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Symptoms of rotting systems (according to Robert C.
Martin)

Four possible unsuitable behaviors of the developer team:
Rigidity

Fragility

Immobility

Viscosity



Rigidity

Add functV

Add functionality 2
System -

\d functionality 3



Rigidity

Could you please add
the undo feature?

Yes | will implement it




Rigidity

@%@
B o %;:'_afflz‘iw 2
<6 =



Rigidity

take several months

| am sorry... it will
to do it!

Ok... let us forget
about it...

This functionality will never be implemented.



Fragility

Add functionality




Fragility

Could you please add
the undo feature?

Yes | will implement it.




Fragility

@%@
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Fragility

| have done it!
1) | completely changed the structure.
2) | implemented it...

Oh «(
But you already
changed 3 times
the structure of the software
for all the 3 features
we have told about!

The developer team is not to be trusted.



Immobility

reuse

rewrite

Already
Existing
package

4




Immobility

\

| need a scheme evaluator...

Oh! Here is a complete
scheme library for JAVA.

<

SchemeJ

A complete
scheme library
for JAVA |

Open
source



Immobility

| will try to find
the scheme evaluator from it...

SchemeJ

A complete
scheme library
for JAVA |

Open
source



Immobility

All Classes Package Class Use Tree Deprecated Index Help
gnu.brl
gnu.bytecode
gnu.commonlisp lang PaCkageS SChemeJ
gnu.ecmascript <
onu.brl
All Classes i nubvtecode Contains classes to generate, read, write, and
AbstractFormat gnu.bytecoce int Jav ; .
AbstractFormat print Java bytecode in the form of . cla=s files.
AbslraclasTable A complete
AbstractScriptEngineFactory gnu.commonlisp.lang -
AbstractSequence - SCheme I|brary
AbstractWeakHash Table gnu.ecmascript
:Esgﬁaﬁct'ﬁ-ﬁeakHaShTabIE! WEry S Suppotts Expression, and various related for JAVA !
AccessExp SineEpt classes need to compile programming languages.
AddOp PP . —
AddO nuiemacs.buffer Prondesl various blIJﬂdJIlg blocks for building an
AncestorAxis L | |EEsEass Tt Emacs-like text editor. <
4 n 13 Ll I 13

| do not understand anything.

| will write my own interpreter...




Viscosity

Apply good
design principles

system

*







Viscosity - example

Extract from a MIT2 internship report

Another difficulty, on the implementation side this time, is that a lot of the code used in the
query part of I is shared with the |l module, which we can not use. This precise point
has made the implementation far more difficult that [ expected at the beginning of the internship.
The decision for this internship was to duplicate functionality, but a far better approach would be
to rewrite a significant part of Il back-end to have a proper separation for every concept. This
would have costed far too much time for the duration of the internship.
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I SOLID

« 5 principles of object oriented class design
I * |Introduced by Robert Cecil Martin



S : Single responsibility principle

There should never be more than one reason for a

class to change.

Class of a game: e Class of a game that uses
two objects:

- that computes the position
of enemies - one that computes the

- that computes the score gosilien O SMOMIZE

- another that computes the
score

Change the gravity ?

Change the way of
counting the score ?




S : Single responsibility principle

There should never be more than one reason for a

class to change.

: et | modify
| do gravity... After yfxlgg?f?/o:;]fécatlon, GravityManager. | modify
score definition. ScoreManager.

Or | implement both...

Change the gravity ?

Change the way of
counting the score ?




S : Single responsibility principle

There should never be more than one reason for a

class to change.

I propose | propose
two gravity modes... two score

modes...

Change the gravity ?

Change the way of
counting the score ?




O : Open Closed Principle

\

« Change the code source of <« Being able to extend
module to add modules without changing

functionnality the code source

— abstraction




O : Open Closed Principle

Class Enemy

{ Enemy

volid move ()

{

if (type == RABBIT)

else i1f (type == BROWSER)

Rabbit Browser Mushroom

else 1f (type == MUSHROOM)




O : Open Closed Principle

Class Enemy

{

vold move ()

{

if (type == RABBIT)

else if (type ==

else 1f (type ==

For each change of
a type of enemy,
| recompile all
the class Enemy...

BROWSER)

MUSHROOM)

\

Enemy

Rabbit

Browser

Mushroom

Oh | just recompile

one class...




Class Enemy

{

void

{

void

O : Open Closed Principle

move ()

if (type == RABBIT)

else ifktype == BROWSER)
else ifktype == MUSHROOM)
Jump () :)ﬁés’\?
if (type == RABBIT)

else ifktype == BROWSER)
else ifktype == MUSHROOM)

If | add a new
type of enemy,

| check all the if/else
statements...

\

Enemy
)
Rabbit Browser Mushroom
Oh | just add
a new class...

N




L : Liskov Substitution Principle

Ellipse Chircle Clircle FEllipse

or

Barbara Liskov
Turing award 2008




Ellipse

L : Liskov Substitution Principle

Clircle

Clirele

\

Ellipse




L : Liskov Substitution Principle

Ellipse

Clircle

\

But a circle is simplier...
And we extend it to
make a ellipse...

Clirele

Ellipse

It seems reasonable...




L : Liskov Substitution Principle

Ellipse

Clircle

But a circle is simplier...
And we extend it to
make a ellipse...

Class Circle

{
public float getR();

public float getAreal):;

}

Class Ellipse extends Circle

{
}

Circle c;
c = new Ellipse(...);

/* Here we expect that
the area of c 1is
c.getR()"2 * PI

*/




L : Liskov Substitution Principle

and design by contract

Class Ellipse

{
public float getR1();

public float getR2();
public float getAreal()

}

Class Circle extends Ellipse

{
}

Ellipse e;
e = new Circle(...);

/* Here we expect that

the area of e 1is

c.getR1() * c.getR2() * PI
*/

Clirele

\

Ellipse




L : Liskov Substitution Principle

and design by contract

Class Ellipse
{

invariant: inv

precondition: pre
postcondition: pos
void f (Point pl, p2)
{

}

}

Class Circle extends Ellipse

{

invariant: stronger than inv

precondition: weaker than pre
postcondition: stronger than pos
void f (Point pl, pZ2)

{

}

Clirele

\

Ellipse




L : Liskov Substitution Principle

and design by contract

Class Ellipse

{
void setFocus (Point pl, p2)

{
this.pl = pl;
this.p2 = p2;

}

Class Circle extends Ellipse
{
void setFocus (Point pl, p2)
{
this.pl
this.p?2

pl;
pl;

Clirele

\

Ellipse




A little problem

Class Ellipse
{
postcondition:
this.pl == pl & this.p2 == pZ
void setFocus (Point pl, p2)
{

this.pl = pl;
this.p2 = p2; Clircle Ellipse

}

Class Circle extends Ellipse
( -

void setFocus (Point pl, p2)
{

Ellipse e = new Circle();

. e.setFocus (pl, p2);
this.pl = pl;

this.p2 = pl; assert (e.getPl () == pl);

} assert(e.getP2() == p2);

b N




| : Interface Segregation Principle

| am plumber...

| am an electrical fitter

Here is the entire map
of the house.

@

@

/

\

| am plumber...

@

| am an electrical fitter. |

¢l

| propose an interface
for accessing to pipes.

| propose an interface
for accessing to cables.

@



| : Interface Segregation Principle

| am plumber...

@

| am an electrical fitter.

@

Here is the entire map

of the house.

| do not understa

nd

e

\

| am plumber...

@

| am an electrical fitter. |

¢l

| propose an interface
for accessing to pipes.

®

| propose an interface
for accessing to cables.

| understand better.

]




| : Interface Segregation Principle

| am pIumber...@

| am an electrical fitter.

Here is the entire map
of the house.

| do not understand
the map.

Oh no...

\

| am plumber...

@

| am an electrical fitter. |

¢l

| propose an interface
for accessing to pipes.

@

6

| changed the pipes...

| propose an interface
for accessing to cables.

OK.




D: Dependency Inversion Principle

| make a web service
for booking flights.
Cool... I like flights.

| make a web service
And what about

for booking abstract
trains? OK... I will implement v
g it for trains. -

travels.
Oh no... o o Perfect!
~

that specifies
what an abstract travel is.

| propose an interface

B

OK... | will implement
it for flights.




D: Dependency Inversion Principle

Example:
JAVA MidiSound

MIDIPlayer

| _Synthesizer

Synthesizer

Mechanical Piano
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Dreams



Remark

We refactor the packages during the development:
* At the beginning stage, we favor the developer

At the end, we favor the clients.



The Release Reuse Equivalency Principle

A package

Good

the granule of reuse for the client!

the granule of release
Number of versions

Should support and maintain older versions

1.12 —» 1.13 - 2.0




The Common Closure Principle

Classes that change together, belong together.

Good
for the
developer!

Change !!

/ /5

Z And we need to
change here too!

Packages tend to be large.



The Common Closure Principle

Classes that change together, belong together.

Change !!

Mess for testing, etc.

/

Z And we need to
change here too!

Good
for the
developer!

\

Packages tend to be large.



The Common Reuse Principle

Classes that aren’t reused together should not be grouped

together.
v Good
for the client!
Change !!
M — ﬁM Change !!
/Oh no... you modify\ l >,

a class | don't care
@ O

client
~

But | must still test my
Implementation that
depends on

your $%!$ paCkage!/ Packages tend to be small.




Cohesion
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Coupling




The Acyclic Dependencies Principle

The dependencies between packages must not form

\

a N

| work on Protocol...
and | need to test
my package with
Comm Error.

_

e
.
;%_l

Analysis

cycles.
1]
I
Comm
] o [ 1
Modem Control Protocaol

=
=
-
-
-

Comm Error

-
~
A_‘

Database




The Acyclic Dependencies Principle

The dependencies between packages must not form

cycles.
1]
= Gul
| work on Protocol... —
and | need to test Analysis
my package with Comm
all the packages !
/ .e’*ﬁﬂ u..“h_ \‘:-“'31
I s | |
Modem Control Protocol Database
A
Comm Error




-‘_,-"-r.
i"'r'
.r'l-'""
| &
Comm
r‘rf“" l“'l‘\“““
I N
Modem Control Protocol
- -
M
N ye
- A
ye

Comm Error

Database




Solution: Dependency Inversion Principle

GUI

ConcreteMessageDisplayer

Comm Error

ErrorManager

MessageManager
Y

|_MessageDisplayer < MessageManager




The Stable Dependencies Principle

Depend in the direction of stability

My work depends
on package X!

~ R

| need to modify X..
because it is related to
other packages...
because it is a difficult
part of the project...
N

Oh no...
X is not stable...

——

\

My work depends
on package X!

~ S

Good point. X will not
Change anymore.

e

X is stable !




Stable / instable

Y instable

X stable



I The stable abstractions principle

I Stable packages should be abstract packages.

I Flexible / instable

Stable P = =1 - 4




The stable abstractions principle

Stable packages should be abstract packages.

Flexible / instable

Stable

- but we want them
flexible

- should be abstract
in order to be
extended!
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Dream 1: Automated assistance

Software to help you to design the architecture

[ e I 1
| |
¥ v ¥
I 1 I
| | _ - — - L |
r——1-- -Iwarning: r—"———l
| no abstract
y ¥ ~ Yoeown Y ¥
/ ~




Instability:

inp + outp

where

e outp (outgoing dependencies) is the number of classes outside P classes inside
P depend on:

e inp (incoming dependencies) is the number of classes outside P that depend
on a class inside P.

o o Ip
() 1

,P‘
P w/\"‘u




Abstractness:

absp

Ap = card(P)

where
e absp is the nmmmber of abstract classes in FP;

e card(P) is the cardinality of P. that is the number of classes in P.



The zone of pain: stable and too concrete

Player

Map
Graphical library
for Android 3.0




The main sequence: stability = abstractness

Player

Map
General
Graphical library




The zone of uselessness: abstract but not used!

General
Graphical library

VAN







Dream 2: creating automatically the packages partition

|ﬂ\ Graph of dependencies G = (V, E)
\__/
A
jiMSj ;/an\
N ! -
/ Mz ) ‘v —{ 7 )



Dream 2: creating automatically the packages partition

N
| j,xmaf,: i/\ ,/’
/ |//M~_-2-\\:| I‘"'-. I'/ME;\.\ | /M?\\
N ‘ >
1 o N
\ /)
4 b——» M5 |
/ N/

Subsystem 1 Subsystem 2 Subsystem 3
~ _ N
/M{\' o AMS )
N H“‘.L,%\ N ; ffr
(/MS \IH._H T, y
O T M8 | \
PRV Sl I DR o T §
(M2 (M5 )
-~ AN .
- N




Dream 2: creating automatically the packages partition

A new field
[Mitchell 2002]
Bunch [Mitchell et al. 2006]

Nothing about stability and abstractness

Preliminary work...



Related problems

P:
Minimal cut by flow algorithms

= finding two packages with low coupling

NP:

Graph partitioning (minimal cut plus a constraint over the
size of the packages)

= finding two "big' packages with low coupling
The cliqgue problem, NP-complete

= find a package with high cohesion



Mitchell's PhD

e Measuring cohesion
card(EN P x P)

5

card(P)?

;;1_{? —

* Measuring coupling
r _—
0if P=F"
Epp =<  curd(EnPx P+ card(ENP’ x P

) |
];"rrj.r'u'[f:']rn.r'u'tj‘uj i IHE

\

« Measuring the quality of a clustering

ViC Ap it E =1 and P 1s the single package
! = 1 . | ey
(2 EZI}E[[[I 14!-" - LI.E.'—J.'I ZI}.,!}IE? _E‘vf}"f?.fl]_ ;;._‘ - ]_



Heuristics

 Hill-climbing algorithms

» Genetic algorithms

PS: People claim the problem is NP-complete (I want a
proof)
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