

Life of a software

Activities during the construction of
a software

● Requirement analysis
● Domain analysis
● Design
● Implementation
● Verification: testing (or formal methods)

Problem of communication

Requirement analysis

Requirement analysis

● Non-functional requirements
● Functional requirements

This may happen...

Implement an artificial
intelligence that plays

Backgammon !
OK !

I may implement
a role playing game...

OK !

But sometimes the requirements are
difficult to understand!
We need a software to help us

to write down judgments.
The software should reason about

facts and laws.
We should be able to write

down also some documents
that explains how the automated
reasoning should occur. Simply it

should be very near from
 how a judge actually reasons...

?
This is
Really

unclear...

The risk... after one year...

Oh no... it is not at all
what we meant....

Here is the software
we developped...

But it is about reasoning
about judgments...isn't it?

The risk...

Functional requirements

We identify:
● use cases
● and actors (user, outside computer program, etc.)

Aim:
● Understand the requirements clearly
● Role hierarchy
● Permissions
● Authentification

No overview over role hierarchy etc.
with textual documents

● A student can obtain a grant, loan from the
financial institution.

● The financial institution can ask a student to
pay fees.

● The financial institution may reimburse course
fees.

● A student can be enrolled into a seminar.
● Etc.

Solution: UML use case diagram

Simple UML use cases diagram (and
when it is stupid to draw a diagram)

UML use case diagram notation

= personne chargée
 d'inscrire les étudiants

UML use case diagram notation

Use case

UML use case diagram notation

An actor
(type)

UML use case diagram notation

uses

UML use case diagram notation

Generalisation
 of an actor

UML use case diagram notation

Generalisation
 of a use case

UML use case diagram notation
Enrollment in a university
includes
enrollment in a seminar.

« enrollment in Seminar »
could be included
 in other scenarios...

UML use case diagram notation
Enrollment in a university
 may include
« perform security check ».

« perform security check »
 may extend the enrollment
in a university.

http://www.obs.u-bordeaux1.fr/amor/VWakelam/kida/kida_atelier0209_pdf/use-case.pdf

Qui utilise des use cases ?

● À l'Observatoire de Bordeaux

Un cours de `use case' pour astrochimistes !

Analysis of the domain

● What are the entities and their relations?

Example: students, courses, airport traffic,
biology, plants, chemical products, etc.

Aim: to understand the domain

● The developer is not familiar with the domain;

→ she needs to understand the client

Informal/formal, textual/graphical

● Automated generation of code
● Automated consistency checking

Informal
(only for
humans)

formal

Textual (boring) Graphical (fun, understandable)

Un héros possède
des armes.
Une arme n'est possédée par
qu'un seul héros.

UML class diagram

Inheritance

Associations

Aggregation and composition

Analysis of the domain: ping-pong
with the client

Oh no...Is this ok?

UML Object diagram

UML sequence diagram
(to detail the use cases)

Source : http://pic.dhe.ibm.com/infocenter/rsasehlp/v7r5m0/index.jsp?topic=%2Fcom.ibm.xtools.sequence.doc%2Ftopics%2Fcseqd_v.html

Design

● Share the work

→ decomposing in packages
● Enable to change the technology and add new

features

→ design patterns

Not interesting for

the client !

Design by contract

Hero

invariant: lifepoint > 0

precondition: time > 0
postcondition: lifepoint@pre <= lifepoint
function sleep(time);

contract

Design by contract

● OCL
● Eiffel
● JML

Package1

Package2

Package3

Package4

Implementation...

Unit tests

Package1

Package2

Package3

Package4

Package1

Package2

Package3

Package4

Integration tests

Test

● Program testing can be used
to show the presence of
bugs, but never to show their
absence!

(Dijkstra’s Turing Award
Lecture in 1972)

Formal methods

● Proof by hands
● Proof assistant
● Model checking techniques

Proof assistant

insertionSort(A)
{
…
}

Precondition: T

Postcondition: A is sorted

Assistance (or not)

Proof

Model checking

Specification (in a logic)

Assistance (or not)

OK
or
counterexample

ModelProgram

Tests VS formal methods

Tests
● Fastidious to create
● Easy to run
● Not complete

Formal methods
● Fastidious to use
● A HUGE cost of $$

- OS kernel
$500/lines of code
(10K lines of code)

- NASA software
$80/lines of code

● Complete

Who uses formal methods?

● Not critical
● Updates...

● Critical

Life cycle models

● How the activities are organized in the time?

Waterfall model (does not work)

→ Distribution of the article of Royce (1970)

V-model (AFNOR)
Association française de normalisation

The risk...

Spiral model

Each time, we address a new use case !

Comparison

V-model
● Comfort
● Not for innovation

Spiral-model
● Disturbing
● Adapted to

innovation

Agile manifesto (2001)

● Livraison fréquente
● Lien direct avec le client
● Extreme programming

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51

