CVFP (Software Design and Formal Verification) TD 4 : Bisimulations

$\label{eq:Exercise 1} {\sf Exercise 1} \quad {\tt Salad Niçoise}$

Which of the different models soon drawn on the black board are bisimilar?

Exercise 2 Maximal Bisimulation

Show that if there exists a bisimilation \mathcal{R} between \mathcal{M}, w and \mathcal{M}', w' , then there exists a maximal bisimilation, i.e. a bisimilation \mathcal{R}_m such that for every bisimilation \mathcal{R}' between \mathcal{M}, w and \mathcal{M}', w' , then $\mathcal{R}' \subseteq \mathcal{R}_m$.

Exercise 3 Waiting in the Bakery Let's consider the following program:

3.1. Give a control flow graph of this program.

3.2. Draw the KRIPKE model (also known as *transition-system*) of the system made up of two such processes P_1 and P_2 interleaving.

Let c_i be "The process P_i is in the critical section" and w_i be "The process P_i is waiting".

3.3. Are each of those formulae verified:

- $\forall G \neg (c_1 \land c_2)$ (safety),
- ∃*Fc*₁,
- ∃G¬w₂,
- $\exists GFw_1$,

- $\forall GFc_1$,
- $\forall G(w_1 \rightarrow Fc_1)$ (liveness),
- $\forall (GFw_1 \rightarrow GFc_1),$
- $\forall (GFw_1 \rightarrow \exists GFc_1).$

Exercise 4 The Theorem You've Always Wanted But Were Too Afraid To Ask

Definition:

 $\mathcal{M} = (W, R, V)$ is *image-finite* iff for all $w \in W$, R(w) is finite.

Let's show the following theorem:

Theorem (Hennessy-Milner): If \mathcal{M} , w and \mathcal{M}' , w' satisfy the same modal formulas and \mathcal{M} , \mathcal{M}' are image-finite, then \mathcal{M} , w and \mathcal{M}' , w' are bissimilar.

We define the relation $\mathcal{B} \subseteq W \times W'$ as the modal equivalence, that is $u\mathcal{B}u'$ iff (for all modal formulas ϕ , \mathcal{M} , $u \models \phi$ iff \mathcal{M}' , $u' \models \phi$).

4.1. Let u, u' such that $u\mathcal{B}u'$. Show that if R(u) is not empty, then R'(u') is not empty.

4.2. Show the theorem of HENNESSY-MILNER.

 $\label{eq:Exercise 5} Exercise \ 5 \ \ \mbox{Positivity and Monoticity of a Formula}$

A modal formula ϕ is *positive* (resp. *negative*) in *p* if *p* always appears under an even (resp. odd) number of negations.

A modal formula ϕ is *increasing* (resp. *decreasing*) in p if for all pointed frame \mathcal{F}, w and valuation V such that $(\mathcal{F}, V), w \vDash \phi$, then for all valuation V' such that $V(p) \subseteq V'(p)$ (resp. $V'(p) \subseteq V(p)$), $(\mathcal{F}, V'), w \vDash \phi$.

5.1. Show that if a modal formula is positive in *p*, then it is increasing in *p* and that if it is negative in *p*, then it is decreasing in *p*.

5.2. Is the converse true?