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1.3.2 Tseitin’s reduction

reduction

SAT

CNF-SAT

We exhibit a reduction tr, computable in polynomial time such that ϕ and
tr(ϕ) are equisatisfiable (that is, ϕ satisfiable iff tr(ϕ) satisfiable) and tr(ϕ) is a
CNF.

Example 1 p ∨ (q ∧ r) is satisfiable iff

α(p∨(qr)) ∧( α(p∨(qr)) ↔ (p ∨ α(q∧r) ))

∧( α(q∧r) ↔ (q ∧ r)) satisfiable iff

α(p∨(qr)) ∧ ( α(p∨(qr)) → (p ∨ α(q∧r) ))

∧(p→ α(p∨(qr)) ) ∧ ( α(q∧r) → α(p∨(qr)) )

∧( α(q∧r) → q)

∧( α(q∧r) → r)

∧((q ∧ r)→ α(q∧r) )

satisfiable iff

α(p∨(qr)) ∧ ( α(p∨(qr)) → ( αp ∨ α(q∧r) ))

∧( αp → α(p∨(qr)) ) ∧ ( α(q∧r) → α(p∨(qr)) )

∧( α(q∧r) → αq )

∧( α(q∧r) → αr )

∧(( αq ∧ αr )→ α(q∧r) )

satisfiable.

where α(p∨(qr)) , α(q∧r) , αp , αq et αr are new fresh propositions whose
intuitive meanings are respectively ‘p ∨ (q ∧ r) is true’ and ‘(q ∧ r) is true’, ‘p is
true’, ‘q is true’ and ‘r is true’.

For translating any formula, we introduce new fresh atomic propositions αψ
for all propositional formulas ψ. The intended meaning of αψ is ‘the subformula
ψ is true’. The reduction tr is defined as follows:

tr(ϕ) = αϕ ∧
∧

ψ∈SF (ϕ)\ATM

r(ψ)

where SF (ϕ) is the set of subformulas of ϕ and r(ψ) is defined as follows:
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• r(¬ψ) = (¬ α¬ψ ∨ ¬ αψ ) ∧ ( α¬ψ ∨ αψ );

• r(ψ1 ∨ ψ2) =

( αψ1∨ψ2 → ( αψ1 ∨ αψ2 )) ∧ ( αψ1 → αψ1∨ψ2 ) ∧ ( αψ2 → αψ1∨ψ2 );

• r(ψ1 ∧ ψ2) =

( αψ1∧ψ2 → αψ1 ) ∧ ( αψ1∧ψ2 → αψ2 ) ∧ (( αψ1 ∧ αψ2 )→ αψ1∧ψ2 ).

The formula r(ψ) expresses the constraints over the truthfulness of ψ with
respect to the direct subformula of ψ.

Proposition 1 The length of tr(ϕ) is a O(ϕ).

Proof.
For all subformulas ψ, the size of r(ψ) is O(1). Therefore the size of tr(ϕ) is

O(SF (ϕ)). As card(SF (ϕ)) = |ϕ|, the proposition is proven. �

Theorem 4 ϕ satisfiable iff tr(ϕ) satisfiable.

Proof.

⇒ Suppose that ϕ is satisfiable. Let V be a valuation such that V |= ϕ.
We define the valuation V ′ as follows:

• αψ ∈ V ′ iff V |= ψ for all formulas ψ.

Let us prove that V ′ |= tr(ϕ) (not that this proof is done directly and there is no
need of induction).

• First, as V |= ϕ, by definition of V ′, αϕ ∈ V ′ hence V ′ |= αϕ .

• Now, we have to prove that for all ψ ∈ SF (ϕ) \ ATM , V ′ |= r(ψ). This is
a routine proof. But let us explain the case of the negation. For instance,
to prove that V ′ |= r(¬ψ) where ¬ψ ∈ SF (ϕ), we have to prove that V ′ |=
¬ α¬ψ ∨ ¬ αψ .

– Either V |= ψ. Then V 6|= ¬ψ. Thus, by definition of V ′, V ′ |= ¬ α¬ψ .
And V ′ |= (¬ α¬ψ ∨ ¬ αψ ).

– Or V 6|= ψ. Thus, by definition of V ′, V ′ |= ¬ αψ . And V ′ |= ¬ α¬ψ ∨
¬ αψ .

The rest of the proof is fastidious and is omitted.
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Conclusion
We have V ′ |= tr(ϕ). Thus tr(ϕ) is satisfiable.

⇐ Suppose that tr(ϕ) is satisfiable. Let V ′ be a valuation such that V ′ |=
tr(ϕ). Let us define V = {p ∈ ATM | αp ∈ V ′}. We prove that for all ψ ∈ SF (ϕ),
V |= ψ iff V ′ |= αψ , by induction on ψ. More precisely, let P (ψ) be the following
property

‘if ψ ∈ SF (ϕ) then V |= ψ iff V ′ |= αψ ’.

• p . For all propositions p (even those are not in SF (ϕ)), V |= p iff V ′ |= αp
by definition of V . So the property P (p) is true.

• ¬ψ . Let ψ be a formula. Suppose P (ψ). Let us show that P (¬ψ). Suppose
that ¬ψ ∈ SF (ϕ). By definition of SF (ϕ), we also have ψ ∈ SF (ϕ). Hence,
by P (ψ), we have V |= ψ iff V ′ |= αψ . In other words, V |= ¬ψ iff V 6|= ψ

iff V ′ 6|= αψ .

But as ¬ψ ∈ SF (ϕ), V ′ |= r(¬ψ) where

r(¬ψ) = (¬ α¬ψ ∨ ¬ αψ ) ∧ ( α¬ψ ∨ αψ ).

So V ′ 6|= αψ is equivalent to V ′ |= α¬ψ . To sum up, we have V |=6 ψ iff
V ′ |= α¬ψ . That is P (¬ψ) is true.

• ψ1 ∧ ψ2 . Let ψ1, ψ2 be two formulas. Suppose P (ψ1) and P (ψ2) and let us
show that P (ψ1 ∧ ψ2). The ideas are the same that the case ¬ψ and are left
to the reader.

We have proved that P (ψ) is true for all formulas ψ.
Conclusion
As V ′ |= tr(ϕ), we have V ′ |= αϕ by definition of tr(ϕ). In particular P (ϕ) is

true. So we have V |= ϕ. Thus, ϕ is satisfiable.
�


