CVFP (Software Design and Formal Verification) TD 4 : Bisimulations

Exercise 1 Salad Niçoise

Which of the different models soon drawn on the black board are bisimilar?

Exercise 2 Maximal Bisimulation

Show that if there exists a bisimilation \mathcal{R} between \mathcal{M}, w and $\mathcal{M}^{\prime}, w^{\prime}$, then there exists a maximal bisimilation, i.e. a bisimilation \mathcal{R}_{m} such that for every bisimilation \mathcal{R}^{\prime} between \mathcal{M}, w and $\mathcal{M}^{\prime}, w^{\prime}$, then $\mathcal{R}^{\prime} \subseteq \mathcal{R}_{m}$.

Exercise 3 Waiting in the Bakery

Let's consider the following program:

```
procedure P
    loop
            non-critical section
            request (wait that y>0 and do }y:=y-1
            critical section
            release (do y :=y+1)
    end loop
endProcedure
```

3.1. Give a control flow graph of this program.
3.2. Draw the Kripke model (also known as transition-system) of the system made up of two such processes P_{1} and P_{2} interleaving.

Let c_{i} be "The process P_{i} is in the critical section" and w_{i} be "The process P_{i} is waiting".
3.3. Are each of those formulae verified:

- $\forall G \neg\left(c_{1} \wedge c_{2}\right)$ (safety),
- $\exists F c_{1}$,
- $\exists G \neg w_{2}$,
- $\exists G F w_{1}$,
- $\forall G F c_{1}$,
- $\forall G\left(w_{1} \rightarrow F c_{1}\right)$ (liveness),
- $\forall\left(G F w_{1} \rightarrow G F c_{1}\right)$,
- $\forall\left(G F w_{1} \rightarrow \exists G F c_{1}\right)$.

Exercise 4 The Theorem You've Always Wanted But Were Too Afraid To Ask

Definition:

$\mathcal{M}=(W, R, V)$ is image-finite iff for all $w \in W, R(w)$ is finite.

Let's show the following theorem:

Theorem (Hennessy-Milner):

If \mathcal{M}, w and $\mathcal{M}^{\prime}, w^{\prime}$ satisfy the same modal formulas and $\mathcal{M}, \mathcal{M}^{\prime}$ are image-finite, then \mathcal{M}, w and $\mathcal{M}^{\prime}, w^{\prime}$ are bissimilar.

We define the relation $\mathcal{B} \subseteq W \times W^{\prime}$ as the modal equivalence, that is $u \mathcal{B} u^{\prime}$ iff (for all modal formulas $\left.\phi, \mathcal{M}, u \models \phi \operatorname{iff} \mathcal{M}^{\prime}, u^{\prime} \models \phi\right)$.
4.1. Let u, u^{\prime} such that $u \mathcal{B} u^{\prime}$. Show that if $R(u)$ is not empty, then $R^{\prime}\left(u^{\prime}\right)$ is not empty.
4.2. Show the theorem of HENNESSY-Milner.

Exercise 5 Positivity and Monoticity of a Formula

A modal formula ϕ is positive (resp. negative) in p if p always appears under an even (resp. odd) number of negations.
A modal formula ϕ is increasing (resp. decreasing) in p if for all pointed frame \mathcal{F}, w and valuation V such that $(\mathcal{F}, V), w \vDash \phi$, then for all valuation V^{\prime} such that $V(p) \subseteq V^{\prime}(p)$ $\left(\operatorname{resp} . V^{\prime}(p) \subseteq V(p)\right),\left(\mathcal{F}, V^{\prime}\right), w \vDash \phi$.
5.1. Show that if a modal formula is positive in p, then it is increasing in p and that if it is negative in p, then it is decreasing in p.
5.2. Is the converse true?

