover,
by hypothesis, we also have that (Z

sum being positive). We conclude that the total weight of cycles is necessarily
positive. It follows that the existence of a cycle of negative weight ¢ yields a
contradiction. a

r—y+ c) > 0 (each element of the

wgyE‘n'

As a result, a negative cycle is a certificate of infeasibility of a conjunction of
potential constraints.

Bellmann-Ford shortest path algorithm is a certificate generator which runs
in complexity O(n x k) where n is the number of nodes (or variables) and k is
the number of edges (or constraints). However, this algorithm does not find the
best certificate i.e., the negative cycle of shortest length. Certificates, i.e., graph
cycles, can be coded by a list of binary indexes — each of them identifying one of
the k constraints. The worst-case certificate is then a Hamiltonian circuit which
is a permutation of the k£ constraint indexes. Its asymptotic size is therefore
k x log(k):

k k
size(it, ..., i) = Z log(i;) = Z log(j) = log(HJk:lj) = log(k!) ~ k x log(k)
j=1 j=1

Verifying a certificate consists in checking that:

1. indexes are bound to genuine expressions;
2. verify that expressions form a cycle;
3. compute the total weight of the cycle and check its negativity

This can be implemented in time linear in the size of the certificate.

1 As shown by Shostak [24], this graph-based approach generalises to constraints of
the foorma x x —bxy+c> 0.

3.2 Linear constraints

The linear fragment of arithmetics might be the most widely used. It consists of
formulae built over the following expressions:

Expr i =c xx1+...+cn X2p+ Cpy1

A well-known result of linear programming is Farkas’s Lemma which states
a strong duality result.

Lemma 1 (Farkas’s Lemma (Variant)) Let A : Q™*" be a rational-valued
matriz and b : Q™ be a rational-valued vector. Exactly one of the following
statement holds:

- 3JIyeQ),y>0,b"-y>0A4"-y=0
- J(zeQm),A-z>b

Over Z, Farkas’s Lemma is sufficient to provide infeasibility certificates for sys-
tems of inequalities.

Lemma 2 (Weakened Farkas’s Lemma (over Z)) Let A : Z™*"™ be a integer-
valued matrixz and b : Z™ be a integer-valued vector.

Iy ezZ),y>0,b"-y>0A"y=0=V(xre€Z"),~A-x>b

Proof. Ad absurdum, we suppose that we have A-x > b for some vector z. Since
y is a positive vector, we have that (A - x)! -y > b’ - y. However, (A-z)t -y =
(xt - AY) -y =t - (A* - y). Because A’ -y = 0, we conclude that 0 > y* - b which
contradicts the hypothesis stating that y* - b is strictly positive. O

Over Z, Farkas’s lemma is not complete. Incompleteness is a consequence of
the discreetness of Z : there are systems that have solutions over Q but not
over Z. A canonical example is the equation 2.x = 1. The unique solution is
the rational 1/2 which obviously is not an integer. Yet, the loss of completeness
is balanced by a gain in efficiency. Whereas deciding infeasibility of system of
integer constraints is NP-complete; the same problem can be solved over the
rationals in polynomial time.

Indeed, an infeasibility certificate is produced as the solution of the linear
program

min{y"- 1|y >0,b" -y >0 A"y =0}

Note that linear programming also optimises the certificate. To get small cer-
tificates, we propose to minimise the sum of the elements of the solution vector.
Linear programs can be solved in polynomial time using interior point meth-
ods [17]. The Simplex method — despite its worst-case exponential complexity —
is nonetheless a practical competitive choice.
Linear programs are efficiently solved over the rationals. Nonetheless, an
integer certificate can be obtained from any rational certificate.

Proposition 1 (Integer certificate) For any rational certificate of the form
certg = [p1/q;- - -;Pk/ k], an integer certificate is

certz = [pi; .. py)
where p, = p; x lem/q; and lem is the least common multiple of the ¢;s.

Worst-case estimates of the size of the certificates are inherited from the theory
of integer and linear programming (see for instance [23]).

Theorem 2 (from [23] Corollary 10.2a) The bit size of the rational solution
of a linear program is at most 4d*(d + 1)(o + 1) where

— d is the dimension of the problem;
— o 1is the number of bits of the biggest coefficient of the linear program.

Using Lemma 1 and Theorem 2, the next Corollary gives a coarse upper-bound
of the bit size of integer certificates.

Corollary 1 (Bit size of integer certificates) The bit size of integer certifi-
cates is bounded by 4k3(k +1)(o + 1)

Proof. Let certz, = [p};...;p)] be the certificate obtained from a rational cer-
tificate certg = [p1/q1;- - - Pk/qk)-

| certs, | =320, log(p})
= Y (log(pi) — log(a)) + 21, log(lem)
= Zle(log(pi) —log(q;)) + k x log(lem)

At worse, the ¢;s are relatively prime and lem = II7" g;.

k k

| certy |[< kx Y log(a:) + Y (log(pi) — log(g:))

=1 i=1

As | certg |= Zf:l log(p;) + log(q;), we have that | certz |< kx | certg |. By
Theorem 2, we conclude the proof and obtain the 4k3(k + 1)(o + 1) bound. O

Optimising certificates over the rationals is reasonable. Rational certificates are
produced in polynomial time. Moreover, the worst-case size of the integer cer-
tificates is kept reasonable.

Checking a certificate cert amounts to

1. checking the positiveness of the integers in cert;

2. computing the matrix-vector product A? - cert and verifying that the result
is the null vector;

3. computing the scalar product b’ - cert and verifying its strict positivity

Overall, this leads to a quadratic-time O(n X k) checker in the number of arith-
metic operations.

3.3 Polynomial constraints

For our last fragment, we consider unrestricted expressions built over variables,
integer constants, addition and multiplication.

e€Expru=x|cler+ea|en Xey

As it reduces to solving diophantine equations, the logical fragment we consider
is not decidable over the integers. However, it is a result by Tarski [26] that
the first order logic (R, +,*,0) is decidable. In the previous section, by lifting
our problem over the rationals, we traded incompleteness for efficiency. Here, we
trade incompleteness for decidability.

In 1974, Stengle generalises Hilbert’s nullstellenstaz to systems of polyno-
mial inequalities [25]. As a matter of fact, this provides a positivstellensatz, i.e.,
a theorem of positivity, which states a necessary and sufficient condition for
the existence of a solution to systems of polynomial inequalities. Over the inte-
gers, unlike Farkas’s lemma, Stengle’s positivstellensatz yields sound infeasibility
certificates for conjunctions of polynomial inequalities.

Definition 1 (Cone) Let P C Z[Z] be a finite set of polynomials. The cone of
P (Cone(P)) is the smallest set such that

1. Vp € P,p € Cone(P)

2. Vp1,p2 € Cone(P),p1 + pa € Cone(P)
3. Vp1,p2 € Cone(P),p1 X py € Cone(P)
4. Vp € Z[z],p? € Cone(P)

Theorem 3 states sufficient conditions for infeasibility certificates:

Theorem 3 (Weakened Positivstellensatz) Let P C Zxy,...,x,] be a fi-
nite set of polynomials.

Jeert € Cone(P),cert = —1 = Va1,..., &y, /\ p(x1,...,2,) >0
peP

Proof. By adbsurdum, we suppose that we have /\peP p(x1,...,x,) > 0 for some
Z1,. .., Tn. By routine induction over the definition of a C'one, we prove that any
polynomial p € Cone(P) is such that p(z1,...,z,) is positive. This contradicts
the existence of the polynomial cert which uniformly evaluates to —1. O

Certificate generators explore the cone to pick a certificate. Stengle’s re-
sult [25] shows that only a restricted (though infinite) part of the cone needs to
be considered. A certificate cert can be decomposed into a finite sum of products

of the following form:
cert € Z (qs X Hp)

se2P pES

where gs = p? + ...+ p? is a sum of squares polynomial.

As pointed out by Parrilo [20], a layered certificate search can be carried out
by increasing the formal degree of the certificate. For a given degree, finding a
certificate amounts to finding polynomials (of known degree) that are sums of
squares. This is a problem that can be solved efficiently (in polynomial time) by
recasting it as a semidefinite program [27]. The key insight is that a polynomial
q is a sum of square if and only if it can be written as

t
my my
q=1 ... -Q -
mMn My
for some positive semidefinite matrix @ and some vector (my, ..., m,) of linearly

independent monomials.

An infeasibility certificates is a polynomial which belongs to the cone and is
equivalent to —1. Using a suitable encoding, cone membership can be tested in
linear time. Equivalence with —1 can be checked by putting the polynomial in
Horner’s normal form.

4 Implementation in the Coq proof-assistant

In this part, we present the design of the Coq reflexive tactics micromega?. This
tactics solves linear and non-linear goals using the certificates and certificate
generators described in Section 3. For the linear case, experiments show that
micromega outperforms the existing Coq (r) omega tactics both in term of proof-
term size and checking time.

4.1 Encoding of formulae

As already mentioned in section 2.1, to set up a reflection proof, logical sentences
are encoded into syntactic terms. Arithmetic expressions are represented by the
following inductive type:

Inductive Expr : Set :=

| v (v:Var)

| C (c:2)

| Mult (el:Expr) (e2:Expr)
| Add (el:Expr) (e2:Expr)
|

UMinus (e:Expr).

The eval_expr function maps syntactic expressions to arithmetic expressions.
It is defined by structural induction over the structure of Expr.

Fixpoint eval_expr (env:Env) (p:Expr) {struct p}: Z :=
match p with
| Vv = get_env env v

% micromega is available at http://www.irisa.fr/lande/fbesson.html.

| C ¢ = c

| Mult p q = (eval_expr env p) * (eval_expr env q)
| Add p q = (eval_expr env p) + (eval_expr env q)
| UMinus p = - (eval_expr env p)

end

The environment binds variable identifiers to their integer value. For efficiency,
variables identifiers are binary indexes and environments are binary trees. As
a result, the function eval_expr runs in time linear in the size of the input
expression.

Formulae are lists of expressions Formulae := list Expr and are equipped
with an evaluation function eval : Env—Formulae—Prop

Fixpoint eval (env:Env)(f:Formulae){struct f}: Prop :=
match f with

| nil = False

| e::rf = ((eval_expr env e) > 0) — (eval env rf)
end .

The eval function generates formulae of the form eq(z1,...,2,) >0 — ... —
ex(21,...,2,) > 0 — False. By simple propositional reasoning, such a formula

is equivalent to — (/\f:1 ei(x1y. .. xn) > 0) which is exactly the logical fragment

studied in Section 3.

4.2 Proving the infeasibility criterion

At the core of our tactics are theorems which are reducing infeasibility of formu-
lae to the existence of certificates. In the following, we present our formalisation
of Stengle’s Positivstellensatz in Coq. The cone of a set of polynomials is defined
by an inductive predicate:

Inductive Cone (P: list Expr) : Expr — Prop :=

| IsGen :Vp, In p P=>Cone P p

| IsSquare:V p, Cone P (Power p 2)

[IsMult :V p q, Cone P p—Cone P q—Cone P (Mult p q)
| IsAdd :V p q, Cone P p—Cone P gq—Cone P (Add p q)
| IsPos :YVc, ¢ > 0—Cone P (C c).

The fifth rule IsPos is redundant and absent from the formal definition of a
cone (Definition 1). Indeed, any positive integer can be decomposed into a sum
of square. It is added for convenience and to allow a simpler and faster decoding
of certificates.

We are then able to state (and prove) our weakened positivstellensatz.

Theorem positivstellensatz : V (f:Formulae),
(3 (e:Expr),
Cone f e A
(V env’, eval_expr env’ e = -1)) —
VY env, eval env f.

4.3 Checking certificates

Given a certificate cert, we need an algorithm to check that

1. the certificate belongs to the cone Cone(f,cert);
2. the certificate always evaluate to —1;

If certificates were terms of type Expr, proving cone membership would be
a tricky task. This would be complicated and inefficient to reconstruct the cone
decomposition of the expression. To avoid this pitfall, by construction, our certifi-
cates always belong to the cone. To do that, the data-structure of the certificates
mimics the definition of the cone predicate:

Inductive Certificate : Set :=

| Cert_IsGen (n:nat)

| Cert_IsSquare (e:Expr)

| Cert_IsMult (el:Expr) (e2:Expr)
| Cert_IsAdd (el:Expr) (e2:Expr)
|
|

Cert_IsZpos (p:positive)
Cert_IsZO.

Given the generators of a cone, i.e., a list of expressions, a certificate is decoded
into an expression:

Fixpoint decode

(P: list Expr) (c: Certificate) {struct c} : Expr :=
match ¢ with

|Cert_IsGen n = nth n P (C 0)

| Cert_IsSquare p = Mult p p

|Cert_IsMult p q = Mult (decode P p)(decode P q)
[Cert_Add p q = Add (decode P p)(decode P q)
|[Cert_IsZpos p = C (Zpos p)

|Cert_IsZO = C 70

end.

This construction ensures that certificates are always mapped to expressions
that belong to the cone as stated by the following lemma.

Lemma cert_in_cone : V P cert, Cone P (decode 1 cert).

Because our certificate encoding ensures cone membership, it remains to test
that a polynomial always evaluates to a negative constant. To do that, we reuse
the algorithm developed by the Coq ring tactics which normalises polynomial
expressions. In the end, our checker is implemented by the following algorithm:

Let checker (c:Certificate) (P: list Expr) : bool :=
(polynomial_simplify (decode P c)) == -1

4.4 Certificate generation

In Section 3, we shed the light on three different arithmetic fragments, namely,
potential constraints (Section 3.1), linear constraints (Section 3.2) and polyno-
mial constraints (Section 3.3). Obviously, these logic fragments form a strict
hierarchy: polynomial constraints subsume linear and potential constraints. It
appears that this hierarchy is also apparent at the level of certificates: both
negative-weighted cycles and Farkas’s Lemma certificates can be interpreted as
Positivstellensatz certificates.

For linear goals, our certificates are produced by a handcrafted linear solver.
For non-linear goals, we are using the full-fledged semidefinite programming
solver Csdp [5] through its HOL Light interface [15]. Anyhow, whatever their
origin, certificates are translated into Positivstellensatz certificates.

4.5 Experiments

We have assessed the efficiency of micromega with respect to the existing Coq
tactic romega®. As mentioned earlier, the romega is a reflexive tactics which
solves linear goals by checking traces obtained from an instrumented version
of the Omega test. Our benchmarks are the smallest SMALLINT problems of
the Pseudo Boolean Evaluation 2005/2006 contest?. The number of variables is
ranging from 220 to 2800 while the number of constraints is ranging from 42
to 160. The benchmarks are run on a 2.4 Ghz Intel Xeon desktop with 4GB
of memory. The graph of Figure 1 presents the running time of the Coq type-
checking of the certificates generated by romega M and micromega A. For this

1000 | .

100

Certificate checking time (in seconds)

%, %, %, %, %, % % % 9 % % % % o
Mo K My Ky g Kx y p Ry M My Mg My M %
% 2 29 24 29 % 2 2% 2% 2% 2% 2o e S

%,
Fig. 1. Evolution of the type-checking time

experiment, the certificates produced by micromega are always faster to check.

3 romega already outperforms the omega tactics
* http://www.cril.univ-artois.fr/PB06

Moreover, micromega scales far better than romega. It is also worth noting than
romega fails to complete the last two benchmarks. For the last benchmark, the
origin of the failure is not fully elucidated. For the penultimate one, a stack-
overflow exception is thrown while type-checking the certificate.

Figure 2 plots the size of compiled proof-terms (.vo files) generated by romega
B and micromega A together with the textual size of the problems e. For small

400Kb |-

300Kb

200Kb L

Proof term size (in Kb)

100Kb

50Kb |- L . .
30Kb #

Fig. 2. Evolution of the size of proof-terms

instances, the two tactics generate proof-terms of similar size. For big instances,
proof-terms of generated by micromega are smaller than those produced by
romega. Moreover, their size is more closely correlated to the problem size.

On the negative side, both tactics are using a huge amount of memory. (For
the biggest problems, the memory skyrockets up to 2.5 GB.) Further investiga-
tions is needed to fully understand this behaviour.

5 Related work and conclusion

In this paper, we have identified logical fragments for which certificate genera-
tors are off-the-shelf decision procedures (or algorithms) and reflexive certificate
checkers are proved correct inside the proof-assistant. Using the same approach,
Grégoire et al., [14] check Pocklington certificates to get efficient reflexive Coq
proofs that a number is prime. In both cases, the checkers benefit from the
performance of the novel Coq virtual machine [12].

For Isabelle/HOL, recent works attest the efficiency of reflexive approaches.
Chaieb and Nipkow have proved correct Cooper’s decision procedure for Pres-
burger arithmetics [7]. To obtain fast reflexive proofs, the HOL program is com-
piled into ML code and run inside the HOL kernel. Most related to ours is the
work by Obua [19] which is using a reflexive checker to verify certificates gen-
erated by the Simplex. Our work extends this approach by considering more
general certificates, namely positivstellensatz certificates.

To prove non-linear goals, Harrison mentions (chapter 9.2 of the HOL Light
tutorial [15]) his use of semidefinite programming. The difference with our ap-
proach is that the HOL Light checker needs not to be proved correct but is a
Caml program of type cert — term — thm. Dynamically, the HOL Light kernel
ensures that theorems can only be constructed using sound logical inferences.

As decision procedures get more and more sophisticated and fine-tuned,
the need for trustworthy checkers has surged. For instance, the state-of-the-art
zChaff SAT solver is now generating proof traces [29]. When proof traces ex-
ist, experiments show that they can be efficiently rerun inside a proof-assistant.
Using Isabelle/HOL, Weber [28] reruns zChaff traces to solve problems that Is-
abelle/HOL decision procedure could not cope with. Fontaine et al., [11] are
using a similar approach to solve quantifier-free formulae with uninterpreted
symbols by rerunning proof traces generated by the Harvey SMT prover [10].

In Proof Carrying Code [18], a piece of code is downloaded packed with
a checkable certificate — a proof accessing that it is not malicious. Certificate
generation is done ahead-of-time while certificate checking is done at download
time. Previous work has shown how to bootstrap a PCC infrastructure using a
general-purpose proof-assistant like Coq [6, 3, 4]. In this context, the triples (cer-
tificate,checkers,prover) defined here could be used to efficiently check arithmetic
verification conditions arising from the analysis of programs.

Acknowledgements Thanks are due to the anonymous referees for putting
this work into perspective and pointing out relevant related work.

References

1. R. Bellman. On a routing problem. In Quarterly of Applied Mathematics, vol-
ume 16, pages 87-90, 1958.

2. Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art : the Calculus of Inductive Constructions. Springer, 2004.

3. F. Besson, T. Jensen, and D. Pichardie. A PCC Architecture based on Certified
Abstract Interpretation. In Proc. of 1st Int. Workshop on Emerging Applications
of Abstract Interpretation, ENTCS. Springer-Verlag, 2006.

4. F. Besson, T. Jensen, and D. Pichardie. Proof-Carrying Code from Certified Ab-
stract Interpretation and Fixpoint Compression. Theoretical Computer Science,
364:273-291, 2006.

5. B. Borchers. Csdp, 2.3 user’s guide. Optimization Methods and Software, 11(2):597—
611, 1999.

6. D. Cachera, T. Jensen, D. Pichardie, and V. Rusu. Extracting a data flow analyser
in constructive logic. Theor. Comput. Sci., 342(1):56-78, 2005.

7. A. Chaieb and T. Nipkow. Verifying and reflecting quantifier elimination for pres-
burger arithmetic. In Proc. of 12th Int. Conf. on Logic for Programming, Artificial
Intelligence, and Reasoning, volume 3835 of LNAI pages 367-380. Springer, 2005.

8. P. Crégut. Une procédure de décision réflexive pour un fragment de I’arithmétique
de presburger. In Journées Francophones des Langages Applicatifs, 2004.

9. The Coq development team. The coq proof assistant - reference manual v 8.1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

D. Déharbe and S. Ranise. Light-weight theorem proving for debugging and ver-
ifying units of code. In Ist IEEE Int. Conf. on Software Engineering and Formal
Methods. IEEE Computer Society, 2003.

P. Fontaine, J-Y. Marion, S. Merz, L.. Nieto, and A. Tiu. Expressiveness + automa-
tion + soundness: Towards combining SMT solvers and interactive proof assistants.
In 12th Int. Conf. Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 3920 of LNCS, pages 167-181. Springer-Verlag, 2006.

B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In
In Proc. of the 7th Int. Conf. on Functional Programming, pages 235—246. ACM
Press, 2002.

B. Grégoire and A. Mahboubi. Proving equalities in a commutative ring done right
in coq. In Proc. of the 18th Int. Conf. on Theorem Proving in Higher Order Logics,
volume 3603 of LNCS, pages 98-113. Springer, 2005.

B. Grégoire, L. Théry, and B. Werner. A computational approach to pocklington
certificates in type theory. In Proc. of the 8th Int. Symp. on Functional and Logic
Programming, volume 3945 of LNCS, pages 97-113. Springer, 2006.

J. Harrison. HOL light tutorial (for version 2.20).

J. Harrison and L. Théry. A skeptic’s approach to combining HOL and Maple.
Journal of Automated Reasoning, 21:279-294, 1998.

N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proc.
of the 16th ACM Symp. on Theory of Computing, pages 302-311. ACM Press, 1984.
G. Necula. Proof-carrying code. In Proc. of the 24th ACM Symp. on Principles of
Programming Languages, pages 106-119. ACM Press, 1997.

S. Obua. Proving bounds for real linear programs in isabelle/hol. In Proc. of the
18th Int. Conf. on Theorem Proving in Higher Order Logics, volume 3603 of LNCS,
pages 227-244. Springer, 2005.

P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems.
Math. Program., 96(2):293-320, 2003.

V. Pratt. Two easy theories whose combination is hard. Technical report, Mas-
sachusetts Institute of Technology, 1977.

W. Pugh. The omega test: a fast and practical integer programming algorithm for
dependence analysis. In Proc. of the 1991 ACM/IEEE conference on Supercom-
puting, pages 4-13. ACM Press, 1991.

A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.

R. Shostak. Deciding linear inequalities by computing loop residues. J. ACM,
28(4):769-779, 1981.

G. Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geometry.
Mathematische Annalen, 207(2):87-97, 1973.

A. Tarski. A Decision Method for Elementary Algebra and Geometry. University
of California Press, 2ed edition, 1951.

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Rev., 38(1):49—
95, 1996.

T. Weber. Using a SAT solver as a fast decision procedure for propositional logic in
an LCF-style theorem prover. In Proc. of 18th Int. Conf. on the Theorem Proving
in Higher Order Logics, pages 180189, August 2005.

L. Zhang and S. Malik. Validating sat solvers using an independent resolution-
based checker: Practical implementations and other applications. In Design, Au-
tomation and Test in Europe, pages 10880-10885. IEEE Computer Society, 2003.

