

History of software design

It is about the structure of a
software. Why?

● Improve the development
● Improve the maintenance
● Avoid bugs
● Communicate...

Spaghetti code is bad!

10 i = 0
20 i = i + 1
30 IF i <> 11 THEN GOTO 80
40 IF i = 11 THEN GOTO 60
50 GOTO 20
60 PRINT "Programme terminé."
70 END
80 PRINT i & " au carré = " & i * i
90 GOTO 20

Structure of a programme: first step

● 1968. Dijkstra. A Case against the GOTO
Statement.

● No GOTO
● Few global variables
● Pascal, ADA

One of the reviews of the paper...

"Goto Statement Considered Harmful." This paper tries to convince us that the well-known
goto statement should be eliminated from our programming languages or, at least (since I
don't think that it will ever be eliminated), that programmers should not use it. It is not clear
what should replace it. The paper doesn't explain to us what would be the use of the "if"
statement without a "goto" to redirect the flow of execution: Should all our postconditions
consist of a single statement, or should we only use the arithmetic "if," which doesn't
contain the offensive "goto"?
[...]
The author is a proponent of the so-called "structured programming" style, in which, if I get
it right, gotos are replaced by indentation. Structured programming is a nice academic
exercise, which works well for small examples, but I doubt that any real-world program will
ever be written in such a style. More than 10 years of industrial experience with Fortran
have proved conclusively to everybody concerned that, in the real world, the goto is useful
and necessary: its presence might cause some inconveniences in debugging, but it is a de
facto standard and we must live with it. It will take more than the academic elucubrations of
a purist to remove it from our languages.
Publishing this would waste valuable paper: Should it be published, I am as sure it will go
uncited and unnoticed as I am confident that, 30 years from now, the goto will still be alive
and well and used as widely as it is today.[...]

Second step: modular programming

● 1972 : David Lorge Parnas. On
the Criteria To Be Used in
Decomposing Systems into
Modules

● Encapsulation

In the small or in the large?

● Programming in the
small

Example:
A small video game
A script to convert all
*.png files to *.jpg
files

● Programming in the
large

Example:
Firefox
Battle.net
Un système bancaire

In the small or in the large?

● Programming in the
small

● Programming in the
large

Complex system...

Not alone...

Object oriented programming

● 1970 : Alan Kay (prix Turing 2003)
● Encapsulation
● Reusability

~ social programming

Key concepts

● Inheritance, delegation
● Interface, Classes
● Public / private

Problem: spaghettis with meatballs

● Objected oriented program that do not use the
object paradigm

Solution: structure on classes

Mean of communication: we need
models and maps

● In « classical »
industries...

● In software design

Mean of communication: we need
models and maps

● 1990 : Rumbaugh et al.

● Et aussi Jacobson et al. en 1992

● 1993 : Booch et al.

Problem

We need to understand the symbols
 that are each time different...

Solution: Unified Modeling Language

Everybody understands
UML!

UML !

UML !

Needs of norms

● Norms NF E 04-520,
ISO 128 (1982), NBN
E 04-006

● UML

History of UML

● 1989 : creation of the OMG consortium by
IBM, Helwett-Packard etc.

● 1995 : UML created by the OMG

Design patterns

Recipes in
order to
provide
adaptative
structures

1995 : Gamma, Helm, Johnson et Vlissides. Design
Patterns – Elements of Reusable Object-Oriented Software

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21

