

Object design

François Schwarzentruber
ENS Cachan – Antenne de Bretagne

Outline

● Symptoms of rotting systems
● Principles of object oriented class design
● Principles of Package Architecture
● Dreams

Outline

● Symptoms of rotting systems
● Principles of object oriented class design
● Principles of Package Architecture
● Dreams

Symptoms of rotting systems (according to Robert C.
Martin)

Four possible unsuitable behaviors of the developer team:

● Rigidity

● Fragility

● Immobility

● Viscosity

Rigidity

System

Add functionality 1

Add functionality 2

Add functionality 3

Rigidity

Could you please add
the undo feature?

Yes I will implement it

Rigidity

Rigidity

Ok... let us forget
about it...

I am sorry... it will
take several months

to do it!

This functionality will never be implemented.

Fragility

Add functionality

Fragility

Could you please add
the undo feature?

Yes I will implement it.

Fragility

Fragility

Oh :(
But you already
changed 3 times

the structure of the software
for all the 3 features
we have told about!

I have done it!
1) I completely changed the structure.

2) I implemented it...

The developer team is not to be trusted.

Immobility

rewrite

Already
Existing
package

reuse

Immobility

I need a scheme evaluator...

Oh! Here is a complete
scheme library for JAVA.

SchemeJ

A complete
scheme library

for JAVA !

Open
source

>(+ 1 2)
3

Immobility

I will try to find
the scheme evaluator from it...

SchemeJ

A complete
scheme library

for JAVA !

Open
source

Immobility

I do not understand anything.

SchemeJ

A complete
scheme library

for JAVA !
Open

source

I will write my own interpreter...

Viscosity

system

hack

Apply good
design principles

Viscosity

Viscosity - example

Extract from a MIT2 internship report

Outline

● Symptoms of rotting systems
● Principles of object oriented class design
● Principles of Package Architecture
● Dreams

SOLID

● 5 principles of object oriented class design

● Introduced by Robert Cecil Martin

S : Single responsibility principle

There should never be more than one reason for a
class to change.

● Class of a game:

- that computes the position
of enemies

- that computes the score

● Class of a game that uses
two objects:

- one that computes the
position of enemies

- another that computes the
score

Change the gravity ?

Change the way of
counting the score ?

S : Single responsibility principle

There should never be more than one reason for a
class to change.

Change the gravity ?

Change the way of
counting the score ?

I do gravity... After your modification,
I modify the

score definition.

Or I implement both...

I modify
GravityManager. I modify

ScoreManager.

S : Single responsibility principle

There should never be more than one reason for a
class to change.

Change the gravity ?

Change the way of
counting the score ?

I propose
two gravity modes...

I propose
two score
modes...

O : Open Closed Principle

● Change the code source of
module to add
functionnality

● Being able to extend
modules without changing
the code source

→ abstraction

O : Open Closed Principle

Class Enemy
{

void move()
{

if(type == RABBIT)
...

else if(type == BROWSER)
...

else if(type == MUSHROOM)
...

}
}

O : Open Closed Principle

Class Enemy
{

void move()
{

if(type == RABBIT)
...

else if(type == BROWSER)
...

else if(type == MUSHROOM)
...

}
} For each change of

a type of enemy,
 I recompile all

the class Enemy...

Oh I just recompile
one class...

O : Open Closed Principle

Class Enemy
{

void move()
{

if(type == RABBIT)
...

else if(type == BROWSER)
...

else if(type == MUSHROOM)
...

}

 void jump()
{

if(type == RABBIT)
...

else if(type == BROWSER)
...

else if(type == MUSHROOM)
...

}
 .
 .
 .
}

If I add a new
type of enemy,

 I check all the if/else
statements...

Oh I just add
a new class...

L : Liskov Substitution Principle

Barbara Liskov
Turing award 2008

or

?

L : Liskov Substitution Principle

L : Liskov Substitution Principle

But a circle is simplier...
And we extend it to

make a ellipse...
It seems reasonable...

L : Liskov Substitution Principle

But a circle is simplier...
And we extend it to

make a ellipse...

Class Circle
{

public float getR();
public float getArea();

}

Class Ellipse extends Circle
{

...
}

Circle c;
c = new Ellipse(...);

/* Here we expect that
the area of c is
c.getR()^2 * PI
*/

L : Liskov Substitution Principle
and design by contract

Class Ellipse
{

public float getR1();
public float getR2();
public float getArea();

}

Class Circle extends Ellipse
{

...
}

Ellipse e;
e = new Circle(...);

/* Here we expect that
the area of e is
c.getR1() * c.getR2() * PI
*/

L : Liskov Substitution Principle
and design by contract

Class Ellipse
{

invariant: inv

precondition: pre
postcondition: pos
void f(Point p1, p2)
{
}
:

}

Class Circle extends Ellipse
{

invariant: stronger than inv

precondition: weaker than pre
postcondition: stronger than pos
void f(Point p1, p2)
{
}
:

}

L : Liskov Substitution Principle
and design by contract

Class Ellipse
{

void setFocus(Point p1, p2)
{

 this.p1 = p1;
this.p2 = p2;

}
:

}

Class Circle extends Ellipse
{

void setFocus(Point p1, p2)
{

 this.p1 = p1;
this.p2 = p1;

}
:

}

:

A little problem

Class Ellipse
{

postcondition:
 this.p1 == p1 & this.p2 == p2

void setFocus(Point p1, p2)
{

 this.p1 = p1;
this.p2 = p2;

}
:

}

Class Circle extends Ellipse
{

void setFocus(Point p1, p2)
{

 this.p1 = p1;
this.p2 = p1;

}
:

}

:

!

Ellipse e = new Circle();
e.setFocus(p1, p2);

assert(e.getP1() == p1);
assert(e.getP2() == p2);

I : Interface Segregation Principle

I am plumber...

I am an electrical fitter.

Here is the entire map
of the house.

I am plumber...

I am an electrical fitter.

I propose an interface
for accessing to pipes.

I propose an interface
for accessing to cables.

I : Interface Segregation Principle

I am plumber...

I am an electrical fitter.

Here is the entire map
of the house.

I am plumber...

I am an electrical fitter.

I propose an interface
for accessing to pipes.

I propose an interface
for accessing to cables.

I understand better.
I do not understand.

I : Interface Segregation Principle

I am plumber...

I am an electrical fitter.

Here is the entire map
of the house.

I am plumber...

I am an electrical fitter.

I propose an interface
for accessing to pipes.

I propose an interface
for accessing to cables.

Oh no...

I do not understand
 the map.

I changed the pipes...

OK.

D: Dependency Inversion Principle

I make a web service
for booking flights.

And what about
trains?

I make a web service
for booking abstract

travels.

Perfect!

Ok... I will implement
it for flights.

I propose an interface
that specifies

what an abstract travel is.
Cool... I like flights.

Ok... I will implement
it for trains.

Oh no...

D: Dependency Inversion Principle

Example:

● JAVA MidiSound

MIDIPlayer I_Synthesizer

Synthesizer Mechanical Piano

Outline

● Symptoms of rotting systems
● Principles of object oriented class design
● Principles of Package Architecture
● Dreams

Outline

● Symptoms of rotting systems
● Principles of object oriented class design
● Principles of Package Architecture

● Inside a package
● Between packages

● Dreams

Remark

We refactor the packages during the development:

● At the beginning stage, we favor the developer

● At the end, we favor the clients.

The Release Reuse Equivalency Principle

A package

● the granule of reuse

● the granule of release

● Number of versions

● Should support and maintain older versions

Good
for the client!

1.12 1.13 2.0

The Common Closure Principle

Classes that change together, belong together.

And we need to
 change here too!

Change !!

Good
for the

developer!

Packages tend to be large.

The Common Closure Principle

Classes that change together, belong together.

And we need to
 change here too!

Change !!

Good
for the

developer!

Packages tend to be large.

dev

Mess for testing, etc.

The Common Reuse Principle

Classes that aren’t reused together should not be grouped
together.

Change !!

client

Oh no... you modify
a class I don't care

…
But I must still test my
implementation that

 depends on
 your $%!$ package !

client

Change !!

Good
for the client!

Packages tend to be small.

client

Cohesion

Outline

● Symptoms of rotting systems
● Principles of object oriented class design
● Principles of Package Architecture

● Inside a package
● Between packages

● Dreams

Coupling

The Acyclic Dependencies Principle

The dependencies between packages must not form
cycles.

I work on Protocol...
and I need to test
my package with

Comm Error.

The Acyclic Dependencies Principle

The dependencies between packages must not form
cycles.

I work on Protocol...
and I need to test
my package with
all the packages !

Solution: Dependency Inversion Principle

Solution: Dependency Inversion Principle

GUI

MessageManager

Comm Error

ConcreteMessageDisplayer

I_MessageDisplayer MessageManager

ErrorManager

The Stable Dependencies Principle

Depend in the direction of stability

My work depends
on package X !

I need to modify X..
because it is related to

other packages...
because it is a difficult

part of the project...

Oh no...
X is not stable...

My work depends
on package X !

Good point. X will not
Change anymore.

X is stable !

Stable / instable

Y instable
X stable

The stable abstractions principle

Stable packages should be abstract packages.

Flexible / instable

Stable

The stable abstractions principle

Stable packages should be abstract packages.

Flexible / instable

Stable
→ but we want them
 flexible
→ should be abstract
 in order to be
 extended!

Outline

● Symptoms of rotting systems
● Principles of object oriented class design
● Principles of Package Architecture
● Dreams

Dream 1: Automated assistance

Software to help you to design the architecture X

warning:
no abstract
enough

Measuring instability

i

Measuring abstractness

The zone of pain: stable and too concrete

Graphical library
for Android 3.0

Map Player

The main sequence: stability = abstractness

General
Graphical library

Map Player

The zone of uselessness: abstract but not used!

General
Graphical library

Instability VS Abstractness

Dream 2: creating automatically the packages partition

Graph of dependencies G = (V, E)

Dream 2: creating automatically the packages partition

Dream 2: creating automatically the packages partition

A new field

● [Mitchell 2002]

● Bunch [Mitchell et al. 2006]

● Nothing about stability and abstractness

● Preliminary work...

Related problems

P:

● Minimal cut by flow algorithms

= finding two packages with low coupling

NP:

● Graph partitioning (minimal cut plus a constraint over the
size of the packages)

= finding two `big' packages with low coupling

● The clique problem, NP-complete

= find a package with high cohesion

Mitchell's PhD

● Measuring cohesion

● Measuring coupling

● Measuring the quality of a clustering

Heuristics

● Hill-climbing algorithms

● Genetic algorithms

PS: People claim the problem is NP-complete (I want a
proof)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73

