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1.3.2 Tseitin’s reduction

SAT

CNF-SAT

— reduction — —

We exhibit a reduction ¢r, computable in polynomial time such that ¢ and
tr(y) are equisatisfiable (that is, ¢ satisfiable iff ¢r(y) satisfiable) and tr(y) is a
CNF.

Example 1 pV (¢ A1) is satisfiable iff

Apv(gr)) Al Apv(gr) <> (PV Qgrr) . .
/\E By (q(/\ ) ) satisfiable iff
aApvir) A ((Qpvigr)) = PV Qanr) )
Ap = Qpvr) ) A ((Qaar) = Xpvier) )
A Qgrry — Q) satisfiable iff
A( gnry —>T)
Al(gAT) = agan )
(v — (% V a@ar) )
A ap = Qpvgn) ) A ( Xarar) = i) )
A Qgnry — 0y ) satisfiable.
A Qgnr) = ay )
AM(ag A ap ) = Qqnr) )
where Qpv(gr)) , Qgar) , Qp , Qg el q, are new fresh propositions whose
intuitive meanings are respectively v\ (q A r) is true’ and (g Ar) is true’, ‘p is
true’, ‘q is true’ and ‘r is true’.

A(pv(gr)) N

For translating any formula, we introduce new fresh atomic propositions
for all propositional formulas ¢. The intended meaning of ay is ‘the subformula
1 is true’. The reduction tr is defined as follows:

trig)=ap A\ ()

ESF(p)\NATM
where SF(p) is the set of subformulas of ¢ and r(1)) is defined as follows:



1.3. NORMAL FORMS 21

o r(-p)=(nay Voay )A(ay V ooy );

o (Y1 Vihy) =
( Qypyvapy —7 ( VO, )) A ( Aoy —> Qi vy )/\( Qo —> Oy vy )3

o (Y1 ANhy) =
( Qopinpy —7 Qi )/\ ( Qi npy —7 Qg >/\ (( QN Qg ) — Oy Ay )

The formula r(¢)) expresses the constraints over the truthfulness of ¢ with
respect to the direct subformula of .

Proposition 1 The length of tr(y) is a O(p).

PROOF.
For all subformulas 1, the size of r(¢) is O(1). Therefore the size of tr(p) is
O(SF(p)). As card(SF(¢)) = |¢|, the proposition is proven. H

Theorem 4 ¢ satisfiable iff tr(yp) satisfiable.
PROOF.

Suppose that ¢ is satisfiable. Let V' be a valuation such that V' |= .
We define the valuation V' as follows:

o ay € V'iff V = for all formulas .

Let us prove that V' = tr(¢) (not that this proof is done directly and there is no
need of induction).

e First, as V = ¢, by definition of V', a, € V' hence V' = ay, .

e Now, we have to prove that for all v € SF(p)\ ATM, V' |= r(¢). This is
a routine proof. But let us explain the case of the negation. For instance,
to prove that V' |= r(—1)) where =) € SF(yp), we have to prove that V' |=
Oy VO

— Either V |=4. Then V' £ —). Thus, by definition of V', V' |= = a—y .
And V' IZ (—\ Oy V = Oly )
- OrV b’é ¢ ThU_S7 by definition of V’7 V! ): Q. And V’ ): - Oy v

—|Ol¢.

The rest of the proof is fastidious and is omitted.
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Conclusion
We have V' |= tr(p). Thus tr(p) is satisfiable.

Suppose that tr(yp) is satisfiable. Let V' be a valuation such that V' =
tr(y). Let usdefine V. ={pe ATM | o, € V'}. We prove that for all ) € SF(y),
ViEviff V= ay , by induction on . More precisely, let P(¢)) be the following

property
‘ifp € SF(p) then V = iff VI | ay .

e [p] For all propositions p (even those are not in SF(¢)), V = piff V' |=
by definition of V. So the property P(p) is true.

. . Let ¢ be a formula. Suppose P(¢). Let us show that P(—). Suppose
that =¢) € SF(p). By definition of SF(y), we also have ¢» € SF(y). Hence,
by P(v), we have V =9 it V' = g . In other words, V' | =) iff V' £ 9
iff vV’ l;é Qg .

But as =) € SF(p), V' = r(—)) where

() = (may Voag )A (o Voay ).

So V' £ ay is equivalent to V' | @y . To sum up, we have V = /) iff
V' E a-y . That is P(—)) is true.

° . Let 11,19 be two formulas. Suppose P(¢) and P(19) and let us
show that P(i; A1y). The ideas are the same that the case =1 and are left
to the reader.

We have proved that P(1)) is true for all formulas .

Conclusion

As V' =tr(p), we have V' = a, by definition of ¢tr(y). In particular P(yp) is
true. So we have V' |= . Thus, ¢ is satisfiable.

|



