Answering Queries using Views:
a KRDB Perspective for the Semantic Web

FRANCOIS GOASDOUE

France Télécom R&D and Université Paris Sud
and

MARIE-CHRISTINE ROUSSET

Université Paris Sud

In this paper, we investigate a first step towards the long-term vision of the Semantic Web by
studying the problem of answering queries posed through a mediated ontology to multiple infor-
mation sources whose content is described as views over the ontology relations. The contributions
of this paper are twofold. We first offer a uniform logical setting which allows us to encompass
and to relate the existing work on answering and rewriting queries using views. In particular, we
make clearer the connection between the problem of rewriting queries using views and the problem
of answering queries using extensions of views. Then we focus on an instance of the problem of
rewriting conjunctive queries using views through an ontology expressed in a description logic, for
which we exhibit a complete algorithm.

Categories and Subject Descriptors: H.1.1 [Systems and Information Theory]: General sys-
tems theory; Information theory; 1.2.4 [Knowledge Representation Formalisms and Meth-
ods]: Representation languages

General Terms: Theory, Algorithms
Additional Key Words and Phrases: Information integration, knowledge representation, semantic
web

1. INTRODUCTION

The Semantic Web ([Berners-Lee et al. 2001]) envisions a worldwide distributed
architecture where highly distributed and possibly heterogeneous data or compu-
tational resources will easily interoperate to coordinate complex tasks such as an-
swering queries or distributed computing. Semantic marking up of Web resources
using ontologies is expected to provide the necessary glue for making this vision
work.

In this paper, we investigate a first step towards this long-term vision of the

Frangois Goasdoué, Artificial intelligence and inference systems, LRI, Batiment 490, Université
Paris Sud, 91405 Orsay Cedex, France. This work has been performed while the author was sec-
onded to Information management and retrieval, France Télécom R&D, 2 avenue Pierre Marzin,
22307 Lannion Cedex, France.

Marie-Christine Rousset, Artificial intelligence and inference systems, LRI, Batiment 490, Univer-
sité Paris Sud, 91405 Orsay Cedex, France.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2003 ACM 1529-3785/2003/0700-0001 $5.00

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003, Pages 1-077.

2 . F. Goasdoué and M.-C. Rousset

Semantic Web by studying the problem of answering queries posed through a me-
diated ontology to multiple information sources. In this information integration
vision, users do not pose queries directly to the (possibly remote) sources in which
data are stored but to the set of virtual relations that have been designed to model
an ontology of a domain of interest. The contents of the sources that are rele-
vant to that domain are described as views over the ontology relations. In such a
setting, the problem of answering users queries becomes a problem of answering
queries using view extensions. This problem is closely related to the problem of
query rewriting using views, which consists in reformulating a user query into an
(equivalent or maximally contained) query whose definition refers only to the views.

The instances of the answering or rewriting problems using views that have been
considered vary depending on the languages used for describing the queries, the
views, and the rewritings. The setting that has been extensively studied concerns
the pure relational setting where queries, views and rewritings are expressed as con-
junctive or Datalog queries (see [Halevy 2001] for a survey). Recently, instances of
the answering or rewriting problems have been studied, in which the queries, views
or rewritings may be expressed using description logics [Beeri et al. 1997; Rousset
1999; Baader et al. 2000; Calvanese et al. 2000]. Description logics are a family
of logics that have been developed for modeling complex hierarchical structures,
and can also be viewed as query languages with an interesting trade-off between
complexity and expressive power (see [Nardi et al. 1995] for a survey). A descrip-
tion logic deals with unary predicates (referred to as concepts), representing sets of
objects, and binary predicates (referred to as roles), representing properties holding
on pairs of objects. A description logic is defined according to the constructors that
are allowed to define complex concept descriptions starting from a set of atomic con-
cepts and roles. The different constructors express varied restrictions on concepts
and roles. For example, the value restriction constructor allows to build concept
descriptions of the form Vr.C: they define the set of individuals that are related
through the role r to individuals of the concept C only. Varying the set of allowed
constructors enables to tailor a description logic with a desired tradeoff between
expressiveness and computational complexity.

In this paper, we consider the problems of answering and rewriting queries us-
ing views in the uniform logical setting of CARIN [Levy and Rousset 1998a], which
combines description logics and Datalog. The added expressive power of both for-
malisms is especially useful for applications in information integration. On the one
hand, description logics are the leading candidates for the future ontology Web lan-
guage (OWL) recommended by the W3C Web Ontology Working Group’s charter
(see www.w3.0rg/2001/sw/WebOnt/charter). On the other hand, Datalog rules
correspond to the most essential relational database queries — SelectProjectJoin
queries. The Information Manifold [Levy et al. 1996] is the first information in-
tegration system that pointed out the usefulness of extending Datalog with some
features of description logics for building mediators. PICSEL [Goasdoué et al. 2000]
benefits from the use of the full expressive power of CARIN-ALN, and has shown
the practical interest of such an hybrid formalism for modeling in a natural way
and with a reasonable expressiveness a real application of information integration
related to the domain of tourism. The use of the ALN description logic added to

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

Answering Queries using Views . 3

Datalog restricted forms of negation, value restriction and cardinality constraints.
The combination of those ALN constructors provides an expressive power allowing
for example the definitions of “hotels located in Lannion, France, with at most 12
rooms having air conditioning but no minibar.”.

The contributions of this paper are twofold. We first offer a uniform logical setting
which allows us to encompass and to relate the existing work on answering and
rewriting queries using views. In particular, we make clearer the connection between
the problem of rewriting queries using views, and the problem of answering queries
using extensions of views. Then we focus on an instance of the problem of rewriting
conjunctive queries using views through an ontology expressed in a description logic.
The simplicity of the description logic that we consider is compensated for by the
possibility of expressing inclusion and disjointness axioms on atomic concepts. This
choice has resulted from an analysis of the description logics constructors that have
been actually used by the designers of the mediated ontology on the tourism domain
[Reynaud and Safar 2002] in the PICSEL information integration system. While
the expressive power of ALN was available, the atomic negation and the number
restrictions (except (> 1 7)) have hardly been used, while the value restriction
constructor Vr.C' was extensively used as a way of expressing typing constraints on
roles that they consider as necessarily associated with some concepts. For instance,
flights whose airline is American can be defined by the ALN concept description:
Flight MV Airline. American. It is important to notice that most of the knowledge
engineers using description logics as a modeling tool employ the V constructor in
a rather specific way and with a semantics in mind which is not exactly its actual
logical semantics: they usually use Vr.C within a conjunction D MVr.C' with the
intended meaning that filler(s) of the role r exist for any instance of the concept
D, and that for all those instances, the filler(s) of the role r are instances of the
concept C. This has also been noticed in the ontology design done in the MKBEEM
project [Mkbeem]. In our proposal for a language for modeling ontologies, we
account for this intuitive semantics by replacing the V constructor by a constructor
V+ which forces the combined use of value restriction on roles with the unqualified
existential restriction on those roles. More generally, we think that the ontologies
that will be used in the setting of the Semantic Web, will be built by communities of
users or practioners who are not knowledge engineers or logicians. Therefore, they
must be provided with appropriate modeling tools associated with query processors.
We think that our proposal allowing answering conjunctive queries over ontologies
defined as hierarchies of classes described by their names and a set of associated
typed roles is a basic building block useful for the future infrastructure of the
Semantic Web.

The paper is organized as follows. In section 2, we present an illustrative example
of information integration through an ontology. In section 3, we define precisely
the formal background of our study: the languages that we consider in this paper
to define queries, views and rewritings are (possibly different) languages of CARIN.
In section 4, we formally define the general rewriting problem using views that we
consider, we relate it to the problem of answering queries using extensions of views,
and we show how it encompasses instances that have been previously studied in
the literature. In section 5, we define an instance which is adapted to the setting of

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

4 . F. Goasdoué and M.-C. Rousset

the Semantic Web: we provide a rewriting algorithm for that instance, we show its
soundness and completeness, and we establish its complexity. Finally, in the last
section, we conclude with related work and discussion.

2. ILLUSTRATIVE EXAMPLE

Let us consider an ontology describing touristic products using concepts and prop-
erties. This ontology is organized according to geographical locations and differ-
ent kinds of places related to those geogaphical locations by the property Locate-
din. Suppose that we have the following concepts: Hotel, Apartment, Housing-
Place, Place, SportResort, SeasideResort, GeographicalLocation, Caraibbean, Guade-
loupe, Martinique. Figure 2 illustrates the way they are organized within a hierarchy.
Note that this hierarchy can be manually or automatically constructed, depending
on the representation formalism that is used to define the ontology concepts.

Place Geographical Location
HousingPlace SportResort SeasideResort Caraibbbean
Hotel Apartment Guadeloupe Martinique
o

Fig. 1. Hierarchy

Suppose that it is stated in addition that Martinique and Guadeloupe are disjoint
concepts (while SportResort and SeasideResort are not).

In an information integration setting, such an ontology plays a central role by
serving as a pivot vocabulary to express both the contents of available data sources
related to tourism, and the users queries. The ontology serves as a query interface
between end-users and a collection of pre-existing data sources. The goal is to give
users the illusion that they interrogate a centralized and homogeneous informa-
tion system, instead of a collection of distributed and possibly heterogeneous data
sources.

For instance, suppose that three data sources are available, whose content can
be described in function of the concepts and properties of the ontology as follows:

—S; stores instances of the concept Hotel that are related by the property LocatedIn
to locations situated in Martinique only.

—S, stores instances of the concept Apartment that are related by the property
LocatedIn to locations situated in Guadeloupe only.

—S3 stores instances of the concept SportResort that are related by the property
LocatedIn to locations situated in Martinique only.

—S4 stores instances of the binary property LocatedlIn, that is pairs of (x,y) such
that the place z is located in the geographical location y.

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

Answering Queries using Views . 5

Formally, the source contents are expressed as views over the ontology concepts
and properties, as it will be explained in the following section. Views are named
queries defined over a given set of predicates using a given language.

Users will use the concepts and properties of the domain ontology to express their
queries. For instance, consider a query asking for housing places and sport resorts
located at the same place in a Caraibbean island. It can be formally expressed as
the following conjunctive query:

q(X,U):- HousingPlace(X) A LocatedIn(X,Y) A Caraibbean(Y) A SportResort(U)

A LocatedIn(U,Y)

The query processing involves rewriting the users query into queries expressed
in terms of views, which correspond to query plans that are directly executable
against the data sources.

In our example, we would obtain two rewritings for the query q using the views
Sl, 52, S3, and 54.

qr, (X,U):- S1(X) A S3(U) A Sa(X,Y) A S4(ULY).

gr, (X,U):- S2(X) A S3(U) A S4(X,Y) A S4(U,Y).

The first rewriting expresses a query plan that consists of querying the sources S;
and S;3 to get candidate instances of the distinguished variables X and U, and then
of querying the source S4 with those instances, to perform a join on the second
attributes of the answers that are obtained.

The second rewriting is actually inconsistent and will therefore be discarded as
a query plan. Its inconsistency comes from the disjointness between the concepts
Guadeloupe and Martinique and the definitions of the views S; and Ss, from which
Guadeloupe(Y) and Martinique(Y) can be infered.

The execution of the query plans obtained as rewritings provides answers that
are correct w.r.t the original query, but not necessarily complete. The question
of knowing whether we can obtain all the answers by rewriting is a core issue in
information integration, which is investigated in Section 4.

3. FORMAL BACKGROUND

In this paper, we consider the problem of rewriting queries using views when the
queries, the views and the rewritings are expressed in languages of CARIN.

3.1 CARIN

CARIN is a family of hybrid logical languages in which we can define two kinds of
logical sentences over base predicates:

—Concept descriptions using description logic constructors,
—Rules whose bodies may contain conjuncts that are built using concept descrip-

tions.

We now define precisely the syntax and the semantics of those two kinds of sen-
tences. They are built over a set P of base predicates including a set Ng of binary
predicates and a set Np of unary predicates. An element r of Ng will be called a
role, and an element of Np will be called an atomic concept.

3.1.1 Concept descriptions. Concept descriptions over Ngr U Np are inductively
defined using description logics constructors as follows:

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

6 . F. Goasdoué and M.-C. Rousset

—Any atomic concept A € Np is a concept description.
—T is a concept description (called the top or universal concept).
— is a concept description (called the bottom or empty concept).

—If A is an atomic concept, then -4 is a concept description (negation). Restrict-
ing the negation to atomic concepts is called atomic negation.

—If C and D are concept descriptions, then C' 1M D is a concept description (called
the conjunction of C and D).

—If C is a concept description and r is a role, then Vr.C' and 3r.C are concept
descriptions (respectively called value restriction and existential restriction). Re-
stricting the use of existential restriction to the T concept (3r.T) is called un-
qualified existential restriction.

—If n is an integer and 7 is a role, then (> nr) and (< nr) are concept descriptions
(called number restrictions).

Note that other constructors can be used to build concept descriptions. We only
mention the set of constructors that are used in this article. It corresponds to the
ALEN description logic.

The semantics of concept descriptions is defined in terms of interpretations. An
interpretation I is a pair (Af, .7) where A’ is a non-empty set of individuals called
the domain of interpretation of I, and .7 is an interpretation function, which assigns
a subset of A’ to every concept description. An interpretation function maps each
atomic concept A € Np to a subset AT of AT and each role r € Ng to a subset 7! of
AT x Al. The interpretation of an an arbitrary concept description is inductively
defined as follows:

B o QU SRR gy
4y = AT\ 47
cnD)Y =cinDf
O ={de Al |Vee Al((d,e) erl - e CT)}
C)Y ={de AT |Je e Als.t(d,e) € r'}
nr)!={de A" | #{e| (d,e) €r'} >n}
nr)f={de A"| #{e| (d,e) € r'} <n}

An interpretation I is a model of a concept description C iff CT is not empty.

—(=
—(
—(vr
—(3r
—(
—(

I/\ IV

Definition 3.1 Subsumption and equivalence of concept descriptions. Let C and
D be concept descriptions.

—C is subsumed by D (denoted C < D) iff for every interpretation I, C! C DI.
—C is equivalent to D(denoted C = D) iff for every interpretation I, C! = D

In this paper, we mention different description logics:
—ALN, in which concept descriptions are restricted to be top, bottom, conjunc-

tions, atomic negations, value restrictions, and number restrictions.

—JFLE, in which concept descriptions are restricted to be the top, conjunctions,
existential restrictions and value restrictions.

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

Answering Queries using Views . 7

—ALE, which, in addition of the FLE concept descriptions, allows bottom and
atomic negations.

3.1.2 CARIN rules. A CARIN rule is a logical sentence of the form:
g(X): — A\ pi(XiU 7).
i=1

q(f) is the head of the rule, and g is called the head predicate of the rule: it cannot
be a concept description or a role, and can be of any arity. A, pi(X; U Y;) is
the body of the rule, and is made of the conjuncts p;(X; UY;), where p1,...,p,
are either roles, or concept descriptions, or head predicates of some other rules.
X = Ui, X; are variables that are called the distinguished variables of the rule.
The other variables Y = |JI-_, Y; are called ezistential variables of the rule.

Definition 3.2 Concept-atom and role-atom. A concept-atom is an atom p(U)
such that p is a concept description. A role-atom is an atom r(U;, Us) such that r
is a role name.

ExaAMPLE 1. Consider the following rule:
q(X1,Xs) : — Flight(X;) A Flight(X2) A Airline(X1,U) A Airline(X2,U)
A (VStop.AmCity) (X7) A Stop(Xa, S) A EurCity(S).

Its distinguished variables are X;, Xs. The rule defines the relation g of arity
2, as being the set of pairs X;, X, that are flights depending on the same airline
and such that the flight X; only stops (if it stops) in American cities, and the flight
X5 has a stop in an European city. O

Given a set of CARIN rules, a head predicate p is said to depend on a predicate
q if q appears in the body of a rule whose head predicate is either p or a predicate
which p depends on. A set of rules is said to be recursive if there is a cycle in the
dependency relation among head predicates.

Rules can be seen as a way of defining predicates in the following sense.

Definition 3.3 Definition of a predicate by rules. Let R be a set of CARIN rules,
and let p be a predicate. The definition of p, denoted by def(p), is the subset of
rules of R whose head predicate is p or a predicate which p depends on. If the
definition of p is the whole set R, we say that R defines the predicate p.

In the same way that an interpretation of the atomic concepts and roles determines
the interpretation of complex descriptions, the interpretation of base predicates
uniquely determines the interpretation of the predicates defined by a set of non
recursive rules.

Definition 3.4 Semantics of a predicate defined by non recursive rules. Let g be
a predicate and let def(q) be its rule definition. Given an interpretation I, the
interpretation ¢’ of ¢ in I is defined inductively as follows:

1For any set S, we denote by S a vector of its elements. Conversely, for any vector 17', we denote
by V the set made of its elements.

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

8 . F. Goasdoué and M.-C. Rousset

—If the arity of g is not null:
&€ ¢! iff def(q) contains a rule g(X) : — Ai_, pi(X; UY;) for which there exists
a mapping o from the variables of the rule to the domain A’ such that: a(X) =&
and a(X; UY;) € p! for every atom of the body of the rule.

—If the arity of g is 0 (i.e., ¢ is a boolean query):
¢’ is true iff def(q) contains a rule g(X) : — Ai_, pi(X; UY;) for which there
exists a mapping a from the variables of the rule to the domain A’ such that:
a(X; UY;) € p! for every atom of the body of the rule.

—An interpretation I is a model of q iff ¢’ is not empty.

The following definition extends to predicates defined by a set of non recursive
rules the notions of subsumption and equivalence previously defined for concept
descriptions.

Definition 3.5 Subsumption and equivalence of predicates defined by rules. Let g1
and g2 be two predicates defined by non recursive CARIN rules.

—q, is subsumed by g iff for every interpretation I, ¢f C ¢f.

—qy is equivalent to g iff for every interpretation I, ¢f = ¢f.

3.1.3 Languages encompassed by CARIN. Three kinds of languages can be dis-
tinguished, depending on which restrictions we impose on the sentences that are
allowed

3.1.3.1 Relational languages . A relational language does not permit sentences
corresponding to concept descriptions other than atomic concepts. Allowed sen-
tences are Datalog rules. For instance, the query language considered in [Calvanese
et al. 2000a] is a relational language since regular path queries over graphs can be
expressed as a set of (recursive) rules built over a set of base binary predicates.

3.1.3.2 Terminological languages . A terminological language is restricted to
sentences that are only concept descriptions or roles. No rule is allowed in such a
language. ALN, FLE or ALE are terminological languages of CARIN. They are
considered in [Baader et al. 2000] as the basis for defining the problem of rewriting
concepts using terminologies.

3.1.3.3 Hybrid languages . A hybrid language of CARIN imposes some restric-
tions on the sentences but allows concept descriptions to appear in bodies of rules.
Such languages are useful to define conjunctive queries over concept descriptions
and roles. We denote by CARIN-L the hybrid CARIN language for which the descrip-
tion logic is £. For instance, the queries and views considered in [Beeri et al. 1997]
are defined by non recursive CARIN-ALN rules. In that setting, CARIN is restricted
in two ways: a first restriction concerns the description logic component, since only
concept descriptions of ALN are allowed; a second restriction concerns the rule
component since only non recursive rules are allowed.

3.2 Ontologies in CARIN

Two components can cohabit in an ontology O defined in CARIN over a given set
of base predicates P : a terminological component and a deductive component.

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

Answering Queries using Views . 9

The sentences in the terminological component 7¢ are either concept definitions,
or inclusion statements. A concept definition is a statement of the form A := D,
where A is a concept name and D is a concept description. We assume that a
concept name appears on the left hand side of at most one concept definition. An
inclusion statement is of the form C' C D, where C and D are concept descriptions.
Intuitively, a concept definition associates a definition with a name of a concept.
An inclusion states that every instance of the concept C' must be an instance of D.

A concept name A is said to depend on a concept name B if B appears in
the concept definition of A. A set of concept definitions is said to be cyclic if
there is a cycle in the dependency relation. When the terminology contains only
concept definitions and has no cycles we can unfold the terminology by iteratively
substituting every concept name with its definition. As a result, we obtain a set of
concept definitions where all the concepts that appear in the right hand sides are
concepts of P.

An interpretation I is a model of Tp if CT C DI for every inclusion C C D in
the terminology and A’ = D' for every concept definition A := D. We say that C
is subsumed by D w.r.t. To (C =7, D) if CT C D' in every model I of To.

Given a terminology 7o, we call its vocabulary the set of predicates composed by
the base concepts and roles appearing in 7o, and by the concepts that are defined
in 7o.

ExAMPLE 2. Consider the following terminology:

Caraibbean C GeographicalLocation

Martinique C Caraibbean

Guadeloupe C Caraibbean

Martinique M Guadeloupe C L

PrivateBuilding M CollectiveBuilding C L

Hotel:= HousingPlace 1M (> 5 AssRoom) M (VAssBuilding.CollectiveBuilding)

Apartment := HousingPlace M (> 1 AssRoom) M (VAssBuilding.PrivateBuilding)
The vocabulary defined by that terminology is: {GeographicalLocation,Caraibbean,
Martinique, Guadeloupe, PrivateBuilding, CollectiveBuilding, Hotel, HousingPlace, As-
sRoom, AssBuilding, Apartment}. O

The deductive component R is a set of CARIN rules defined over a set of base
predicates and possibly over the vocabulary of a terminology. The vocabulary
defined by R is the set of predicates appearing in the left hand side or the right
hand side of rules of Rp.

Given an ontology O = (To, Ro), its vocabulary Pe is the union of the vocabu-
laries of its two components.

A model of O is an interpretation I which is a model of the two components 7o
and Ro.

3.3 Queries and views in CARIN

Queries and views are defined over a given set of predicates, using a certain (query

or view) language. In the setting of this paper, we consider queries and views
defined:

—using a language of CARIN,

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

10 . F. Goasdoué and M.-C. Rousset

—over the vocabulary Pp of an ontology O, consisting of base predicates and
possibly of predicates defined over those base predicates within a terminology or
a rule base. Note that one of its (terminological or deductive) components, or
the ontology itself, can be empty. In the latter case, Pp is reduced to a set of
given base predicates, which is the classical setting for defining relational queries
and views.

Definition 3.6 Queries. Let £ be a language of CARIN. A query expressed in £
over the vocabulary Pe of an ontology is a predicate ¢ whose definition, def(q), is:

—either a £ concept description over Pp, or a role, if L is a terminological language,

—or a set of £ rules over Pp, if L is a relational or hybrid language of CARIN.
The arity of a query is the arity of the predicate defining it.

Definition 3.7 Conjunctive queries. A query whose definition contains a single
rule is called a conjunctive query.

—CQ-L will denote the query language restricted to conjunctive queries expressed
within CARIN-L where £ is a description logic.

—CQ will denote the relational language of any CQ-L forbidding any concept de-
scription other than atomic concepts to appear in conjunctive queries.

—CQ7 will denote the relational query language allowing conjunctive queries pos-
sibly with inequalities.

We identify a conjunctive query with the head of the rule defining it, and its defi-
nition with the body of that rule. For example, the rule:
q(X1,Xs) : — Flight(X1) A Flight(X2) A Airline(X1,U) A Airline(X2,U)
A (VStop.AmCity)(X7) A Stop(X2, S) A EurCity(S)
in Example 1 defines a CQ-FLE query q(X1, X2) of arity 2 whose definition is:
def(q(X1,X2)) = Flight(X7) A Flight(X32) A Airline(X;,U) A Airline(X2,U)
A (VStop.AmCity) (X7) A Stop(Xa,.S) A EurCity(S)

The set of answers of a query is defined relatively to a database storing a set of
ground facts that are extensions of some predicates. Those predicates are called
extensional predicates.

Definition 3.8 Extension of predicates. Let p be an extensional predicate. Its
extension, denoted ext(p), is a set of facts of the form p(@) where @ is a tuple of
constants. For a set £ of extensional predicates, we denote ext(£) the union of the
extensions of the predicates in £.

An interpretation I is extended to a set of extensions by assigning an individual a’
of AT to every constant appearing in the extensions. I is a model of ezt(£) if for
every fact p(@) of ext(£), a’ € p'.

Note that with this definition, the extensions are assumed to be sound but not nec-
essarily complete: for a model I of ext(£), there may exist an extensional predicate
p for which there exists a tuple £ € p! and there does not exist any p(&) of ext(£)
such that @’ = ¢.

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

Answering Queries using Views . 11

In the standard setting of relational databases, the extensional predicates are
those which are defined in the schema, which, in our setting, correspond to the base
predicates or, if the schema is defined by a domain ontology, to the predicates of
the ontology vocabulary. However, in the general case, the extensional predicates
may be predicates of queries called views, i.e., queries whose answers have been
precomputed (materialized views) or are known to be available from some data
sources (virtual views).

Definition 3.9 Views. A view v is a query which has a definition def(v) and
possibly an extension ezt(v). Let V be a set of views. An interpretation I is a
model of V iff I is a model of all the view predicates in V.

We can now define formally the answer set of a query given a set of extensions. We
must distinguish whether those extensions come from base predicates or from view
predicates. Definition 3.10 is the standard semantic definition of the answer set of
a query in relational databases: given a database instance consisting of extensions
of base predicates (possibly defined within an ontology), the answers to ¢ are tuples
@ such that the fact g(a) is logically entailed by the facts in the database instance
(and the sentences of the ontology) .

Definition 3.10 Answer set of a query over extensions of ontology predicates. Let
q be a query of arity n expressed in a language £ of CARIN over the vocabulary Pp
of an ontology O. Let ext(Pp) be the union of their extensions. Let C be the set
of constants appearing in ext(Pp). The answer set of the query over ext(Pp) is
defined as follows:
Ans(q,ext(Po)) = {@ € C™ | for every model I of O and ext(Po), @ € ¢' }

When the database instance is unknown and extensions of some view predicates
are available instead, Definition 3.11 states that the answers to a query g are those
tuples @ such that the fact ¢(a) is logically entailed by the facts in the views exten-
sions, the statements in the ontology and the view definitions. This conveys that the
view extensions together with the view definitions (and the ontology statements)
infer (incomplete) information about the unknown database instance.

Definition 3.11 Answer set of a query over extensions of views. Let g be a query
of arity n expressed in a language £1 of CARIN over the vocabulary Py of an on-
tology O. Let V = {v1,...,vr} be a set of views defined in a language £, of CARIN
over the same vocabulary. Let ext()) be the union of the extensions of the views
v1,...,V;. Let C be the set of constants appearing in ext()). The answer set of
the query against ext(V) is defined as follows:

Ans(q,ext(V)) = {@ € C™ | for every model I of V, O and of ext(V), @’ € ¢'}.

The difference between answering queries using views (Definition 3.11) and an-
swering queries over a database instance (Definition 3.10) is illustrated in the fol-
lowing example.

ExaMPLE 3. Consider the conjunctive query ¢(X,Y’) defined by
q(Xa Y) : _Pl(X;Y) /\P2(Y,X),

and the following view definitions
v11(X) : —p1(X, X)

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

12 . F. Goasdoué and M.-C. Rousset

v2(X) : —p2(X, X)
v3(X) : —p1(X,Y)
va(X) : —p2(Y, X)
and assume that the views extensions consists of {v1(a), v2(a), vs(b),v4(c)}.
According to Definition 3.11, < a,a > is the only answer for the query ¢ given
those views. In fact, it is the only certain answer of q over any database instance,
which can be inferred from the views extensions and the views definitions. In
particular, from the extensions of v and v4 (i.e., the facts v3(b) and v4(c)), we only
know that there exists at least one fact of the form p;(b,Y) in the extension of the
base predicate p;, and at least one fact of the form p2(Z, ¢) in the extension of the
base predicate p,. However, we cannot conclude whether < b,c > is an answer to
q because we do not know whether the constant specified by Y is the same as the
constant specified by Z. O

Note that our definition of answering queries using views (Definition 3.11) does
not take into account any specific assumption about the completeness of the set
of constants appearing in the extensions of views and in the extensions of base
predicates. The interested readers are referred to [Calvanese et al. 2000] and [Halevy
2001] in which those assumptions are formalized as sound, complete and ezact view
assumptions and closed domain versus open domain assumption respectively, and
studied for computing the set of certain answers [Abiteboul and Duschka 1998] to
queries using views depending on those assumptions. An answer is a certain answer
of the query if it is an answer for all possible databases that are consistent with the
given extensions of the views. A database ext(P) is consistent with a set ext(V) of
extensions of views iff every ground fact v(&@) in a view extension is an answer of
the query v over the database ext(P). It is important to note that the extension of
a set of views does not entail a unique extension of the base predicates ext(P). It
provides only partial information about it.

In order to situate our setting within the general setting of answering queries
using views taking into account those assumptions, we just have to say that our
definition follows the open domain assumption and considers that all the views are
sound. Under those assumptions, the answer set for a query, as defined in Definition
3.11, is guaranteed to be the set of certain answers of the query. Such assumptions
are appropriate in the information integration setting: a sound view v corresponds
to a data source which is known to produce only (but not necessarily all) data that
are logically specified by its associated definition def(v).

The two following definitions of query subsumption (also called query contain-
ment), and query equivalence, possibly modulo a set of views, are simple general-
izations of Definition 3.1 and Definition 3.5.

Definition 3.12 Query subsumption (a.k.a. containment) and equivalence. Let q;
and g2 be two queries of same arity defined in two languages of CARIN over the same
vocabulary of an ontology O.
—aq1 is subsumed by g2 iff ¢f C ¢f, for every model I of O.
—q1 is equivalent to g2 iff ¢f = ¢4, for every model I of O.

Definition 3.13 Query subsumption (a.k.a. containment) and equivalence modulo views.
Let g be a query defined in £; over the vocabulary of an ontology O, and V =

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

Answering Queries using Views . 13

{v1,...,v} a set of views defined in L2 over the same vocabulary. Let gy be a
query defined in £3 such that the base predicates of def(qy) are the view predicates
V1iy.-.,Vk.

—qy is subsumed by q modulo V iff q{, C ¢!, for every model I of @ and vy,...,v;,
—qy is equivalent to ¢ modulo V iff q{, = ¢!, for every model I of @ and vy,...,v.

Note that Definition 3.13 does not involve extensions of views but just their
definitions.

4, REWRITING QUERIES USING VIEWS

We start with presenting a general framework for defining rewritings of a query
in terms of views and for stating the problem of query rewriting using views. We
then relate it to the problem of answering queries using extensions of views, and
we situate within that general framework some instances of the rewriting and the
answering problem that have been previously studied.

4.1 A general framework for defining the rewriting problem

Let £1, L2 and L3 be three languages of CARIN (which can be identical or different).
Given a query defined in £; over a certain vocabulary, and given a set of views
defined in L5 over the same vocabulary, the problem of rewriting a query using
views consists of finding queries (called rewritings) that are defined in £3 using
the view predicates as base predicates and that are equivalent to (or maximally
contained in) the original query.

Definition 4.1 Rewriting, mazimally contained and equivalent rewriting. Let ¢ be
a query defined in £; over a given vocabulary, and V = {v1,...,v;} be a set of
views defined in Lo over the same vocabulary.

—An L3 rewriting of q using V is a query qy defined in L3 over the base predicates
v1,...,V; such that gy is subsumed by ¢ modulo V.

—An L3 rewriting gy of g using V is a mazimally contained rewriting iff there is no
L3 rewriting ¢, such that gy is strictly subsumed by ¢}, (i.e., not equivalent to
)

—An L3 rewriting gy of q using V is an equivalent rewriting iff qy is equivalent to
q modulo V.

EXAMPLE 4. Consider the vocabulary composed of the roles Stop, HotelLocation
and Airline, and of the atomic concepts EurCity, Hotel, Flight and AmCity. Consider
the query q defined by the concept description Flight M 3Stop.EurCity and the set of
views V = {v1, vy, v3,vq} with the associated FLE definitions:

def(v1) = Stop

def(v2) = HotelLocation

def(v3) = Hotel M VHotelLocation.EurCity
def(vq) = Flight 1 VAirline. AmCity

The conjunctive query qy(X) : —va(X) Avi(X,Y) Ava(U,Y) Av3(U) is a CQ
rewriting of q using V. To see why, let us show that for any model I of V for any
acAlifac q{, then a € qf. Consider a € q{,:

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

14 . F. Goasdoué and M.-C. Rousset

—Since def(qy) is restricted to the single rule qy(X) : —va(X) A vi(X,Y) A
v2(U,Y) A v3(U), that means that there exists b,c in Al such that: a € v4?f,
(a,b) € vil, (¢,b) € vo! and c € v3!.

—Since I is a model of V, according to the view definitions, we have:

a € (Flight M VYAirline.AmCity)!, (a,b) € Stop’, (¢,b) € HotelLocation’ and
c € (Hotel M YHotelLocation.EurCity)”.

—According to the semantics of the concept descriptions, it follows from ¢ €
(Hotel M VHotelLocation.EurCity)! that ¢ € (VHotelLocation.EurCity)?, and since
(c,b) € HotelLocation’, that b € EurCity’.

It follows from a € (Flight M VAirline.AmCity) that a € Flight’.
Finally, we have the three assertions a € FIightI, (a,b) € Stop’ and b € EurCity’,
which entails that a € (Flight 1 3Stop.EurCity)?.

—Since def(q) = Flight M 3Stop.EurCity, and since a € (Flight 1 3Stop.EurCity)?, we
obtain that a € q.

O

As illustrated in the above example, the languages for defining queries, views and
rewritings may be different. In Example 4, the query and the views are expressed
in the same (terminological) language FLE, while the rewriting is defined in the
relational language CQ. It is important to note that the existence of a rewriting
depends on the rewriting language that is considered. For instance, in Example
4, the query q defined by Flight M 3Stop.EurCity does not have any FLE rewriting
using the set of views V, while we have exhibited a CQ rewriting.

In addition, as pointed out in [Baader et al. 2000], it is important to observe
that decidability results and algorithms for checking the existence of £3 rewritings
cannot be transferred to rewriting languages that are sublanguages of Ls.

4.2 Connection between rewriting queries using views and answering queries using
views

The problem of answering queries using views (Definition 3.11) is the problem of
computing the answers to a query having data only in extensions of views. The
problem of rewriting queries using views (Definition 4.1) is the problem of refor-
mulating an original query into queries whose definition uses only view predicates.
As pointed out in [Abiteboul and Duschka 1998; Calvanese et al. 2000; Calvanese
et al. 2000b], those two problems though tightly related, are not equivalent. It
follows immediately from Definitions 3.11, 3.13 and 4.1 that evaluating rewritings
on the views extensions provides answers of the original query (w.r.t. those views
extensions). However, in the general case, it is not guaranteed that a maximally
contained (or even an equivalent [Calvanese et al. 2000b]) rewriting of a query using
a set of views provides all the answers that can be obtained for the query from the
extensions of the views. It depends on the restrictions imposed on the languages
L1, Lo and L3 for defining the queries, the views and the rewritings. In particular,
there may be a rewriting in a more expressive language than L3 that may provide
more answers than the answers of any rewriting in L3 .

In an information integration setting where the sources are on the network, the
view extensions are not directly available. Rewriting queries using the view defi-

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

Answering Queries using Views . 15

nitions and then evaluating the rewritings is the only effective method for getting
answers to users queries. It is therefore important to exhibit cases in which the
evaluation of rewritings provides all the answers of the original query. Theorem 4.3
exhibits such a case, based on the result provided by Proposition 4.2 which shows
the central role of conjunctive queries as the basis for a rewriting language. As a
corollary of Theorem 4.3, Corollary 4.4 outlines a sufficient condition characterizing
settings in which the problem of answering queries using views has a polynomial
data complexity.

PROPOSITION 4.2. Let q be a query expressed in o language L1 of CARIN over
the vocabulary of an ontology O. LetV be a set of views defined in a language Lo
of CARIN over the same vocabulary. Let ext(V) be the union of the extensions of
the view predicates.

If there exists @ € Ans(q, ext(V)) then there exists a CQ7 rewriting qy of q using
V such that @ € Ans(gy, ext(V)).

PROOF. Let @ be an answer of g over V. Let C be the set of all the constants
appearing in ext(V): every constant a of @ belongs to C, but other constants than
those of @ may belong to C too.

Let Var be an infinite set of fresh variables, and let ¢ be an injective mapping
from C to Var such that every constant ¢ € C is mapped to a fresh variable ¢(c)
in Var. For any vector ¢ = (c1,...,¢n) we denote by ¢(¢) the vector of variables
(¢(c1),-..,d(cn)). Let X be the vector of variables resulting from the mapping of
the tuple @ ¢(@) = X. Let Y be the variables of ¢(C) that do not belong to X.
X will be the vector of the distinguished variables of the rule that will define our
rewriting, while Y will be its existential variables.

Let gy be the conjunctive query defined by: gy (X) : — No(&)ceat(v) v(#(C)). Since
¢ is an injective mapping, all the pairs of variables of that query must be stated
as different: gy is therefore a conjunctive query with inequalities. We omit writing
those inequality atoms ¢(c;) # ¢(c;) for clarity reasons.

Let us show that gy is a CQ7 rewriting of ¢ using V, i.e., that for any interpre-
tation I which is a model of every v € V and of the ontology O, if & € g, then
oeql.

Consider o € q{, : there exists a mapping a from X UY to the domain A’ such
that a(¢(€)) € v! for every conjunct v(¢(¢)) in the body of the rule defining gy,
and such that for every i # j, ¢(c;) # d(c;).

We extend the interpretation I to the constants of C as follows: for every c € C,
¢! = a(¢(c)). I is therefore a model of ext(V) since for every v(¢) € ext(V), & € vl.

Therefore, I is a model of O, V and of ext(V). According to Definition 3.11,
since @ is an answer of ¢ using V, we have: @’ € ¢’.

By construction of the extension of I to the constants of C, we have @’ = a(¢(a)).
Since (@) = X, @ = a(X) = 6. Therefore, we obtain: € ¢/. O

The following theorem is a consequence of Proposition 4.2 . It shows that when a
query has a finite number of mazimally contained conjunctive rewritings, then the
complete set of its answers can be obtained as the union of the answer sets of its
rewritings.

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

16 . F. Goasdoué and M.-C. Rousset

THEOREM 4.3. Let V be a set of views defined in a language Lo of CARIN over
the vocabulary of an ontology. Let q be a query expressed in a language L1 of CARIN
over the same vocabulary. If q has a finite number of maximally contained CQ7
rewritings, g3, - - -, ¢33, then:

Ans(g, ext(V)) = U Ans(db, ext(V)).

=1

ProoF. It follows immediately from Definitions 3.11, 3.13 and 4.1 that Ans(q{,,
ext(V)) is included in Ans(g, ext(V)), and then so is their union.

For showing the inclusion of Ans(g, ezt(V)) in J;_; Ans(g}, ext(V)), let us con-
sider an answer @ belonging to Ans(g,ext(V)). According to Proposition 4.2,
there exists a CQ7 rewriting qy of ¢ which, by construction is such that a €
Ans(qy, ext(V)).

qy is necessarily subsumed by one of the maximally contained co” rewritings
q{, of ¢. According to Definition 3.12, Ans(gy,ext(V) is therefore included in
Ans(gi,, ext(V)), and then since @ € Ans(gy, ezt()V)), @ belongs to Ans(di,, ext(V)),
and thus to |J]_, Ans(q},, ext(V)) too. [

The following corollary of Theorem 4.3 results from the fact that answering con-
junctive queries (possibly with inequalities) over a given database instance has a
polynomial data complexity.

COROLLARY 4.4. Let Ly be a query language and Ly be a view language such
that every Ly, query has a finite number of mazimally contained C o7 rewritings
using Lo views. Then, the problem of answering L1 queries using only extensions
of L2 views as input has a polynomial data complezity.

4.3 Couching previous work within our framework

Before describing the specific instance of the rewriting problem that we study in
detail in this paper, we situate previous work dealing with answering or rewriting
queries using views within our general framework. We point out when algorithms
have been implemented in information integration systems.

—In [Halevy 2001], the bucket, inverse rules and minicon algorithms are described
and compared. They allow to rewrite queries using views in a setting where the
languages L1, L2 and L3 for defining queries, views and rewritings are relational
languages, possibly extended with arithmetic comparison predicates. Those algo-
rithms have been developed specifically for the context of information integration:
the bucket algorithm has been implemented in The Information Manifold system
[Levy et al. 1996] and the inverse rules algorithm has been implemented in the
InfoMaster system [Duschka and Genesereth 1997].

—1In [Abiteboul and Duschka 1998], the complexity of answering queries using views
is studied when queries and views are expressed in variants of relational languages
allowing inequalities or negation in the view and/or query definitions. It is shown
that the complexity depends on whether views are assumed to store all the tu-
ples that satisfy the view definition, or only a subset of it (which is the case
corresponding to the setting considered in this paper).

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

Answering Queries using Views . 17

—The query and view languages £y, L2 that are considered in [Calvanese et al.
2000a] for defining the problem of answering queries using views are the language
L of regular expressions on a set of binary predicates (those regular expressions
represent paths within a graph in which the edges are labelled). £ can be easily
transformed into the relational language which is recursive and which is built on
binary predicates only.

—The first extension to description logics for defining the problem of rewriting
queries using views has been presented in [Beeri et al. 1997] . Two instances of
the rewriting problem were studied there:

—The datalog-rewriting problem considers non recursive CARIN-ALN, which is
a hybrid language of CARIN, as the query and the view languages, while the
rewriting language is the relational language of CARIN. It is shown that if the
view definitions do not contain existential variables, then it is always possible
to find a finite set of conjunctive rewritings maximally contained in the query.
However, if the views have existential variables, it is not always possible to find
a maximally contained Datalog rewriting.

—The dl-rewriting problem considers a purely terminological language of CARIN
as the query, view and rewriting languages: queries, views and rewritings are
expressed in the description logics ACCNR.

—1In [Baader et al. 2000], a general framework is presented for defining rewritings
that are expressed in a description logic L3 for queries that are concept descrip-
tions of a description logic £, using views that are defined in a description logic
Lo. Our framework encompasses it since the query, view and rewriting languages
considered in [Baader et al. 2000] are terminological languages of CARIN. The
specific rewriting problem which is then studied in detail and for which a rewrit-
ing algorithm is provided, is the minimal rewriting problem when L, L2 and L3
are all ALE: it consists of finding an equivalent ALE rewriting of minimal size
for a query which is a ALE concept description, using view definitions that are
roles or ALE concept descriptions.

—[Rousset 1999] deals with a new decidable instance of the datalog-rewriting prob-
lem introduced in [Beeri et al. 1997], in which the query language is a hybrid
language of CARIN, while the view language is a terminological language of CARIN,
and the rewriting language is a relational language. In fact, the query and rewrit-
ing languages are the same as in [Beeri et al. 1997), i.e., non recursive CARIN-ALN
and CQ respectively while the view language is ALN. This restriction guaran-
tees that it is always possible to compute the (finite) set of maximally contained
conjunctive rewritings of a query, and therefore to obtain (Theorem 4.3) the set
of all its possible answers using views from its rewritings. An incomplete im-
plementation of the rewriting algorithm presented in [Rousset 1999] has been
used for answering users queries in the PICSEL information integration system
[Goasdoué et al. 2000].

—In [Calvanese et al. 2000], the complexity of answering queries using views is
studied for queries and views that are unions of conjunctives queries over de-
scriptions of the description logics DLR. DLR [Calvanese et al. 1998] is a very
expressive description logics embedding n-ary relations. The complexity is stud-
ied under different assumptions about the objects in the view extensions (closed

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

18 . F. Goasdoué and M.-C. Rousset

versus open domain assumption) and the accurateness of the view definitions for
representing their actual content (sound, complete, or exact views). It is shown
that under the open domain assumption (which corresponds to the setting of this
paper), checking whether a tuple is an answer to a query using views extensions
is decidable (in double exponential time) when the queries and the views are
unions of conjunctives queries over DLR expressions.

5. A CASE STUDY APPROPRIATE FOR THE SEMANTIC WEB

While there is a general agreement on the central role of ontologies in the Semantic
Web for mediating between users and distributed data, the discussion is still open
on which kinds of ontologies are the most appropriate. In particular, it is difficult
to find the right tradeoff between simplicity of use for end-users, expressive power
for a fine-grained modeling of the data sources, and computational complexity for
query answering.

In this section, based on our experience both on theoretical and practical as-
pects of information integration, we define a setting for information integration
centered on ontologies that are simple enough for users or practitioners who are
not knowledge engineers or logicians. The design of this simple setting has re-
sulted from the lessons drawn from the PICSEL [Picsel | and MKBEEM [Mkbeem]
projects: the ontology designers did not exploit the full expressive power of ALN
which was offered to them for modeling their application domain. In particu-
lar, they hardly used the number restrictions constructors while they extensively
used the value restriction constructor but with the implicit assumption that the
roles r involved in an expression Vr.C' have atleast a filler (which does not cor-
respond to the logical semantics of the V constructor). We introduced the V*
constructor (see Section 5.1) in order to capture the intuitive meaning of value
restrictions that most of knowledge engineers have in mind, e.g., when they write
Hotel 1 VT Associate Room.With AirConditionning, they assume that hotels has
at least one room. Replacing the V constructor by the V+ constructor results in the
AL™ description logic, which is a sublanguage of ALN. The rewriting algorithm
that will be described in Section 5.3 is therefore a restriction of the one described in
[Rousset 1999], compared to which the worst case time complexity is significantly
reduced.

We start by presenting precisely this setting by defining it as a particular instance
of the formal framework presented in Section 3. We then state the rewriting problem
that we consider for that instance. Finally, we provide a rewriting algorithm, and
we show that it is sound and complete. According to Theorem 4.3 and Corollary
4.4, this provides a method for anwering queries using views which is complete while
having a polynomial data complexity.

5.1 The particular instance

We first define the ontologies that we consider, and then the queries and views that
are allowed over those ontologies.

5.1.1 Ontologies. The ontologies that we deal with are CARIN ontologies (Sec-
tion 3.2) with empty deductive components. They are reduced to terminologies

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

Answering Queries using Views . 19

(a.k.a. TBox) with restricted inclusion statements and concept definitions using a
limited description logic simply enabling stating concept conjunction and elemen-
tary typing information for necessary roles.

The inclusion statements that are allowed are of the two following forms:

—ALC B,
—or ANBLC 1,

where A and B are atomic concepts.

We restrict the inclusion statements of a TBox to be acyclic: there is no chain
L=1Ly,Lq,...,L, =L such that the inclusion statements L;_; C L; are included
in the TBox.

The concept definitions use the description logic (denoted AL™) whose construc-
tors are: top (T), bottom (L), atomic negation (—4), conjunction (C; N C2) and
the necessary value restriction (Vtr.C). The latter constructor is not standard in
description logics. Its semantics is given by the equivalences:

(Vtr.C) = (Vr.C)N (3r.T) = (Vr.C) N (> 1r).

We consider normalized terminologies. The normalization of a TBox 7 is per-
formed by:

(1) adding the inclusion statement —B C —A for each A C B belonging to 7,

(2) replacing each statement AM B C L of 7 by the two inclusion statements:
AC —-Band BLC -4,

(3) unfolding the concept definitions as mentioned in section 3.2, and exhaustively
applying the following normalization rule on the unfolded definitions:

(V+7'.(01 [l Cz)) — (V+’I".Cl) 1 (V+’I".Cz)

As a result, each concept description defining a concept name has the form of a con-
junction C;M...MCy such that each conjunct C; has the form L or Vtry..--.V*r,.L
where L is either an atomic concept or the negation of an atomic concept.

This allow us to state:

PROPOSITION 5.1. Given a normalized ALY TBoz T, checking the satisfiability
of the T can be done in polynomial time.

PRrROOF (SKETCH). The proof relies on showing that 7 is unsatisfiable iff:

—there are atomic concepts or negations of atomic concepts L = Ly, L1,...,L, =

=L such that the inclusion statements L;_; C L; are included in 7,

—or, if a concept description C defining a concept name is unsatisfiable. C is
unsatisfiable iff:

—it has a conjunct of the form L or VTry. .- Vtr,. L,

—or it has two conjuncts V*ry.---.Vtr,.Land V*ry.--- Vtr,.LL, or L and LL,
such that L and LL are incompatible. L and LL are incompatible if there
exists L = Lo, Ly,...,L, = L' and LL = LLy,LLq,...,LL; = —L' such that
the inclusion statements L;_y C L; and LL; 4 C LL; are included in 7.

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

20 . F. Goasdoué and M.-C. Rousset

O

From now, we consider that the TBoxes that we deal with have been checked as
being satisfiable.
Given a satisfiable normalized TBox 7", and two normalized AL™ satisfiable concept
descriptions C and D , checking the subsumption modulo 7 between C' and D can
be done in polynomial time as well:

—C =7 D iff every conjunct of C is subsumed modulo 7 by one conjunct of D.
—Vtry o NP L 2 Vel Vel L iff n = p, Vi, r; = rj, and L X7 L'.
—L =<7 L' iff there are atomic concepts or negations of atomic concepts L =

Ly, L,,...,L, = L' such that the inclusion statements L;_, C L; are included in

T.

5.1.2 Queries. The queries that are allowed are CQ-AL™ expressions built over
the vocabulary of the ontology. This language is interesting in practice since it
extends the language of conjunctive queries to the one of typed conjunctive queries.

We consider normalized queries. A query is normalized by:

(1) replacing in the query each pair of atoms C1(U) A C2(U) by the atom (Cj IN
02)(U)a

(2) replacing in the query each occurence of a concept defined in T by its definition,
(3) normalizing the concept descriptions appearing in the query in the same way
as the concept definitions of the ontology were.

5.1.3 Views. The views are defined either by roles or AL' concept descriptions
built over the vocabulary of the ontology.
As for the queries, the views are normalized in the same way as queries are in the
above steps (2) and (3).
5.2 The rewriting problem

Based on the results of Theorem 4.3 and Corollary 4.4, in order to guarantee that
query answering can be soundly and completely performed with a polynomial data
complexity through a first step of query rewriting, we choose the purely relational
language of conjunctive queries (CQ) as the rewriting language.

The problem of rewriting queries using views that we study in the remainder of
the paper can be formally stated as follows.

Given:

—an AL"' normalized and satisfiable TBox 7,

—a normalized and satisfiable CQ- AL query ¢ over T, and

—a set of normalized and satisfiable AL views V over 7.

Question:

Does there exist a finite set of maximally contained CQ rewritings of g using V?

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

Answering Queries using Views . 21

5.3 The rewriting algorithm

First, we present and study the RewriteAtom algorithm that rewrites atomic
queries of arity 1 (defined by a concept-atom) or of arity 2 (defined by a role-
atom). Then, we will focus on the RewriteQuery algorithm that rewrites a whole
conjunctive query of any arity.

5.3.1 RewriteAtom. We introduce the @) operator that acts as a cartesian
product of conjunctions. This binary operator, which will be used to combine
rewritings, works on set of atom conjunctions as follows:

—0®{csr, .. cin} =0

—{ejt, ..., ci™ ®{cit, - - -, cin} = {cit Acit, . oy I ACTn, - - ., €I ACTL, - - -, CITA
cjn}

The RewriteAtom algorithm computes at least all the maximal rewritings of a
query.

Rewrite Atom algorithm

input: an AL" normalized and satisfiable TBox 7, an normalized and
satisfiable atomic query q over 7 defined by either a role-atom or a
concept-atom, and a set of normalized and satisfiable views V also over
T.

output: a set of CQ rewritings of ¢ including all the maximal rewritings.

if g is defined by a role-atom r(Uy,Us) then
result := {v(Uy,Us2) | v € V and def(v) =r}
else if g is defined by a concept-atom ([, C;)(U1) then
result := @, RewriteAtom (T, C;(U1),V)

else result := {vo(Upy1) A /\211 Vi(Um+2—i, Umt1—i)
| Vi € [0..m] v; €V,
and def(vo) = (V*ry.-+- VTr,.D) M --.) with D <+ C,
and Vi € [1..m]def(v;) = r;}

return result

The first if concerns the rewriting of binary atomic queries defined by role-atoms:
those using views explicitly defined as the corresponding roles.

The else if deals with conjunctions of concept descriptions and is based on the
following logical entailment (actually an equivalence):

A GO E ([]C)(O).
i=1 =1
The final else is dedicated to concept-atoms of the form: T, A(U1), (-4)(U1),
(Vtrp.--- Vel T)(U1), (VTry.--- YT, A)(U1) and (VHry.---Vtrl, —A)(U1). It
results from the validity of the following logical entailment, which holds for any
concept description C' and D such that D <+ C:

m
(V1 VT D) (Umgr) A)\ 7i(Umt2—i, Umsa—i) = C(Un).
i=1
ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

22 . F. Goasdoué and M.-C. Rousset

Note that if m = 0 this case reduces to subsumption between two concept descrip-
tions (D X7 C) .

5.3.1.1 Properties of Rewrite Atom. We consider in turn the termination, sound-
ness and completeness of Rewrite Atom. Finally, we study its worst case time com-
plexity.

Termination When Rewrite Atom is applied to a role-atom (if) or a concept-atom
that does not contain a conjunction (else), its termination is immediate since there
is no recursive call at all and V is finite. Otherwise, when it is applied to a concept-
atom that contains a conjunction (else if), the termination is guaranteed because
all the recursive calls lead to the previous case (else).

Soundness and completeness Theorem 5.2 states the soundness and complete-
ness of RewriteAtom.

THEOREM 5.2. Let T be a normalized and satisfiable ACT TBoz. Let q be a
normalized and satisfiable atomic query over T defined by a role-atom or an AL
concept-atom, and V be a set of normalized and satisfiable AL views also over T.
Let result be the output of Rewrite Atom(T,q,V):

—each element of result is a CQ rewriting of q (Soundness)

—every CQ rewriting of ¢ has a body that includes (up to a renaming of existential
variables) all the view-atoms of at least one element of result (Completeness).

The proof of soundness is straightforward. It suffices to check that the rewriting
rules encoded in RewriteAtom (i.e., the above logical entailments) are true.

The proof of completeness is more complex. We first summarize the general
strategy that we follow. Then, we explain the technical machinery that we employ,
which is based on the computation of completions from a given knowledge base
using a set of propagation rules as described in [Nardi et al. 1995]. Finally, we state
the different lemmas that compose the proof and we explain their role in the proof.

GENERAL STRATEGY We need to characterize the conjunctive rewritings g, of an
atomic query g which is defined either by a role-atom r(U1, Us) or a concept-atom
C(U). By definition, g, is a rewriting of g iff for every model I of the TBox 7 and of
the views, g C ¢’. According to Definitions 4.1 and 3.13, if we identify the distin-
guished variables of g, and g, this is equivalent to: ezpand(body(q,)), T | C(U) (re-
spectively r(Uy, Us)), where ezpand(body(g,)) is the conjunction of AL' concept-
atoms and role-atoms obtained by replacing in the definition of ¢, every view pred-
icate v by its definition.

Therefore, for each kind of atom C(U) or r(Uy, Uz) defining an atomic query possi-
bly appearing in the setting of application of Rewrite Atom we have to characterize
the different knowledge bases made of AL™ concept-atoms and role-atoms which
entail it, while satisfying the inclusion statements of 7.

TECHNICAL MACHINERY Given a knowledge base So made of ALt concept-atoms
and role-atoms such that So, 7 = C(U) (respectively 7(Uy,Uz)), we consider the

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

Answering Queries using Views . 23

(unique) completion of Sy using the following propagation rules:

(1) S —=n {Ci(s),C2(s)}U S if
(a) (01 NCs2)(s) isin S,
Ci(s) and Cs2(s) are not both in S.
—>v {C¥)}uSif
V+r.C)(s) isin S,
r(s,t) is S,
C(t) is not in S.
(3) S =+ {r(s,t),Ct)}US if
(a) (Vtr.C)(s) isin S,
b) tis a fresh variable,
r(s,t) is not in S.
(4) S—c {L'(s)}uSif
(a) L(s)isin S,
(b) L C L' is an inclusion statement in T,
(c) L'(s)isnot in S.

—_
o
~

Starting from Sy, we obtain S; by successively applying ¢ propagation rules. We
stop when no propagation rule applies on S,: S, is called the completion. Note
that there is a unique completion because we are in AL'. In a knowledge base
S obtained from an initial knowledge base Sy, we must distinguish the generated
variables, which are created by the application of the propagation rule —y+, from
the initial variables which are the individuals appearing in the atoms of Sy,. We
will denote the initial variables by capital letters U, V, X, Y, Z while we will denote
the generated variables by letters u, v, w. An object of S is a (initial or generated)
variable, and will be denoted s.

For a knowledge base S, we define the dependency graph of its variables as
follows: its nodes are the (initial or generated) variables appearing in the atoms of
S ; there exists an edge from s; to sy iff 7(s1, s2) is an atom of S. Examining the
propagation rules reveals that the generated variables form a forest of trees in that
graph, each tree being rooted in an initial variable.

Given a completion S, we define its canonical interpretation Ig as follows:

(1) Ofs := {s| s is an object in S},
(2) sls :=s,
(3) for an atomic concept A, s € A’s if and only if A(s) € S,
(4) (s1,82) € rIs if and only if 7(s1,52) € S.
The extensions of the complex concepts are computed using the equations defin-

ing the semantics of AL™ constructors.

The main existing results that we will use in our proof are the following ones (from
[Levy and Rousset 1998a)):

(1) Let S be the completion of Sy, and let Is be its canonical interpretation. Then,
Is is a model of S. We can therefore refer to the canonical interpretation of a
completion as its canonical model.

(2) Let S be the completion of So: So, T = p(U) iff S = p(U).

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

24 . F. Goasdoué and M.-C. Rousset

STRUCTURE OF THE PROOF OF COMPLETENESS Lemma 5.3 characterizes the knowl-
edge bases, made of ALT concept-atoms and role-atoms, which entail a role-atom
r(U1,Us). It follows from this lemma that every rewriting of an atomic query of
arity 2 defined by a role-atom 7(Uy, Us2) must include an atom of the form v(Uy, Uz)
such that def(v) = r. This corresponds to the rewritings computed in the if in
Rewrite Atom.

LEMMA 5.3. Let r(Uy,Us) be a role-atom. If Sg is a knowledge base made of
ALT concept-atoms and role-atoms such that So, T E r(Uy,Us), then r(Uy,Us)
belongs to Sy.

PROOF. Let S be the completion computed from Sy, and Is its canonical model.
Is is a model of r(Uy, Us): there exists a mapping a from {U;,Us} to the domain
Ofs of Is such that a(Uy) = Uy, a(Us) = Us, and (a(U),a(Us)) € ris. By
definition of Is, (a(U;),a(Uz)) € r’s means that r(U;,Uz) € S. Considering the
propagation rules, r(U;,Us) cannot have been produced by the application of a
propagation rule. Therefore, it must be the case that r(Uy,Us) € So. O

We focus now on the entailment of concept-atoms C(Uy).

Lemma 5.4 deals with the case where a concept-atom C(U;) is entailed by a knowl-
edge base Sy because there exists a concept D which is subsumed by C such that
D(U;) € S where S is the completion obtained from So. This case leads to the
rewritings computed in the else of RewriteAtom.

LEMMA 5.4. Let Sy be a knowledge base made of ALT concept-atoms and role-
atoms such that Sp, T |= C(U1). Let S be its completion. Let D(Uy) be a concept-
atom of S such that D <7 C. Then, either D(Uy) € Sy or there exists a concept
of the form (V*ry.--- V¥tr,,.D) and variables Upyi1,...,Ur such that:
(Vtry.e - V7. D) (Ums1) € So and 7i(Umia—i, Unt1—i) € So, for every i €
[1..m].

PROOF. Let S; be the knowledge base resulting of the application of ¢ propaga-
tion rules to Sp. We consider the case where D(U;) € S and D(U;) € So. There
exists m > 0 such that D(U;) € S,, and D(U;) € Spm—1. One propagation rule has
been applied in order to produce D(U;). Since D(Uy) € Sy, and D(U;y) € Sp—1,
it cannot be the rule =7 or —. It cannot be the rule —y+ since U; is an initial
variable. Therefore, the rule —y has applied, and that means that there exists
a role r,,, and a variable U, s.t. (V™r,,.D)(U,) and r,,(Us,U;) are in Sp_y. Us
is necessarily an initial variable too, and therefore r,,(Us,U;) must belong to So
in order to be in S,,—;. While m — 1 # 0, we can iterate the same reasoning
on (Vtr,,.D)(Us) € S;_1 by induction on m — 1, which ends the proof of the
lemma. O

Lemma 5.5 concludes the proof of Theorem 5.2. It deals with the case where a
concept-atom C(U1) is entailed by a knowledge base So and 7 while there does not
exist any concept D subsumed by C such that D(U;) € S. It can be the case when
C is a conjunction. This case leads to the rewritings computed in the else if of
Rewrite Atom.

LEMMA 5.5. Let C = |_|;L:1 C; be a normalized and satisfiable concept descrip-
tion. Let Sy be a knowledge base made of ALT concept-atoms and role-atoms such

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

Answering Queries using Views . 25

that So, T |= C(U1). If the completion S of So does not include any atom D(Uy)
such that D <1 C, then for j € [1..n] there ezists either D;j(Uy) € So such that
D; X7 C; or there exists a concept of the form ‘v"*‘rlj. e .\7’+rmj .D; and variables
Um;+1,---,U1; such that:

(Vtry, .- V7, D) (Um;+1) € So and 75;(Um,+2—i;, Um;+1—3;) € So, for every
ij € [1..mj].

PROOF. Let S be the completion of Sy. Since So,7 E C(Up) then Vj €
[1..n] S |= C;(U1). Given any Ci(Uy) among C1(U1),...,Cn(U1), it can be of the
form T(Ul), A(Ul), (“A)(Ul), (V+’I“1. te .V+’I‘m.—|—)(U1), (V+’I‘1. te .V+rm.A)(U1) or
(Vtry.- - Vtr,.—A)(Uy). It is easy to see that S must contain an atom Dy (U;)
such that Dy <7 Cj} in order to have S |= C(U1). This case is handled by Lemma
54. O

Worst case time complexity We give an upper bound of the worst case time
complexity of Rewrite Atom. In order to simplify the complexity analysis, we sup-
pose that the set V of views is not redundant in the following sense: distinct views
have distinct definitions.

THEOREM 5.6. The time complexity of RewriteAtom is at worst:

—upolynomial in the size of the TBox,
—opolynomial in the number of views and in their size, and
—exponential in the size of the query.

PrOOF. In this complexity analysis, we use the following parameters:

—s7 is the size of the TBox T

—u is the number of views

—c¢, is the maximal number of conjuncts in the normalized view definitions

—d, is the maximal depth of the normalized view definitions (i.e., the maximal
number of nested V)

—cq is the maximal number of conjuncts in the query, when the query is a concept-
atom

In order to prove Theorem 5.6, let us review the possible queries.

(1) If the query is a role-atom r(Uy, Uz), Rewrite Atom checks views in V (< v) in
order to find one whose definition is r (if).

(2) If the query is a concept-atom C(U;) whose predicate is not a conjunction
(else), for each conjunct (< ¢,) of each view (< v), RewriteAtom has to:
(a) check if D X7 C (< s7),
(b) find views (< d,), whose definitions are roles, among the views (< v), and
(c) combine them (< d,).
It follows that the rewriting time is at worst less than v.c,.(s7 + dy.v + dy) <
ST.Cy.dy. V2.

(3) If the query is a concept-atom whose predicate is a conjunction ([T:2, Ci)(U1),
RewriteAtom has to perform ¢, recursive calls that lead to the above case 2
and to combine the rewritings produced by these recursive calls (cost of).

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

26 . F. Goasdoué and M.-C. Rousset

An upper bound of the number of rewritings produced by such a call is the time
it takes to perform this call. The reason is that, in the worst case, each time
RewriteAtom performs an operation, it builds a rewriting. Thus, it follows
that the rewriting time is less than (s7.c,.dy.v?)% + ¢4.(87.¢4-d,.v?) and even
2.(s7.Cp-dy.v%)°.

We can end this proof by stating that an upper bound of the worst case time
complexity of RewriteAtom is in O((s1.cy.dy-v%)%). O

5.3.2 RewriteQuery. We reuse an algorithm introduced in [Goasdoué 2001]
in order to extend the atomic queries managed by RewriteAtom to conjunctive
queries. The underlying idea is to combine (using) the rewritings of every
atoms defining a query (computed by Rewrite Atom) in order to obtain (maximal)
rewritings of that query. However, as it is shown in the forthcoming example,
such a strategy may miss some maximal rewritings if we only consider the query
to rewrite. The approzimation of some subqueries by concept-atoms may lead to
additional rewritings. RewriteQuery computes first a set of approximations of the
initial query, then rewrite them following the above strategy in order to obtain all
the maximal rewritings of the initial query.

The approximation of a query is defined thanks to the notions of binding graph
and tree query. The binding graph accounts for the connection existing between
variables within a query.

Definition 5.7 Binding graph of a conjunctive query. Let ¢ be a conjunctive query.
Its binding graph (denoted by G(q)) is a directed graph defined as follows:

—the nodes of G(q) are the variables of ¢ and
—there exists an edge labelled by r from U; to Uz in G(q) iff r(Uy,Us) is in q.

The binding graph allows to define several classes of conjunctive queries like tree,
forest, dag, connected queries ([Goasdoué and Rousset 2002]). Here, we are inter-
ested in tree queries.

Definition 5.8 Tree query. Let g be a conjunctive query with a unique distin-
guished variable X. q is a tree query iff its binding graph is a tree rooted in X.

In [Goasdoué and Rousset 2002], we have exhibited an operator, denoted Approz+,
that computes the maximally subsumed concept-atom, whose concept description is
in ACT, of a CQ-ALT tree query. Given this operator, the notion of approximation
of a query is the following.

Definition 5.9 Approzimation of CQ-ALY queries. Let q be a CQ-AL' query.
An approzimation q' of q is a CQ-AL' query obtained by replacing in g some
subtree queries g1, ...,q, by Approz+(q1),..., Approz+(g,).

However, an ALT concept-atom can be subsumed by a query which is not nec-

essarily a tree but a query for which a restriction is a forest query, i.e., it contains
only tree subqueries ([Goasdoué and Rousset 2002]).

Definition 5.10 Restriction of a query. Let q be a query. A restriction of q is a
query ¢’ obtained by equating some variables of ¢ with some other variables of q.

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

Answering Queries using Views . 27

It follows from this definition that a query subsumes each of its restrictions.
Rewriting approximations of a query’s restrictions might lead to obtain maximal
rewriting for that query.

Finally, a particular case concerns queries having boolean subqueries, i.e., a sub-
query that constains only existential variables that do not appear elsewhere in the
query. Rewriting approximations of a complement of such a query or of one of its
restrictions might lead to obtain maximal rewriting for that query.

Definition 5.11 Complement of a query w.r.t a set of views. A complement of a
query q is a query obtained by adding in the body of ¢ for some concept-atoms of the
form C(Y) such thatY is an existential variable and there is no role-atom r(U,Y)
in g, a conjunction of role-atoms A}, 7;(U;, Uit1) Ar(Uiy1,Y) where Uy, ..., Untq
are fresh existential variables and the nesting V*r;.---.V*r,;.VTr appears in the
view definitions.

The following example intends to show how the above notions are used in our
rewriting algorithm.

EXAMPLE 5. Let us consider the two queries

q1(X) : — Flight(X) A DeparturePlace(X,Y) A EurCity(Y)
A NightFlight(Z) A DeparturePlace(Z,Y)

g2 : — HousingPlace(Y")
and assume that they are built over an ontology including the statements NightFlight C
Flight, Hotel C HousingPlace and FrenchCity C EurCity.
In q1, the user indicates that he wants flights whose departure places are european
cities and such that there is some night flight that leaves those places.
g2 is a boolean query expressing that the user wants to know if there exists sources
providing housing places. Note that this query is not an atomic query that can be
handled by Rewrite Atom because its arity is 0 and not 1.

Let V = {v1,V2} be the set of available views such that:
def(v1) = NightFlight 1 V*DeparturePlace.FrenchCity,
def(v2) = Excursion V" RestingPlace.Hotel.
vy stores instances of night flights whose departure places are french cities and v,
stores instances of excursions whose resting places are hotels.
RewriteQuery will compute the following rewritings for q; and gy respectively:

q%)(X) T VI(X)a

a5 1 — va(2).
q%, is obtained by first computing the restriction q;’ of q;:

d1'(X) : — NightFlight(X) A DeparturePlace(X,Y") A EurCity(Y).
This new query, which is subsumed by q, is a tree query and thus has an approxi-
mation:

a1"(X) : — (NightFlight 1Vt DeparturePlace.EurCity) (X).
It is now easy to see that q:”, which is subsumed by qi’, has a direct rewriting
using V: q},.
q%, is obtained by first computing the complement q,’ of qs:

g2’ : — RestingPlace(Z,Y) A HousingPlace(Y').
gz’ is subsumed by q as well as its approximation q,” : — (V+RestingPlace.HousingPlace)(Z).
It is now easy to see that q," has a direct rewriting;: q%,. O

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

28 . F. Goasdoué and M.-C. Rousset

Given the above definitions, we can state the algorithm RewriteQuery that com-
putes at least all the maximal CQ rewritings of CQ-AL™ queries using AL views.

RewriteQuery algorithm

input: an AL" normalized and satisfiable TBox 7, a normalized and
satisfiable CQ-AL™ query q over T, and a set of normalized and satisfi-
able views V over T.

output: a representative set of all the CQ rewritings of q.

result =0
for each ¢’ among ¢ and its normalized restrictions do
for each ¢' among ¢’ and its normalized complements do
for each ¢"" among ¢" and its normalized approximations do
let ¢"'(X) : — Al a; be the definition of ¢’
for each conjunction CJ € Q-_, RewriteAtom(T,a;,V) do
result = result U {q,} where g, is defined by ¢,(X): —CJ

return result

We consider in turn the termination, soundness and compleness of RewriteQuery.
Finally, we study its worst case time complexity.

Termination The termination of RewriteQuery follows from the termination of
Rewrite Atom and from the finite number of the restrictions (finite number of vari-
ables), complements (finite number of views) and approximations (finite number of
atoms and thus of subtree queries) of a given CQ-AL™ query.

Soundness and completeness Theorem 5.12 states the soundness and complete-
ness of RewriteQuery.

THEOREM 5.12. Let T be a normalized and satisfiable ACT™ TBoz. Let q be a
normalized and satisfiable CQ-AL™ query over T, and V be a set of normalized and
satisfiable views also over T .

Let result be the output of RewriteQuery(T,q,V):

—each element of result is a CQ rewriting of q (Soundness) and

—every CQ rewriting of ¢ has a body that includes (up to a renaming of existential
variables) all the view-atoms of at least one element of result (Completeness).

The proof of soundness is straightforward. It suffices to check that a restriction, a
complement or an approximation of a CQ-AL' query q is subsumed by ¢. Thus,
the CQ queries over V computed in the inner for of RewriteQuery are rewritings
of the input query.

The full proof of completeness is in [Goasdoué 2001]. Here we only sketch it by
mentioning the main lemmas.

It has to be shown that the body of any rewriting g, of ¢ includes (up to a
renaming of the existential variables) the atoms appearing explicitly in a rewrit-
ing of the input query, or of a restriction, complement or approximation. Since
Rewrite Atom computes all the maximal rewritings of any atomic query (Theorem
5.2), the completeness of RewriteQuery then follows.

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

Answering Queries using Views . 29

LEMMA 5.13. Let q be a query of arity n defined by a conjunction of ALY
concept-atoms and role-atoms (denoted by body(q)). Let q, be the query of same
arity defined by a conjunction (denoted by body(q,)) of view predicates of V. Let
V, = [X1,...,Xn] and V,, = [Z4,...,Z,] be the respective vectors of their dis-
tinguished variables, appearing in the head of their respective definitions. Let o
be the mapping from V, to Vg, such that o(X;) = Z; for every i € [l..n]. Let
exzpand(body(q,)) be the conjunction of ALT concept-atoms and role-atoms obtained
by replacing in the definition of q, every view predicate v by its definition. Then:
Qv is a rewriting of q using V iff expand(body(q,)), T = 3Y1,..., Y, o(body(q)),
where Y1, ...,Yy are the existential variables of ¢ and o(body(q)) denotes the con-
Junction of atoms obtained from body(q) by replacing each distinguished variable X;
by o(X;).

Let g, be a rewriting of ¢. Let V, = [X1,---,X,] and V,, = [Z1,---, %] be
the respective vectors of their distinguished variables, appearing in the head of
their respective definitions. According to Lemma 5.13: ezpand(body(q,)),T E
Ys, ..., Y, o(body(q)), where Yy, ..., Y} are the existential variables of g, and o(X;) =
Z; for every i € [1..n].

Let ¢' be obtained from ¢ by replacing its distinguished variables [X7,---, X,] by
[0(X1),---,0(X,)]- Depending on whether o is injective or not, ¢’ is equivalent
to g or to one of its restrictions (obtained by equating those distinguished vari-
ables that have the same image by o). By construction: ezpand(body(q,)),T =
3Y3,..., Yk body(q'), and thus by Lemma 5.13, g, is a rewriting of ¢'.

Therefore, without loss of generality, we can assume that the distinguished variables
of g, are included in the distinguished variables of ¢ and that: ezpand(body(g,)), T =
Y1, ..., Ys body(q'), where ¢’ is either ¢ or one of its restrictions. In any case, g,
is a rewriting of ¢'.

Let S be the completion of ezpand(body(g,)), and Ig its canonical model. Let
Ag be the objects of S. Ag is composed of the initial variables appearing in
expand(body(q,)) and of some generated variables which do not appear in ezpand
(body(gy)) but which have been added by the application of the —y+ propagation
rule. Is is a model of 3Y7,...,Y; body(q'). Therefore, there exists a mapping o
from {Y3,...,Y%} to Ag such that for every role-atom r(U;, Us) and every concept-
atom C(U) in body(q') r(a(U1),a(Uz)) isin S and S = C(a(U)).

If a is injective. We consider without loss of generality that, by renaming exis-
tential variables of the query, @ maps every existential variable of ¢’ to itself or to
a generated variable.

Case 1: There is no existential variable that is mapped to a generated variable.
It follows that every role-atom of the query appears in expand(body(g,)) and
expand(body(g,)) entails every concept-atom of the query. g, is then obtained
by @, RewriteAtom(a;,V, T) where body(q') = i, a:-

Case 2: There exists some existential variables that are mapped to generated vari-
ables. Let Y be such a variable and v the generated variable such that a(Y) = v.

—If Y has a predecessor U using r (i.e., there exists a role-atom r(U,Y)), U is
its only predecessor since v, which is a generated variable, can have only one

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

30 . F. Goasdoué and M.-C. Rousset

predecessor in S. It follows from the choice of Y that a(U) = U, r(U,Y) is in
body(q') and r(U,v) isin S.

We have shown in [Goasdoué 2001] that ¢’ contains necessarily a tree subquery
sq' rooted in U since a, which is injective, maps it to a tree subquery of S. It
follows that sq' can be replaced by its approximation. Let ¢’ be ¢' in which
we have performed the replacement. Let ¢(U) = {D | D(U) € S}, we have
Apeyw) P(U) [sq'. Since ([pey) D)(U) = Approzs(sq') then S = ¢" and
thus, from lemma 5.13, g, is a rewriting of q".

—Y does not have a predecessor. Let X be a variable of S that is not generated
and such that there exists role-atoms of the form ro(X,v1),...,7n(vn,v) where
v1,...,V, are generated variables. Let g1 be the complement of ¢' obtained
by adding the role-atoms ro(X,Y1),...,7n(Yn,Y) to its definition. This has
been possible only if VTrg.---.VTr,. appears in a definition of a view of V. By
construction, g, is a rewriting of ¢;.

If the mapping « is not injective, let ¢" be the restriction of ¢’ obtained by
equating the existential variables that have the same mapping. By construction,
ezpand(body(q,)), T = 3Yi,,...,Y;, body(q"), where Y;,,...,Y;, are the existential
variables of q”, and thus (Lemma 5.13) g, is rewriting of ¢". The restriction of the
mapping a to the existential variables of ¢" is now injective. So, we are back to the
previous case.

Worst case time complexity We give an upper bound of the worst case time
complexity of RewriteQuery.

THEOREM 5.14. The time complexity of RewriteQuery is at worst:

—upolynomial in the size of the TBox,
—polynomial in the number of views and in their size,
—ezponential in the size of the query, and
—factorial in the number of variables in the query.
PROOF (SKETCH). We use the following parameters in addition of those already
defined for Rewrite Atom:
—n, is the number of atoms in the query
—Nyar 1S the number of variables in the query

In [Goasdoué 2001], we have shown that if we consider independently each for
statement in RewriteQuery:

—an upper bound of the number of iterations performed in the first for is n,q4.!

—an upper bound of the number of iterations performed in the second for is
Ng.(Cy.dyv + 1)

—an upper bound of the number of iterations performed in the third for is 273

—an upper bound of the number of iterations performed in the fourth for is
2.(TRewrite Atom)™ %, Where TrewriteAtom iS the worst case time complexity of
Rewrite Atom.

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

Answering Queries using Views . 31

It follows that if we consider the nesting of the for statements, the worst case com-
plexity of RewriteQuery is: nyar!.ng.(cy.dy.v+1).2% % F L (Tpownite atom) ™%, O

6. CONCLUSION

In this paper, we have considered the problems of answering and rewriting queries
using views in a uniform logical setting combining Datalog and description logics,
and we have situated within that general setting most of the existing related work
([Baader et al. 2000; Beeri et al. 1997; Calvanese et al. 2000; Halevy 2001; Rousset
1999]). In particular, we have made clearer the connection between the problems
of answering queries using views and rewriting queries using views.

Then, we have described a mediator framework centered on an ontology serving
as a pivot vocabulary both for expressing users queries and for describing contents
of varied and distributed information sources. This simple framework can be seen
as a first-step towards the long-term vision of a real Semantic Web. Within this
framework, we have studied from an algorithmic point of view the problem of
answering queries by rewritings. In particular, we have provided an algorithm
that generates a finite set of conjunctive rewritings and we have proved that the
corresponding query plans are guaranteed to compute all the certain answers that
can be obtained from the available distributed information sources.

The framework that we have presented is based on the AL™ description logic,
which forces the combined use of value restriction and existential restriction for a
given role through the constructor that we have denoted V. We have introduced
this constructor because we have noticed that the standard formal semantics of
value restrictions in description logics does not fit the intuitive semantics they are
given by knowledge engineers. The constructor V' is appropriate for expressing
typing information on roles in a natural way. In addition, by restricting the use
of existential restrictions to be associated with value restrictions, it enabled us to
bypass the inherent complexity raised by existential restrictions. Existential re-
strictions are a source of complexity which is well known in description logics. The
subsumption problem is NP-complete for FLE while it is polynomial for descrip-
tion logics like ALN which do not allow existential restrictions. The presence of
existential restriction makes the problem of instance checking strictly harder than
the problem of subsumption ([Donini et al. 1994]). In particular, it has been shown
in [Donini et al. 1994] that instance checking in FLE is coNP-hard even w.r.t. to
data complexity only. This means that answering queries using views cannot be
done with a polynomial data complexity except if some limitation on the use of
existential restriction is imposed.

The centralized approach of mediation which we have considered in this paper
is a particular case of a more general architecture of a distributed information
system. The next step that we plan to investigate is a Peer-to-Peer architecture
based on distributed ontologies serving as schemas of distributed data or services.
The additional problem will be to describe and reason on relationships between
ontologies.

REFERENCES

ABITEBOUL, S. AND DuscHKA, O. M. 1998. Complexity of answering queries using materialized
views. In PODS ’98. Proceedings of the Seventeenth ACM SIG-SIGMOD-SIGART Symposium

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

32 . F. Goasdoué and M.-C. Rousset

on Principles of Database Systems, ACM, Ed. ACM Press, New York, NY 10036, USA.

BAADER, F., KUSTERS, R., AND MOLITOR, R. 2000. Rewriting concepts using terminologies. In
Proceedings of the Seventh International Conference on Knowledge Representation and Rea-
soning (KR2000), A. Cohn, F. Giunchiglia, and B. Selman, Eds. Morgan Kaufmann Publishers,
San Francisco, CA, 297-308.

BEERI, C., LEVY, A., AND ROUSSET, M.-C. 1997. Rewriting queries using views in description
logics, editor = acm. In PODS ’97. Proceedings of the Sizteenth ACM SIG-SIGMOD-SIGART
Symposium on Principles of Database Systems, May 12-14, 1997, Tucson, Arizona. ACM
Press, New York, NY 10036, USA.

BERNERS-LEE, T., HENDLER, J., AND LAsSSILA, O. 2001. The semantic web. In Scientific American.

CALVANESE, D., DE GiacoMoO, G., AND LENZERINI, M. 1998. On the decidability of query contain-
ment under constraints. In PODS ’98. Proceedings of the Seventeenth ACM SIG-SIGMOD-
SIGART Symposium on Principles of Database Systems, ACM, Ed. ACM Press, New York,
NY 10036, USA.

CALVANESE, D., DE Giacomo, G., AND LENZERINI, M. 2000. Answering queries using views in
description logics. In Proceedings of AAAI 2000.

CALVANESE, D., DE GiaAcoMO, G., LENZERINI, M., AND VARDI, M. 2000b. Answering regular path
queries using views. In Proceedings of ICDE 2000.

CALVANESE, D., DE GiacoMo0, G., LENZERINI, M., AND VARDI, M. 2000a. View-based query
processing and constraint satisfaction. In Proceedings of LICS 2000.

Donini, F. M., LENZERINI, M., NARDI, D., AND SCHAERF, A. 1994. Deduction in concept lan-
guages: From subsumption to instance checking. Journal of Logic and Computation 4, 4.

DuscHkA, O. M. AND GENESERETH, M. 1997. Query planning in infomaster. In Proceedings of
ACM Symposium on Applied Computing.

GO0ASDOUE, F. 2001. Réécriture de requétes en termes de vues dans carin et intégration
d’informations. Ph.D. thesis, Université Paris Sud XI - Orsay.

G0ASDOUE, F., LATTES, V., AND ROUSSET, M.-C. 2000. The use of CARIN language and algo-
rithms for information integration: the picsel system. International Journal on Cooperative
Information Systems 9, 383—401.

GO0ASDOUE, F. AND ROUSSET, M.-C. 2002. Compilation and approximation of conjunctive queries
by concept descriptions. In ECAI 2002, F. van Harmelen, Ed. 267-271. IOS Press.

HALEVY, A. Y. 2001. Answering queries using views: A survey. VLDB Journal: Very Large Data
Bases 10, 4, 270-294.

LEVY, A., RAJAMARAN, A., AND ORDILLE, J. 1996. Query-answering algorithms for information
agents. In Proceedings of the thirtenth AAAI conference on Artificial Intelligence: AAAI’96.
LEVY, A. AND ROUSSET, M.-C. 1998a. Combining horn rules and description logics in carin.

Artificial Intelligence 101.

LEVY, A. Y. AND ROUSSET, M.-C. 1998b. Verification of knowledge bases based on containment
checking. Artificial Intelligence 101, 1-2, 227-250.

MKBEEM. http://www.mkbeem.com.

NARDI, D., Donini, F., LENZERINI, M., AND SCHAERF, A. 1995. Principles of Artificial Intelli-
gence. Springer-Verlag, Chapter Reasoning in description logics.

PICSEL. http://www.Iri.fr/~picsel.

REYNAUD, C. AND SAFAR, B. 2002. Representation of ontologies for information integration. In
Proc. of the 13th International Conference on Knowledge Engineering and Knowledge Man-
agement (EKAW 2002).

RousseT, M.-C. 1999. Backward reasoning in aboxes for query answering. In Proceedings of
DL’99 and KRDB’99.

ACM Transactions on Internet Technology, Vol. V, No. N, June 2003.

