
Design patterns

François Schwarzentruber
ENS Cachan – Antenne de Bretagne

Example

Problem
We need those
actions to be
extended
and undone.

Solution
We apply locally
a suitable
micro-architecture.

Solution: Design pattern

+ sequence diagram

Design pattern is about...

Functional properties:

● Correction of an algorithm

● Complexity in time/space

● ...

Non functional property

● Easy to understand

● Easy to maintain

● Easy to test

Wisdom: do not reinvent the wheel

● Integers

● Matrices

● Rubik's cube...

Group theory

(Évariste Galois)

● Subgroup

● Order of an element

● UML Editor

● Pong algorithm suite

● Drawing software

Design patterns

● « Façade »

● « Visitor »

 Same concepts Same solutions

Wisdom: some vocabulary!

Let us apply
the Visitor pattern.

As the extension
is Galois....

The crème anglaise
is perfect with
with this cake.

The idea of design patterns comes from architecture

● Christopher Alexander : anthropologist
and architect

● Idea of reusable concepts

Design patterns

1995 : Gamma, Helm, Johnson et
Vlissides. Design Patterns –
Elements of Reusable Object-
Oriented Software

Outline: a trip in the design pattern countryside!

● Creational patterns

● Structural patterns

● Behavioural patterns

Creational patterns

● Abstract factory

● Prototype

YOU want to design a software for learning algorithmic

Need: to adapt the software to different environments

Windows

Linux

MacOS

Android

Need: to design the software for different kinds of user

Kids

High-school
students

The hell: you have created objects at any part of your
software!

new

new

new

new

new

Non maintainable solution

if(forKids)
{
 b = new brickCleanAllForKids() ;
}
else
{

b = new brickCleanAllForHighSchoolStudents() ;
}

b = new brickCleanAll() ;

Non maintainable solution

if(forKids)
{
 b = new brickCleanAllForKids() ;
}
else
{

b = new brickCleanAllForHighSchoolStudents() ;
}

b = new brickCleanAll() ; It violates
1) the open closed principle
 (better extend than modify)

Non maintainable solution

if(forKids)
{
 b = new brickCleanAllForKids() ;
}
else
{

b = new brickCleanAllForHighSchoolStudents() ;
}

b = new brickCleanAll() ; It violates
1) the open closed principle
 (better extend than modify)

2) The dependency inversion principle
 (do not depend on concretions)

Abstract factory

We need to adapt
our software to two

different kinds of users.

How to do this?

We apply the
abstract factory pattern.

Solution: to isolate the object creation in factories

please...
create
a “CleanAll” brick.

Solution: to isolate the object creation in factories

please...
create
a “CleanAll” brick.

clean all

for Kids

Solution: to isolate the object creation in factories

please...
create
a “CleanAll” brick.

clean all

for high-school
students

Abstract Factory pattern

factory.getNewBrickCleanAll()

b = new BrickCleanAll() ;

AbstractFactory
factory
= new FactoryForKids()

Abstract Factory pattern

Design pattern: abstract factory

Sequence diagram for the Abstract Factory pattern

Source : cours de Noël Plouzeau

Conclusion on the abstract factory

Good points

● depends on abstraction

● platforms are isolated (less coupling)

Bad points

● Factory is difficult to maintain ~ but in fact it would worse
with the abstract factory pattern!

Build objects from a model: prototype pattern

Source : logiciel Dia

Needs

● Copy objects

● Being able to add elements
to the palette

DO NOT DO THAT: one creation per button!

new House(Color.RED,
Color.WHITE, 16, 32, 16)

new Tree(Color.GREEN,
Color.BROWN, 8, 32, 8)

TO DO!

Each button contains
a prototype to clone.

Prototype pattern

Source : wikipedia

Conclusion on the Prototype pattern

● + Buttons depend on abstraction

● + Only one class for buttons

● - Clone to implement

Structural pattern

● To adapt an object to a given interface (~ adaptor)

● To propose a simplified interface (~ façade)

● Divide responsibilities (~ bridge)

● Recursive structures (~ composite)

● Add many features (~ decoration)

Need

Row 1 Row 2 Row 3 Row 4
0

2

4

6

8

10

12

Column 1

Column 2

Column 3

GraphicalObject

getBounds() : Rect

LibreOfficeGraphics

width
height

I have implemented rectangles, ellipses
in my software...

Rectangle Ellipse

But I also want to use
graphics for statistics...

LibreOffice proposes
such graphics...
But the interface

is different...

Solution

Row 1 Row 2 Row 3 Row 4
0

2

4

6

8

10

12

Column 1

Column 2

Column 3

GraphicalObject

getBounds() : Rect

LibreOfficeGraphics

width
height

I have implemented rectangles, ellipses
in my software...

Rectangle Ellipse

But I also want to use
graphics for statistics...

StatGraphics

Adaptor

source : Wikipedia

Other story: new need!

Scheme
evaluator(+ (* 2 3) 5) 11

What I have...

I may use the library kawa (a JAVA library for
parse/compile/interpret Scheme code and handle Scheme
environments)

Solution: Façade design pattern

Solution: Façade design pattern

Source : Patterns in Java, Volume 1: A Catalog of Reusable Design Patterns Illustrated with UML, Second Edition by Mark Grand

Difference between Façade and adaptor

Façade

● We need and create an
interface

Adaptor

● We need to adapt an object
to a given interface.

New problem: to divide responsibilities

● Good: we are able to
modify the way we emit
voice (soft, hard, 8bit like...)

● Bad: we want also to
modify the way a sound is
played (strict rhythm,
rubato...)

Solution: bridge design pattern

« Composite »

Recursive objects:

● File and folders

● Expressions

● Structure of a document

● Commands (we will see in a few minutes)

● Etc.

« Composite »

Source : wikibooks

To handle decorations

A window may:

● Have / not have a border

● Have / not have scrollbars

● Have / not have a background

● Handle / not handle zoom

● Have / not have special effects

● Etc.

Multiple solutions

If you can modify the
interface and the window
class:

● ~ Use “if”

● ~ Use a kind of bridge?

If you can NOT modify the
interface and the window
class:

● Inheritance

● The design pattern
“decorator”

With inheritance

We would have
2n different
classes!

“Decoration” design pattern

● With “decoration”
design pattern:
O(n) classes.

A simple window

(interface
of a window)

Abstract decorator

Concrete decorator (as
“window with special
effects”)

Conclusion on the pattern « Décorateur »

● + Better maintenance than with « if »

● + Less classes than with inheritance

● + Possible to modify a decoration dynamically

● - Behavior not clear...

new FenetreBordure(new FenetreFond(f))

~ new FenetreFond(new FenetreBordure(f)) ?

Behaviour design patterns

● Dependency inversion principle

● Data converter

● Cancel feature

● Change the behaviour of an object

Need: to refresh the graphical user interface

Source: Windows 7 graphical interface

Need: to refresh the graphical user interface

Source : OpenOffice.org Impress

Problem

Solution

Solution: Listener

Need: to refresh the
graphical user interface How to do that?

We may apply
the pattern Listener.

Listener

The two zones
(listeners)
listen the data
(subject).

Data

Listener

Other application of the Listener design pattern:
input/output

Listener

Click!

Other application of the Listener design pattern: mouse
events in JAVA Swing

A button for instance

The listener reacting when
the button is clicked

Model - view - controller

Controller

View
Model
(data)

user

Model - view - controller

Controller

View Model

uses

subscribes

Another application for Listener: data converter

LaTEX to HTML.tex .html

Another application for Listener: data converter

LaTEX to HTML.tex .html

HTML to LaTEX.html .tex

LaTEX to
LibreOffice.Writer.tex .odt

Another application for Listener: data converter

LaTEX
emitter.tex

HTML
emitter.html

LibreOffice.Writer
emitter.tex

Nouveau

paragraphe

Nouvelle
page

Another application for Listener: data converter

New
paragraph

New page

LaTEX
generator

HTML
generator

 LibreOffice.Writer
generator

.tex

.html

.odt

Another application for Listener: data converter

LaTEX
emitter.tex

N
ew

paragraph

HTML
generator

.html

Design pattern “Command”

We want to be able
to cancel.

How to do that?

We may apply
the design pattern

“command”.

Is the principle “action = operation” good?

Problem

● Cancel?

● Save macros?

● Too many responsibilities for the class “Dessin”

Solution: design pattern “command”

Solution: design pattern “command”

Solution: design pattern “command”

Command handler interface

Ex: the command “Copy”The drawing

The controller

Solution: design pattern “command”

Memento

Class of objects that are to save Class of objects
That represent
 a save

Memento : saving

Memento : restoration

Operations on recursive structures

DocumentElement

getTableOfContents()
getSizeInBytes()
getNumberOfSection()
getNumberOfFigure()
checkSpelling()
checkGrammar()
...

Problem: classes become

really big!

Example of other applications of the Visitor pattern

● Music score editor:
Number of notes, display the score, etc.

● Proof assistant:
Display the proof, check the proof, etc.

● 3D software
to display the skeleton, compute the weight, etc.

Solution: Visitor

Solution: Visitor

Class Paragraph
{

 public void visit(Visitor visitor)
 {

visitor.visitParagraph(this);
 }

}

Class Section
{

 public void visit(Visitor visitor)
 {

visitor.visitSection(this);
for(DocumentElement el : this)
{

el.visit(visitor);
}

 }

}

Solution: Visitor

● Each class has a responsibility

● Depends on the data

● Data classes must have public accessors.

Visitor

Object diagram

Visitor

Implement different algorithms: design pattern « Strategy »

Need of several behaviour of the hero

hero.move()

Source : Little Big Adventure 2

Need of several sorting algorithms

array.sort()

BubbleSort ?

QuickSort ?

HeapSort ?

Need of several layout algorithms

container.doLayout()

Source : http://download.oracle.com/javase/tutorial/uiswing/layout/visual.html

Strategy

Example

Design pattern « state »

Need: my software has many mode (edition, selection,
preview...)

“State” pattern

“State” pattern

class DrawingStateSelection implements DrawingState {
 :
 public void mouseUp()
 {
 :
 drawing.setState(new DrawingStatePen());
 }
}

public class Drawing {
 private DrawingState myState;
 public Drawing() {
 setState(new DrawingStatePen());
 }

 :
 public void setState(DrawingState newState) {
 this.myState = newState;
 }

 public void mouseUp() {
 this.myState.mouseUp();
 }
}

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76
	Diapo 77
	Diapo 78
	Diapo 79
	Diapo 80
	Diapo 81
	Diapo 82
	Diapo 83
	Diapo 84
	Diapo 85
	Diapo 86
	Diapo 87
	Diapo 88
	Diapo 89
	Diapo 90
	Diapo 91
	Diapo 92
	Diapo 93
	Diapo 94
	Diapo 95

