CVFP (Software Design and Formal Verification) TD 1: Introduction to Software Design

May Be Useful. Martin Bodin, martin.bodin@inria.fr

Exercise 1 As Usually In The Beginning Of The Year, We Need To Know More About Your Parents.
1.1. Design an UML object diagram representing your family tree.
1.2. Infer from it a class diagram, on which you'll annotate the various multiplicities.

Exercise 2 Bingo!

Let's apply UML while playing some Pictionary game. You should receive soon a card with four sentences your neighbour is going to guess using UML diagrams:

Exercise 3 Morning Cross-Words

A context \mathcal{C} is a formula containing a (unique) 0 -arity predicate \square named hole. An instantiation $\mathcal{C}(P)$ of such a context by a formula P is the formula $\mathcal{C}[P / \square]$, where the hole has been replaced by P.
Link every formula with a context so that every resulting formula is valid.

$$
\begin{array}{rlll}
\exists x, \mathcal{P}(x) & \bullet & \bullet & \square \rightarrow \exists x, \mathcal{P}(x) \\
\forall x,(\mathcal{P}(f(x)) \wedge \neg \mathcal{P}(f(x))) & \circ & \circ & \exists y, \square \\
\forall x,(\mathcal{Q}(y, y) \rightarrow \mathcal{Q}(x, x)) & \circ & \circ & \exists y, \square \rightarrow \forall y, \exists x, \mathcal{Q}(y, x) \\
\forall x, \mathcal{P}(x) & \circ & \circ & \mathcal{P}(y) \rightarrow(\square \rightarrow \forall x, \mathcal{P}(x)) \rightarrow \mathcal{P}(f(f(y))) \\
\forall x, \mathcal{Q}(x, y) & \circ & \circ & \forall x,((\mathcal{P}(x) \rightarrow \square) \rightarrow \mathcal{P}(x)) \rightarrow \mathcal{P}(x) \\
\forall x,(\mathcal{P}(x) \rightarrow \mathcal{P}(f(x))) & \circ & \circ & \neg \square \rightarrow \exists x, \neg \mathcal{P}(x)
\end{array}
$$

Exercise 4 Let's Decipher Formulae!

For each formula, give a model if it's satisfiable or (informally) explain why its negation is valid.

- $\forall x, \neg \mathcal{P}(x) \rightarrow \mathcal{P}(x)$
- $\forall x, \forall y, \forall z,(\mathcal{Q}(x, y) \rightarrow \mathcal{Q}(x, z) \rightarrow \mathcal{R}(y, z)) \wedge \exists x, \exists y, \neg \mathcal{R}(x, y) \wedge \forall x, \exists y, \mathcal{Q}(x, y)$
- $\forall x, \forall y,(\mathcal{Q}(x, y) \rightarrow \mathcal{Q}(y, x) \rightarrow \mathcal{R}(x, y))$
$\wedge \forall x, \forall y,(\mathcal{Q}(x, y) \rightarrow \mathcal{Q}(y, x))$
$\wedge \forall x,(\mathcal{Q}(x, x) \wedge \mathcal{R}(x, x))$
$\wedge \exists x, \exists y,(\neg \mathcal{R}(x, y) \wedge \mathcal{Q}(x, y))$

Exercise 5 Never Forget That UML Diagrams Are In Fact Formulae.

5.1. Given a formula $\phi(x)$ where x is the only free-variable in $\phi(x)$, give a formula meaning that there are between 2 and 5 elements x such that $\phi(x)$.

- We can construct such a formula by splitting it into a part saying that there are at least 2 such elements and a part saying that there are at most 5 .
5.2. Translate the following class diagram into a first-order formula.

$$
\mathrm{A} \frac{\mathrm{R}}{2 . .3} \quad \text { 1.. }^{\star} \mathrm{B}
$$

5.3. Translate the class diagram designed in Exercise 1 into a first-order formula.
5.4. (\star) Play the First-Order Formulae Pictionary and try to succeed in at least one sentence without cheating.

