Object design

Francois Schwarzentruber
ENS Cachan — Antenne de Bretagne

Outline

Symptoms of rotting systems

Princl
Princi

0

0

es of object oriented class design
es of Package Architecture

Dreams

Outline

Symptoms of rotting systems

Princl
Princi

0

0

es of object oriented class design
es of Package Architecture

Dreams

Symptoms of rotting systems (according to Robert C.
Martin)

Four possible unsuitable behaviors of the developer team:
Rigidity

Fragility

Immobility

Viscosity

Rigidity

Add functV

Add functionality 2
System -

\d functionality 3

Rigidity

Could you please add
the undo feature?

Yes | will implement it

Rigidity

@%@
B o %;:'_afflz‘iw 2
<6 =

Rigidity

take several months

| am sorry... it will
to do it!

Ok... let us forget
about it...

This functionality will never be implemented.

Fragility

Add functionality

Fragility

Could you please add
the undo feature?

Yes | will implement it.

Fragility

@%@
B o %;:'_afflz‘iw 2
<6 =

Fragility

| have done it!
1) | completely changed the structure.
2) | implemented it...

Oh «(
But you already
changed 3 times
the structure of the software
for all the 3 features
we have told about!

The developer team is not to be trusted.

Immobility

reuse

rewrite

Already
Existing
package

4

Immobility

\

| need a scheme evaluator...

Oh! Here is a complete
scheme library for JAVA.

<

SchemeJ

A complete
scheme library
for JAVA |

Open
source

Immobility

| will try to find
the scheme evaluator from it...

SchemeJ

A complete
scheme library
for JAVA |

Open
source

Immobility

All Classes Package Class Use Tree Deprecated Index Help
gnu.brl
gnu.bytecode
gnu.commonlisp lang PaCkageS SChemeJ
gnu.ecmascript <
onu.brl
All Classes i nubvtecode Contains classes to generate, read, write, and
AbstractFormat gnu.bytecoce int Jav ; .
AbstractFormat print Java bytecode in the form of . cla=s files.
AbslraclasTable A complete
AbstractScriptEngineFactory gnu.commonlisp.lang -
AbstractSequence - SCheme I|brary
AbstractWeakHash Table gnu.ecmascript
:Esgﬁaﬁct'ﬁ-ﬁeakHaShTabIE! WEry S Suppotts Expression, and various related for JAVA !
AccessExp SineEpt classes need to compile programming languages.
AddOp PP . —
AddO nuiemacs.buffer Prondesl various blIJﬂdJIlg blocks for building an
AncestorAxis L | |EEsEass Tt Emacs-like text editor. <
4 n 13 Ll I 13

| do not understand anything.

| will write my own interpreter...

Viscosity

Apply good
design principles

system

*

Viscosity - example

Extract from a MIT2 internship report

Another difficulty, on the implementation side this time, is that a lot of the code used in the
query part of I is shared with the |l module, which we can not use. This precise point
has made the implementation far more difficult that [expected at the beginning of the internship.
The decision for this internship was to duplicate functionality, but a far better approach would be
to rewrite a significant part of Il back-end to have a proper separation for every concept. This
would have costed far too much time for the duration of the internship.

Outline

Symptoms of rotting systems
Principles of object oriented class design
Principles of Package Architecture

Dreams

I SOLID

« 5 principles of object oriented class design
I * |Introduced by Robert Cecil Martin

S : Single responsibility principle

There should never be more than one reason for a

class to change.

Class of a game: e Class of a game that uses
two objects:

- that computes the position
of enemies - one that computes the

- that computes the score gosilien O SMOMIZE

- another that computes the
score

Change the gravity ?

Change the way of
counting the score ?

S : Single responsibility principle

There should never be more than one reason for a

class to change.

: et | modify
| do gravity... After yfxlgg?f?/o:;]fécatlon, GravityManager. | modify
score definition. ScoreManager.

Or | implement both...

Change the gravity ?

Change the way of
counting the score ?

S : Single responsibility principle

There should never be more than one reason for a

class to change.

I propose | propose
two gravity modes... two score

modes...

Change the gravity ?

Change the way of
counting the score ?

O : Open Closed Principle

\

« Change the code source of <« Being able to extend
module to add modules without changing

functionnality the code source

— abstraction

O : Open Closed Principle

Class Enemy

{ Enemy

volid move ()

{

if (type == RABBIT)

else i1f (type == BROWSER)

Rabbit Browser Mushroom

else 1f (type == MUSHROOM)

O : Open Closed Principle

Class Enemy

{

vold move ()

{

if (type == RABBIT)

else if (type ==

else 1f (type ==

For each change of
a type of enemy,
| recompile all
the class Enemy...

BROWSER)

MUSHROOM)

\

Enemy

Rabbit

Browser

Mushroom

Oh | just recompile

one class...

Class Enemy

{

void

{

void

O : Open Closed Principle

move ()

if (type == RABBIT)

else ifktype == BROWSER)
else ifktype == MUSHROOM)
Jump () :)ﬁés’\?
if (type == RABBIT)

else ifktype == BROWSER)
else ifktype == MUSHROOM)

If | add a new
type of enemy,

| check all the if/else
statements...

\

Enemy
)
Rabbit Browser Mushroom
Oh | just add
a new class...

N

L : Liskov Substitution Principle

Ellipse Chircle Clircle FEllipse

or

Barbara Liskov
Turing award 2008

Ellipse

L : Liskov Substitution Principle

Clircle

Clirele

\

Ellipse

L : Liskov Substitution Principle

Ellipse

Clircle

\

But a circle is simplier...
And we extend it to
make a ellipse...

Clirele

Ellipse

It seems reasonable...

L : Liskov Substitution Principle

Ellipse

Clircle

But a circle is simplier...
And we extend it to
make a ellipse...

Class Circle

{
public float getR();

public float getAreal):;

}

Class Ellipse extends Circle

{
}

Circle c;
c = new Ellipse(...);

/* Here we expect that
the area of c 1is
c.getR()"2 * PI

*/

L : Liskov Substitution Principle

and design by contract

Class Ellipse

{
public float getR1();

public float getR2();
public float getAreal()

}

Class Circle extends Ellipse

{
}

Ellipse e;
e = new Circle(...);

/* Here we expect that

the area of e 1is

c.getR1() * c.getR2() * PI
*/

Clirele

\

Ellipse

L : Liskov Substitution Principle

and design by contract

Class Ellipse
{

invariant: inv

precondition: pre
postcondition: pos
void f (Point pl, p2)
{

}

}

Class Circle extends Ellipse

{

invariant: stronger than inv

precondition: weaker than pre
postcondition: stronger than pos
void f (Point pl, pZ2)

{

}

Clirele

\

Ellipse

L : Liskov Substitution Principle

and design by contract

Class Ellipse

{
void setFocus (Point pl, p2)

{
this.pl = pl;
this.p2 = p2;

}

Class Circle extends Ellipse
{
void setFocus (Point pl, p2)
{
this.pl
this.p?2

pl;
pl;

Clirele

\

Ellipse

A little problem

Class Ellipse
{
postcondition:
this.pl == pl & this.p2 == pZ
void setFocus (Point pl, p2)
{

this.pl = pl;
this.p2 = p2; Clircle Ellipse

}

Class Circle extends Ellipse
(-

void setFocus (Point pl, p2)
{

Ellipse e = new Circle();

. e.setFocus (pl, p2);
this.pl = pl;

this.p2 = pl; assert (e.getPl () == pl);

} assert(e.getP2() == p2);

b N

| : Interface Segregation Principle

| am plumber...

| am an electrical fitter

Here is the entire map
of the house.

@

@

/

\

| am plumber...

@

| am an electrical fitter. |

¢l

| propose an interface
for accessing to pipes.

| propose an interface
for accessing to cables.

@

| : Interface Segregation Principle

| am plumber...

@

| am an electrical fitter.

@

Here is the entire map

of the house.

| do not understa

nd

e

\

| am plumber...

@

| am an electrical fitter. |

¢l

| propose an interface
for accessing to pipes.

®

| propose an interface
for accessing to cables.

| understand better.

]

| : Interface Segregation Principle

| am pIumber...@

| am an electrical fitter.

Here is the entire map
of the house.

| do not understand
the map.

Oh no...

\

| am plumber...

@

| am an electrical fitter. |

¢l

| propose an interface
for accessing to pipes.

@

6

| changed the pipes...

| propose an interface
for accessing to cables.

OK.

D: Dependency Inversion Principle

| make a web service
for booking flights.
Cool... I like flights.

| make a web service
And what about

for booking abstract
trains? OK... I will implement v
g it for trains. -

travels.
Oh no... o o Perfect!
~

that specifies
what an abstract travel is.

| propose an interface

B

OK... | will implement
it for flights.

D: Dependency Inversion Principle

Example:
JAVA MidiSound

MIDIPlayer

| _Synthesizer

Synthesizer

Mechanical Piano

Outline

Symptoms of rotting systems

Principles of object oriented class design
Principles of Package Architecture
Dreams

Outline

Symptoms of rotting systems
Principles of object oriented class design

Principles of Package Architecture

* Inside a package
 Between packages

Dreams

Remark

We refactor the packages during the development:
* At the beginning stage, we favor the developer

At the end, we favor the clients.

The Release Reuse Equivalency Principle

A package

Good

the granule of reuse for the client!

the granule of release
Number of versions

Should support and maintain older versions

1.12 —» 1.13 - 2.0

The Common Closure Principle

Classes that change together, belong together.

Good
for the
developer!

Change !!

/ /5

Z And we need to
change here too!

Packages tend to be large.

The Common Closure Principle

Classes that change together, belong together.

Change !!

Mess for testing, etc.

/

Z And we need to
change here too!

Good
for the
developer!

\

Packages tend to be large.

The Common Reuse Principle

Classes that aren’t reused together should not be grouped

together.
v Good
for the client!
Change !!
M — ﬁM Change !!
/Oh no... you modify\ l >,

a class | don't care
@ O

client
~

But | must still test my
Implementation that
depends on

your $%!$ paCkage!/ Packages tend to be small.

Cohesion

Outline

Symptoms of rotting systems
Principles of object oriented class design

Principles of Package Architecture

* Inside a package
 Between packages

Dreams

Coupling

The Acyclic Dependencies Principle

The dependencies between packages must not form

\

a N

| work on Protocol...
and | need to test
my package with
Comm Error.

_

e
.
;%_l

Analysis

cycles.
1]
I
Comm
] o [1
Modem Control Protocaol

=
=
-
-
-

Comm Error

-
~
A_‘

Database

The Acyclic Dependencies Principle

The dependencies between packages must not form

cycles.
1]
= Gul
| work on Protocol... —
and | need to test Analysis
my package with Comm
all the packages !
/ .e’*ﬁﬂ u..“h_ \‘:-“'31
I s | |
Modem Control Protocol Database
A
Comm Error

-‘_,-"-r.
i"'r'
.r'l-'""
| &
Comm
r‘rf“" l“'l‘\“““
I N
Modem Control Protocol
- -
M
N ye
- A
ye

Comm Error

Database

Solution: Dependency Inversion Principle

GUI

ConcreteMessageDisplayer

Comm Error

ErrorManager

MessageManager
Y

|_MessageDisplayer < MessageManager

The Stable Dependencies Principle

Depend in the direction of stability

My work depends
on package X!

~ R

| need to modify X..
because it is related to
other packages...
because it is a difficult
part of the project...
N

Oh no...
X is not stable...

——

\

My work depends
on package X!

~ S

Good point. X will not
Change anymore.

e

X is stable !

Stable / instable

Y instable

X stable

I The stable abstractions principle

I Stable packages should be abstract packages.

I Flexible / instable

Stable P = =1 - 4

The stable abstractions principle

Stable packages should be abstract packages.

Flexible / instable

Stable

- but we want them
flexible

- should be abstract
in order to be
extended!

Outline

Symptoms of rotting systems

Princl

Princi

0

0

es of object oriented class design
es of Package Architecture

Dreams

Dream 1: Automated assistance

Software to help you to design the architecture

[e I 1
| |
¥ v ¥
I 1 I
| | _ - — - L |
r——1-- -Iwarning: r—"———l
| no abstract
y ¥ ~ Yoeown Y ¥
/ ~

Instability:

inp + outp

where

e outp (outgoing dependencies) is the number of classes outside P classes inside
P depend on:

e inp (incoming dependencies) is the number of classes outside P that depend
on a class inside P.

o o Ip
() 1

,P‘
P w/\"‘u

Abstractness:

absp

Ap = card(P)

where
e absp is the nmmmber of abstract classes in FP;

e card(P) is the cardinality of P. that is the number of classes in P.

The zone of pain: stable and too concrete

Player

Map
Graphical library
for Android 3.0

The main sequence: stability = abstractness

Player

Map
General
Graphical library

The zone of uselessness: abstract but not used!

General
Graphical library

VAN

Dream 2: creating automatically the packages partition

|ﬂ\ Graph of dependencies G = (V, E)
__/
A
jiMSj ;/an\
N ! -
/ Mz) ‘v —{ 7)

Dream 2: creating automatically the packages partition

N
| j,xmaf,: i/\ ,/’
/ |//M~_-2-\\:| I‘"'-. I'/ME;\.\ | /M?\\
N ‘ >
1 o N
\ /)
4 b——» M5 |
/ N/

Subsystem 1 Subsystem 2 Subsystem 3
~ _ N
/M{\' o AMS)
N H“‘.L,%\ N ; ffr
(/MS \IH._H T, y
O T M8 | \
PRV Sl I DR o T §
(M2 (M5)
-~ AN .
- N

Dream 2: creating automatically the packages partition

A new field
[Mitchell 2002]
Bunch [Mitchell et al. 2006]

Nothing about stability and abstractness

Preliminary work...

Related problems

P:
Minimal cut by flow algorithms

= finding two packages with low coupling

NP:

Graph partitioning (minimal cut plus a constraint over the
size of the packages)

= finding two "big' packages with low coupling
The cliqgue problem, NP-complete

= find a package with high cohesion

Mitchell's PhD

e Measuring cohesion
card(EN P x P)

5

card(P)?

;;1_{? —

* Measuring coupling
r _—
0if P=F"
Epp =< curd(EnPx P+ card(ENP’ x P

) |
];"rrj.r'u'[f:']rn.r'u'tj‘uj i IHE

\

« Measuring the quality of a clustering

ViC Ap it E =1 and P 1s the single package
! = 1 . | ey
(2 EZI}E[[[I 14!-" - LI.E.'—J.'I ZI}.,!}IE? _E‘vf}"f?.fl]_ ;;._‘ -]_

Heuristics

 Hill-climbing algorithms

» Genetic algorithms

PS: People claim the problem is NP-complete (I want a
proof)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73

