CVFP (Software Design and Formal Verification) TD 3*: Modal Logic \mathcal{L}_K

Exercise 1 Let's begin with a small proof $\ddot{{\mathbb C}}$

We recall that a proof (in HILBERT style) is a sequence of formulae such that each formula is an instance of a tautology, of axiom $K : \Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi)$ or obtained by previous formulae of the sequence by necessitation or modus ponens. A proof of ϕ is such a sequence whose last formula is ϕ .

Give a proof of $(\Box A \land \Box B) \rightarrow \Box (A \land B)$.

Exercise 2 Size matters not. Let $\phi \in \mathcal{L}_K$ be a formula.

2.1. Define the set $SF(\phi)$ of all subformulae of ϕ .

2.2. Show card $(SF(\phi)) = |\phi|$.

2.3. Let \mathcal{M} be a model and \mathcal{M}^f its filtration. Prove that $\mathcal{M}, w \models \phi$ iff $\mathcal{M}^f, [w] \models \phi$.

Exercise 3 To be or not to be SAT

Are each of the following formulae satisfiable? Prove it formally by giving a model or a proof of unsatisfiability.

More formally, for each ϕ , does a $\mathcal{M} = (W, R, V)$ and a $w \in W$ exist such that $\mathcal{M}, w \models \phi$?

- $\Diamond(p \to \Box q)$
- 🗆 🔟
- $\Diamond p \land \Box \bot$
- $\Box \Diamond p \land \Diamond \bot \neg p$

^{*}The real one this time!

Exercise 4 Let's give a nice frame to this whole story.

A *frame* $\mathcal{F} = (W, R)$ is a set of worlds W and a binary relation $R \subseteq W^2$. Intuitively, it's a modal logic model without valuation for atomic propositions.

Let $\mathcal{F} = (W, R)$ be a frame, $w \in W$ a world and $\phi \in \mathcal{L}_K$ a formula. We define $\mathcal{F}, w \models \phi$ iff $(\mathcal{F}, V), w \models \phi$ for all V. Furthermore, $\mathcal{F} \models \phi$ iff $\mathcal{F}, w \models \phi$ for all w.

- **4.1.** Show that $\mathcal{F} \vDash p \rightarrow \Box \Diamond p$ iff *R* is symetric.
- **4.2**. What property of frames is characterized by the formula $p \rightarrow \Diamond p$?
- **4.3.** What property of frames is characterized by the formula $\Box p \rightarrow \Diamond p$?
- **4.4.** Give a formula that expresses the transitivity of *R*.

Exercise 5

5.1. Design an algorithm that given a dotted model \mathcal{M} , *w* and a formula $\phi \in \mathcal{L}_K$, decides

whether $\mathcal{M}, w \vDash \phi$.

5.2. Show that model checking of \mathcal{L}_K is in P.