
Space-time planning in dynamic environments
with unknown evolution.

Thomas LOPEZ1 and Fabrice LAMARCHE2 and Tsai-Yen LI3

1MimeTIC Lab, IRISA / INSA Rennes, France
2MimeTIC Lab, IRISA / University of Rennes 1, France

3IM Lab, National Chengchi University, Taipei, Taiwan, R.O.C.
{thomas.lopez,fabrice.lamarche}@irisa.fr

li@nccu.edu.tw

Abstract. Numerous path planning solutions have been proposed to
solve the navigation problem in static environments, potentially popu-
lated with dynamic obstacles. However, in dynamic environments, mov-
ing objects can be used to reach new locations. In this paper, we propose
an online planning algorithm for dynamically changing environments
with unknown evolution. This method focuses on accessibility and on
the use of objects movements to reach a given target. Among other ex-
amples, we will show that this algorithm is able to find a path through
moving platforms to reach a target located on a surface that is never
directly accessible. We will also show that the proposed representation
enables several kind of adaptations such as avoiding moving obstacles or
adapting the character postures to environmental constraints.

Keywords: Path Planning, Dynamic Environments, Autonomous Char-
acters, Accessibility

1 Introduction

In the last decades, path planning has been widely studied and numerous solu-
tions for static environments, eventually populated of dynamic obstacles, have
been proposed. Our method addresses a new kind of path planning problem by
focusing on a virtual character navigating in dynamically changing environments
where the evolution of the topology is not known a priori. Moreover, dynamic
objects are not only considered as obstacles but also as navigable parts of the
environment that can be used to access new locations such as a plank acting
as a bridge and connecting two disconnected regions. Using the character ca-
pabilities, our method builds a dual representation of objects which identifies
the impact of objects in terms of accessibility and obstruction. This representa-
tion is used to characterize and track topological modifications while considering
the temporal aspect. Two disconnected regions of the environment can thus be
linked thanks to a moving elevator even though no explicit or static path ex-
ists between them. We will refer to this situation as the elevator problem. We
will show that our solution is able to solve such complex cases in real time by



2 T. Lopez, F. Lamarche, T.Y. Li

generating collision-free paths and adapting the character’s postures among dy-
namic obstacles whose movements are not known a priori. This property makes
our algorithm suitable for interactive applications where an external user or a
script may act on the environment at runtime. Such an approach is useful in
several application fields including video games where non-player characters are
evolving in dynamic environments where changes are not always known a priori.

In the following, we first introduce the related works. We then describe the
precomputation steps associated to the character representation and the dual
representation of the dynamic objects. The next section focuses on the use of
those representations to plan a path and adapt postures of a virtual character
evolving in a dynamic environment. Finally, we show and analyze some results.

2 Related work

Path planning has been widely studied in robotics where spatial reasoning pro-
vides robots with the critical functionality of autonomy of navigation [13, 15].
Given a character, its navigation capabilities and a description of the environ-
ment, the purpose is to plan a collision-free path for the character between
two specific locations. The general formulation of this problem relies on the
exploration of the configuration space (C-space). This C-space is defined as a
N -dimensional space for which each of the N axis represents a degree of freedom
(DOF) of the character. The C-space is generally divided in C-free, containing
valid configurations, and C-obstacle, containing obstructed ones. Thus, planning
a collision-free path for a character is equivalent to finding a path in C-free that
links two specific configurations. The basic planning problem focuses on finding
a valid path in a static environment. Proposed methods mostly fall into two cat-
egories: cell decomposition and roadmaps. The cell decomposition methods are
either approximate, representing a subset of C-free with cells of predefined shapes
[10, 21], or exact, representing C-free using trapezoidal decomposition, Delaunay
triangulations and variants [7, 12]. Probabilistic methods, such as PRMs [9, 3]
or RRTs [11], explore C-free by computing a roadmap in which nodes are non-
colliding configurations randomly sampled over C-free and edges are collision-free
paths linking two nodes. Most of the methods generally consider navigation in
a connected environment. However, few methods focused on static but discon-
nected environments [3, 17, 20].

The need of planning paths in dynamically changing environments arises
in many application fields. Most of the proposed methods focus on avoiding
dynamic obstacles. On the one hand, some methods considered that obstacles
movements are known and use this knowledge to guide and speed-up the path
planning [14, 4]. On the other hand, fast replanning techniques are used when an
obstacle is detected along the planned trajectory [1, 24]. Various reactive meth-
ods based on PRMs [1] or RRTs [6] have been proposed. This kind of methods
validates precomputed edges of the PRMs during planning to take dynamic
changes into account [8]. Velocity obstacles and extensions [2] propose a reac-
tive approach which updates the agent speed to generate trajectories avoiding



Space-time planning in dynamic environments with unknown evolution 3

collisions with dynamic obstacles. Finally, methods based on rapidly computed
generalized Voronöı diagram have also been proposed [5, 22].

To our knowledge, the first method handling space-time planning in a dy-
namic and disconnected environment has been recently proposed by Levine et
al. [16]. The singularity of both our and their methods is that moving platforms
are no longer considered as obstacles but also as navigable regions used during
navigation. However, their method is based on the strong hypothesis that the
objects movements have known trajectories. This involves that the future evolu-
tions of the environment are always known and thus that accessibilities between
objects can be precomputed. Based on this hypothesis they compute their path
using a trial-and-error solver, trying different motion controllers until a correct
motion to adopt along the path is found.

Our method handles space-time planning in a dynamically changing environ-
ment with no a priori knowledge on the topology evolution. By observing this
evolution at runtime, our algorithm characterize and track topological relations
over time. Based on this information, our method is able to compute in real
time paths among moving and disconnected surfaces while avoiding dynamic
obstacles and adapting the character’s postures to environmental constraints.

3 Characters and objects representations

Our path planning problem considers a non-flying character evolving in a dy-
namic environment composed of non-deformable objects. We make no assump-
tion on the spatio-temporal evolution of the environment that we only assume
to be observable. To propose a solution compatible with interactive applications
the character representation is simplified using bounding volumes, which reduce
the number of DOF of the problem. Those volumes are used to extract a dual
representation of the objects which characterizes the topological impact of an
object and enables to rapidly identify accessibility and obstructions.

3.1 The character and its navigation capabilities

We consider a character with navigation capabilities mainly constrained on the
floor. In order to speed-up path planning and uncouple it from the animation
process, we represent our character using bounding volumes [14, 2, 17] that re-
duce the number of DOF. For each navigation capability i, we define a cylinder
Ci, centered on the character’s root, which bounds its geometry when playing
the motion Mi. Jump motions are particular as a character could get hurt when
it jumps down or might not be able to reach a high location. To model this, the
jump motion is labeled with a maximum vertical impulse speed, a maximum
horizontal impulse speed and a maximum vertical landing speed. Finally, we
assume that our character follows a ballistic trajectory when jumping.



4 T. Lopez, F. Lamarche, T.Y. Li

C-space

Interaction Volumes Extraction

Forbidden Volume

Navigable Surface
 Accessibility Volume

Box Element

Bounding Cylinder

Workspace

O

C

Ns(O,C)

Vf(O,C)

Va(O,C)

Fig. 1. Interaction Volumes: given an original geometry O and a cylinder C bounding
a considered motion capability, we compute three Interaction Volumes: the Naviga-
ble Surface Ns(O,C), the Accessibility Volume V a(O,C), and the Forbidden Volume
V f(O,C). On the right, the dual representation of O which is inserted in the C-space.

3.2 Augmenting geometry with Interaction Volumes

Definition of the Interaction Volumes From the character’s point of view, a
geometric object impacts on the local topology in three different ways. It can ob-
struct a region, present navigable areas or create an access to other surfaces. Ob-
struction, navigability and accessibility properties rely on the character’s naviga-
tion capabilities. Regarding those capabilities, we extract a dual representation
of objects, called the Interaction Volumes, which characterizes feasible, colliding
and reachable configurations of the C-space. Once navigable areas of an object
have been identified, we associate to each surface a precomputed roadmap.

Given the cylinder bounding a navigation capability of our character, a con-
figuration in this C-space represents the position of the character’s root located
at the bottom center of the cylinder. In the following, we assume that the (X,Y)
axes represent the horizontal plane and that the Z-axis is the height axis of the
environment. Considering an object O and a cylinder Cm bounding the naviga-
tion capability m, we define three types of Interaction Volumes(see Fig. 1): the
Forbidden Volume, the Navigable Surface and the Accessibility Volume.

Forbidden Volume, denoted Vf (O,Cm), represents the set of configurations
where the character collides with the object O. This volume is obtained by
extruding the object’s shape along the Z-axis using the height of the cylinder
Cm. This shape is then extended along the (X,Y)-axes using the cylinder’s radius.

Navigable Surface, denoted Ns(O,Cm), represents the surface where the
character can stand. We use an interval of navigable slopes associated to m to
determine whether or not a character is able to stand on the considered surface.
Ns(O,Cm) is computed by grouping all triangles of the object’s mesh with
navigable slopes minus configurations lying in Vf (O,Cm).

Accessibility Volumes denoted Va(O,Cm), contains all configurations reach-
able from Ns(O,Cm) when jumping. First, the maximum reachable height is



Space-time planning in dynamic environments with unknown evolution 5

Character Bounding
Cylinder

Potential moves Sampled positions and 

Ns (O,Ci) Ns(O,Ci)

Accessibility Volume extraction

Fig. 2. Accessibility Volume definition : regarding a character and its jumping capa-
bility, we extract a profile representing its potential jumps from a start configuration.
The last scheme presents the profile extraction along edges of Ns(O,C).

used to extrude Ns(O,Cm) along the height axis. Second, given the jump mo-
tion characteristics, we compute an Accessibility Profile (see Fig. 2) by randomly
sampling the set of admissible jumping trajectories and computing the convex
hull shape of the sampled trajectories. This profile is then extruded along the
borders of the Ns(O,Cm) to finalize Va(O,Cm).

Local roadmap generation Since the global structure of Ns(O,C) does not
change, a local roadmap is precomputed on each surface. Different methods
have been proposed in the literature to build a roadmap. We chose the well-
known Probabilistic RoadMaps method (PRM) to create local roadmaps [9].
We thus randomly sample configurations in

⋃
mNs(O,Cm) and annotate each

sampled configuration c with the set of motion capabilities that are valid i.e.
{m|C ∈ Ns(O,Cm)}. Each sample is then connected to its k-nearest neighbors
iff the configurations share at least one common motion capability m and that
a linear path lying in Ns(O,Cm) exists.

3.3 Properties of the representation

The Interaction Volumes represent the impact of objects on their local environ-
ment’s topology. Identifying a topological relation between two objects in the
workspace is thus equivalent to detecting an intersection between their respec-
tive Interaction Volumes in the C-space. Given two objects (Oi,Oj) and a motion
capability m, accessibility and obstruction relations are defined as follow:

– Accessibility: A(Oi, Oj , Cm), holds when Va(Oi, Cm) ∩ Ns(Oj , Cm) 6= ∅
and characterizes an access from Oi to Oj with the motion capability m.
This relation is not a bijection as the character may have more difficulties
to climb on objects than to go down (see Fig. 2).

– Obstruction: O(Oi, Oj , Cm), holds when Vf (Oi, Cm)∩Va(Oj , Cm) 6= ∅, i.e.,
Oi obstructs some navigable parts of Oj for the given capability m.

The identification of those relations coupled with local roadmaps allow us to
locate the topological impact of the detected relations at runtime. Thus, an ac-
cessibility relation results in a connection between two distinct roadmaps while



6 T. Lopez, F. Lamarche, T.Y. Li

Collision Va(O2,C)/Ns(O1,C)
 Accessibility from O2 to O1

Va(O2,C)
Ns(O1,C)

(a)

A(O2,O1,C)

Accessibility Relation

O(O2,O1,C)

Obstruction Relation

Vf(O1,C)
Vf(O3,C)

Vf(O2,C)

Vr(O3,C)
Vr(O1,C)

Vr(O2,C)

12
4

3(c)

O1
O1 O2 O2

O1 O2 O3

A(O2,O1,C)

A(O1,O2,C) A(O3,O2,C)

O(O3,O2,C)

1

2

3

4

Fig. 3. Topological Graph construction. Characterization of an accessibility (a), and of
an obstruction (b). Example of a more complex situation (c) with 4 detected relations.

an obstruction invalidates some parts of the roadmap. Obstruction relations have
an impact on obstacle avoidance but also on posture adaptation as an obstruc-
tion might, for instance, force the character to adopt a crouching capability to
navigate along its path. The identification of topological relations is reduced to
a collision detection between Interaction Volumes and the path validation to a
simple ray casting between the local path and the relevant Forbidden Volumes.
Those properties are intensively used in our algorithm.

4 Finding a path in a dynamic environment

In dynamic environments, the topology evolves and moving objects act as ob-
stacles, bridges or elevators for instance. Topology relations need to be tracked
in order to consider them during navigation. We now present how the Interac-
tion Volumes representation is used to track topology modifications while taking
time into account to avoid moving obstacles but also detect moving platforms
linking disconnected surfaces. Our two level path planner is then presented. The
first level computes a path between Navigable Surfaces at the topological level,
while the second level plans a local path on each Navigable Surface.

4.1 Tracking topology modifications

In order to track the topology over time, we introduce the Topological Graph.
This directed graph aims at building a global representation of the environment’s
topology by representing each object as a node and each topological relation as
a link between the concerned objects (see Fig.3). As the character has no a
priori knowledge on the environment’s evolution, this graph allows it to build



Space-time planning in dynamic environments with unknown evolution 7

Ns(O3,C)

Ns(O1,C)

Ns(O2,C)
(a)

O1

O3

O2

O1

O3

O2

(b)
Topological

Graph 

O1

O3

O2

A(O1,O2,C)

A(O2,O1,C)

A(O3,O2,C)

A(O2,O3,C)

Path found through
disconnected surfaces

O2 is moving
between O1 and O3

Fig. 4. Navigation through disconnected surfaces using the Topological Graph.

its own representation of the environment by observing the evolution of topo-
logical relations over time. As described previously, detected collisions between
Interaction Volumes allows us to identify topological relations existing at a given
time. Thanks to the 3-dimensionality of the Interaction Volumes, those collisions
are detected using a tuned collision detection (CD) algorithm [23]. Every time
a relation is detected by the CD, the corresponding edge is added or updated
in the Topological Graph. Edges are labeled with the number of times the re-
lation was valid, the mean validity and non-validity times of the relation and
the mean relative speed of the objects. The mean validity time of the relation
and the mean relative speed of the objects give an estimate of the relation’s
stability. The sum of mean validity and non-validity times gives an estimate of
its periodicity. Finally, the number of times the relation was valid allows the
Topological Graph to automatically identify and characterize periodic and punc-
tual relations between objects. The Topological Graph thus contains statistical
information about validity and stability of topological relations. This is crucial
as we use this information to characterize relations over time. Thanks to the
coupling with the CD algorithm, the Topological Graph is an anytime represen-
tation of the topology. Moreover, the temporal information on relations enables
to automatically represent periodical relations in space and time (see Fig. 4).

Nevertheless, this graph is a coarse representation of the global topology
as it only identifies relations between pairs of objects. Regarding the definition
of accessibility, an object Oj is reachable from Oi with a jump capability Cm

iff Va(Oi, Cm) ∩ Ns(Oj , Cm) 6= ∅. To refine this relation and avoid potential
collisions with Forbidden Volumes, we randomly sample a set of jumps from
Oi to Oj . First, a target configuration ct is selected from the local roadmap
(PRM) associated to Oj . Second, its nearest source configuration cs belonging
to the local roadmap associated to Ns(Oi, Cm) is also selected. Finally, a random
configuration cr is sampled such as it vertically projects on the segment (cs, ct)
and its Z-coordinate is greater than the maximum Z coordinate of cs and ct.
Given the configurations cs, cr and ct, the second order polynomial corresponding
to the unique ballistic trajectory passing through those three configurations is
computed (see Fig. 5(a)). The obtained jump is validated iff the impulse and



8 T. Lopez, F. Lamarche, T.Y. Li

Ns(O1,C) Ns(O2,C)

Va(O1,C)

(2)

Vf(O3,C)

(1)

Ns(O1,C) Ns(O2,C)

Va(O1,C)

(2)

(1)

(a) (b)

Fig. 5. Reachability from O1 to O2 (top view). Several valid configurations are sampled
in V a(O1, C)∩Ns(O2, C) and linked to the O1’s roadmap (a). Then relevant Forbidden
Volumes, here V f(O3, C), are retrieved from the Topological Graph and obstructed
jumps are filtered (b), such as links from the region (1).

landing speeds satisfy the constraints associated to the jumping capability Cm

and the trajectory does not collide with a Forbidden Volume (see Fig. 5(b)).
Each validated jump is then stored in the corresponding accessibility edge of
the Topological Graph. To amortize the cost of the sampling phase, a sampling
budget is allocated at each time step. This budget is then distributed among the
currently valid accessibility relations.

4.2 A two-level path planner

In order to find a path in the environment, we designed a two-level path planner.
This planner first selects Navigable Surfaces on the way, using the Topological
Graph and the temporal information. Then local paths are computed on each
surface using the associated local roadmaps.

In order to identify Navigable Surfaces on the way, we first filter the Topo-
logical Graph. Thus, we discard obstruction relations as well as unfeasible acces-
sibility for which a feasible jump has not been identified. For safety reasons, we
also invalidate accessibility relations for which either the mean relative speed of
the objects exceeds a given threshold or the mean validity time is lower than
a time threshold. To compute the global path, we run a Dijkstra algorithm on
this filtered view of the Topological Graph. Costs associated to the accessibility
relations are set to their periodicity (sum of the mean validity and non-validity
time) for dynamic relations and to an ε-value for stable relations (relations which
are always valid). This cost function thus tends to favor paths through stable
links and minimizing the waiting time. The global path planner finally provides
a sequence of Navigable Surfaces that must be crossed in order to reach the goal.

Then, the local path planner has to generate local paths on each roadmap
associated to the identified Navigable Surface while handling obstacle avoidance
and posture adaptation. To compute this path in the local PRM, we use a multi-
target A* algorithm that starts from the current configuration of the character



Space-time planning in dynamic environments with unknown evolution 9

and finds a path to the nearest target configuration. The target can be either
the global target or the source of a jump to access the next Navigable Surface.
An edge is valid if at least one motion capability m associated to the edge does
not collide with local Forbidden Volumes and if m is compatible with the motion
capability used to reach this edge. Edges validity is checked during planning in
the space-time domain. In this domain, we anticipate objects positions using a
linear extrapolation of their current movements over time [1]. As the evolution
is not known a priori, we limit the impact of the extrapolation error by setting
a maximum extrapolation time. If the time needed to reach the currently ex-
plored configuration is greater than this limit, the object is assumed to be static.
Once the path is computed, the character follows it. If a new potential collision
is detected during navigation, a replanning is executed. When a local target is
reached, the character waits to access the next surface. Using the jump prop-
erties, the jump decision is taken by extrapolating the position of the targeted
surface and nearby obstacles. If the landing area lies on the targeted surface and
the trajectory does not collide with obstacles, the character jumps. The local
planning is repeated on each identified surface until the final target is reached.

Based on the Topological Graph and on the analysis of temporal information,
our two-level planner solves complex planning problems such as detecting a se-
quence of moving platforms disconnected in space and time that must be crossed
to reach a given goal. The search space is also reduced for the local planner which
only plans paths and adapts postures on relevant Navigable Surfaces.

5 Results

In our test cases, the character uses three navigation capabilities: sliding on
the ground while (1) standing or (2) crouching and (3) jumping. The jumping
capability allows the character to reach disconnected areas of the workspace. The
heights of the bounding cylinders are set to 50 cm for capabilities (1) and (3), 20
cm for capability (2). The radius of those cylinders is set to 20 cm for capability
(1) and (3), 30 cm for capability (2). When using the jumping capability, our
character is able to jump with maximum vertical and horizontal impulse speeds
of 2m.s−1 and we limit the landing speed to 3m.s−1. We evaluated our method
using different dynamic environments. A demo video presenting our results is
available online1.

Disconnected environment. This environment is composed of discon-
nected and moving platforms (see Fig. 6(f)). By jumping from platform to plat-
form when connections are identified, the character is able to reach every parts
of the environment. This example shows how temporal information is used to
detect paths in space and time even though the Navigation Surfaces are not
directly connected. There is no obstacles in the environment.

Living room. This environment, presented in Fig. 6(a), demonstrates the
various properties of our method. It is composed of numerous complex objects:

1 http://www.irisa.fr/bunraku/GENS/tlopez/video/MIG2011video/MIG2011video.html



10 T. Lopez, F. Lamarche, T.Y. Li

(a)

(b) (c)

(d) (e)

(f)

Fig. 6. We present our environments: the living room (a) and the disconnected en-
vironment (f). Some results are show such as: navigation between disconnected and
moving surfaces (b), the dynamic obstacle avoidance(c), posture adaptation regarding
the motion capabilities (d) and the environmental constraints (e).

Table 1. Benchmarks.

Environment Collision Topological Graph average Path Obstruction Tests
Name Detection update Planning time (%path planning)

Disconnected Env 0,75 ms 0,24 ms 6,22 ms -
Living-room 14,12 ms 6,46 ms 93,98 ms 67,77 %

tables, chairs, sofas, shelves, plants... Those objects all act as obstacles or naviga-
tion surfaces and some can constraint the character’s postures. The environment
is highly constrained leaving only a few room for navigation. Moreover, flying
books are used as elevators to connect the two floors together. This environment
focuses on connections between distinct surfaces, path obstructions replanning
and posture adaptation during navigation.

Benchmarks have been realized on an Intel Core i7, CPU X920, 2GHz. We
used Bullets Physics CD library to identify Interaction Volumes collisions. Our
implementation is currently mono-threaded. Our benchmarks results are pre-
sented in Table 1. This table summarizes average times of: the CD between
Interaction Volumes, the Topological Graph update and the connections com-
putation between Navigable Surfaces, and the path planning process. The last
column presents the percentage of time spent in testing the validity of roadmap
edges during the path planning step. Results presented in Table 1 show that our
algorithm performs topology detection and processes path planning requests at
interactive frame rates in our testing environments.



Space-time planning in dynamic environments with unknown evolution 11

Our algorithm first continuously tracks the collisions between Interaction
Volumes to identify the evolution of the topology. This process performances are
directly correlated with the CD library that is used. The time spent in the graph
update is negligible but Table 1 shows that the use of numerous objects with
complex geometries (such as the living room) decreases algorithm performances.
In order to reduce the time spent in the collision detection, simplified versions
of original meshes (called collision meshes) are often used in real time physi-
cal simulations. We could extend those methods to simplify the shapes of the
Interaction Volumes. Second, we defined a dynamic path planner which is able
to provide temporal trajectories through disconnected surfaces while avoiding
predicted collisions. However, the local path planner is the most time consum-
ing process as it needs to test the validity of trajectories regarding the future
obstacle locations. The validity tests represent around 70% of the computation
time. Whenever an unexpected obstacle appears on the character’s trajectory, a
new local path planning request is emitted. To increase performances and avoid
redundant computations, a D* algorithm could be used.

6 Conclusion and future work

In this paper, we presented our approach to online path planning in dynamic
environments with unknown evolution. The originality of our approach is that
dynamic objects are not only obstacles but can also be used to navigate and reach
previously unreachable locations. The characterization offered by Interaction
Volumes makes possible to track the evolution of the environment’s topology.
The analysis of this evolution is then used to solve complex planning problems
such as finding a path between regions disconnected in space and time. Moreover,
the same representation is used to adapt postures to environmental constraints
and locally plan collision-free paths avoiding dynamic obstacles. Finally, contrary
to Levine et al. approach [16], our method does not require a prior knowledge
on the evolution of the world but builds its knowledge at runtime by observing
the environment’s evolution to propose a real time path planner.

The collision detection algorithm, used for topology tracking and local path
planning, is a major bottleneck. However, some recent work focusing either on
collision detection parallelization on CPU/GPU [18] or on GPU-based planning
algorithms [19] are promising for scaling our algorithm to very complex environ-
ments. Another aspect is that the character may sometimes miss the targeted
surface and fall down due to an extrapolation error, if the targeted object has
chaotic movements for instance. This can be viewed as a limitation of our tech-
nique or as something realistic, since the same case can arise in a real situation.

Future work will focus on scalability studies of the method. We are interested
in path planning of different characters with individual motion capabilities in the
same environment at the same time. Finally, we intend to increase the dynamic
and the unpredictability of the environment by considering navigation in physical
worlds with physical objects and destructible structures as it can be seen in
numerous video games.



12 T. Lopez, F. Lamarche, T.Y. Li

References

1. Van den Berg, J., Ferguson, D., Kuffner, J.: Anytime path planning and replanning
in dynamic environments. In: Proc. IEEE ICRA (2006)

2. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time
multi-agent navigation. In: Proc. IEEE ICRA (2008)

3. Choi, M.G., Lee, J., Shin, S.Y.: Planning biped locomotion using motion capture
data and probabilistic roadmaps. ACM Transactions on Graphics 22(2) (2003)

4. Gayle, R., Sud, A., Lin, M., Manocha, D.: Reactive deformation roadmaps: motion
planning of multiple robots in dynamic environments. In: IEEE IROS (2007)

5. Hoff III, K.E., Keyser, J., Lin, M., Manocha, D., Culver, T.: Fast computation
of generalized voronoi diagrams using graphics hardware. Computer Graphics 33
(1999)

6. Jaillet, L., Simeon, T.: A prm-based motion planner for dynamically changing
environments. In: IEEE International Conf. IROS (2004)

7. Kallmann, M., Bieri, H., Thalmann, D.: Fully dynamic constrained delaunay tri-
angulations. Geometric Modelling for Scientific Visualization (2003)

8. Kallmann, M., Matarić, M.: Motion planning using dynamic roadmaps. In: Proc.
of the International Conference on Robotics and Automation (2004)

9. Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for
path planning in high-dimensional configuration spaces (1994)

10. Kuffner, J.J.: Goal-directed navigation for animated characters using real-time
path planning and control. Lecture Notes in Computer Science 1537 (1998)

11. Kuffner, J.J., LaValle, S.M.: Rrt-connect: An efficient approach to single-query
path planning. In: IEEE Int. Conf. on Robotics and Automation (2000)

12. Lamarche, F.: Topoplan: a topological path planner for real time human navigation
under floor and ceiling constraints. Computer Graphics Forum (2)

13. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers (1991)
14. Lau, M., Kuffner, J.: Behavior planning for character animation. In: Proc. of Sym-

posium on Computer animation (2005)
15. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)
16. Levine, S., Lee, Y., Koltun, V., Popović, Z.: Space-time planning with parameter-

ized locomotion controllers. Transactions on Graphics (TOG) 30(3) (2011)
17. Li, T.Y., Huang, P.Z.: Planning humanoid motions with striding ability in a virtual

environment. In: Int. Conf. on Robotics and Automation (2004)
18. Pabst, S., Koch, A., Straßer, W.: Fast and scalable cpu/gpu collision detection for

rigid and deformable surfaces. In: Computer Graphics Forum. vol. 29 (2010)
19. Pan, J., Lauterbach, C., Manocha, D.: g-planner: Real-time motion planning and

global navigation using gpus. In: AAAI Conference on Artificial Intelligence (2010)
20. Safonova, A., Hodgins, J.K.: Construction and optimal search of interpolated mo-

tions graphs. ACM Transactions on Graphics 26(3) (2007)
21. Shiller, Z., Yamane, K., Nakamura, Y.: Planning motion patterns of human figures

using a multi-layered grid and the dynamics filter. In: IEEE ICRA (2001)
22. Sud, A., Gayle, R., Andersen, E., Guy, S., Lin, M., Manocha, D.: Real-time navi-

gation of independent agents using adaptive roadmaps. In: Symposium on Virtual
reality software and technology (2007)

23. Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L.,
Fuhrmann, A., Cani, M., Faure, F., Magnenat-Thalmann, N., Strasser, W., et al.:
Collision detection for deformable objects. In: CGF. vol. 24 (2005)

24. Zucker, M., Kuffner, J., Branicky, M.: Multipartite rrts for rapid replanning in
dynamic environments. In: IEEE ICRA (2007)


