
Automatic Orchestration of Behaviours through the
management of Resources and Priority Levels

Fabrice Lamarche
IRISA / University of Rennes I

Campus de Beaulieu
F-35042 Rennes, FRANCE

flamarch@irisa.fr

Stéphane Donikian
IRISA / CNRS

Campus de Beaulieu
F-35042 Rennes, FRANCE

donikian@irisa.fr

ABSTRACT
Reproducing daily behaviours requires to be able to schedule
behaviours depending on resources and priority constraints.
A simple way is to say that behaviours which are using the
same resources are mutually exclusive. This approach is not
sufficient to obtain realism, as in the real life, humans are
able to combine them in a more microscopic way. One way
consists in a global specificication of all behaviours in one
model, integrating all possible combinations. This solution
becomes rapidly too complex and has motivated the work
presented in this paper. It consists in an extension of HPTS,
our behavioural model which integrates several psychologi-
cal requirements, by the introduction of resources and pri-
ority levels. In the contrary of some previous approaches, it
is not necessary to specify exhaustively all behaviours that
are mutually exclusive; this is done implicitly by attaching
resources to nodes, preference values to transitions, and a
priority function to each behaviour, and by using a schedul-
ing algorithm at run-time.

Keywords
Believability, Synthetic Agents, Agent Architectures

1. INTRODUCTION
The goal of behavioural models is to simulate autonomous

entities like organisms and living beings. The issue adressed
in our work concerns the specification of a general formalism
for behaviour modelling based on psychological studies and
compatible with real-time constraints. Information needed
to describe the behaviour of an entity, depends on its nature.
No theory exists for determining either the necessary or suf-
ficient structures needed to support particular capabilities
and certainly not to support general intelligence. As direc-
tion and inspiration towards the development of such a the-
ory, Newell[11] posits that one way to approach sufficiency
is by modelling human cognition in computational layers or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02, July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

bands. Reproducing daily behaviours requires to be able
to schedule behaviours depending on resources (body parts)
and priorities (intentions or physiological parameters). A
simple way is to say that behaviours which are using the
same resources are mutually exclusive. This approach is
not sufficient to obtain realism, as in the real life, humans
are able to combine them in a much microscopic way. All
day long, human being combines different behaviours, for
instance reading a newspaper while drinking a coffee and
smoking a cigarette. If all behaviours using common re-
sources were mutually exclusive, an agent could not repro-
duce this example, except if a specific behaviour, integrating
all possible combinations, is created for this purpose. This
solution becomes rapidly too complex.

We have proposed in the past the HPTS model which
integrates several psychological requirements. In this paper,
we propose to extend this model to be able to manage, in
a generic way, resources, adaptation and priority levels. It
allows to describe behaviours independently one from each
other and to adapt automatically their execution when they
are running in parallel, in respect with their priorities. In the
next section, related works are presented, while section three
focuses on the HPTS model. The integration of resources in
the model is presented in section four, while section five is
devoted to the presentation of the scheduling algorithm. To
conclude, section six illustrates the approach on an example.

2. RELATED WORKS
Behavioural models have been developed to describe hu-

man behaviour in specific tasks. Common characteristics
of these models are reactivity, parallelism and different ab-
stract levels of behaviours. As humans are deliberative
agents, purely reactive systems are not sufficient to describe
their behaviour. It is necessary to integrate both cognitive
and reactive aspects of behaviour. Cognitive models are
rather motivated by the representation of the agent’s knowl-
edge (beliefs and intentions). Intentions enable an agent to
reason about its and others internal state. The centre of
such a deliberative agent is its own representation of the
world which includes a representation of the mental state
of itself and of other agents with whom he is currently in-
teracting[7]. In order to do it, Badler et al.[2] propose to
combine Sense-Control-Action (SCA) loops with planners
and PaT-Nets. SCA loops define the reflexive behaviour
and are continuous systems which interconnect sensors and
effectors through a network of nodes. PaT-Nets are essen-
tially finite state automata wich can be runned in parallel.

The planner queries the state of the database through a fil-
tered perception to decide how to elaborate the plan and
to select an action. In this system, like in others[12], the
action is directly associated with each node, which doesn’t
allow the management of concurrency.

Other planning systems elaborate plans by reasoning on
actions [6] and their associated resources [10]. Concurrency
on resources is handled through constraints and resources
are allocated by the planner while conceiving the plan. The
introduction of reactivity in such systems implies to re-plan
continuously which is not manageable in real time applica-
tions. V. Decugis and J. Ferber[3] address an interesting
problem: how to combine reactivity and planning capabili-
ties in a real-time application. They propose to extend the
ASM (Action Selection Mechanism) proposed by Maes[8]
into hierarchical ASMs. At the hierarchy’s bottom, ba-
sic reflexes are found, such as reflex movements orientation
and basic perceptive mechanisms, while higher levels inte-
grate more complex behaviours. At each level an arbitration
mechanism should be used to choose between parallel ASMs.
At each time, there is one behaviour selected at each level
of the hierarchy. A lot of models have been also proposed
for human like minds in the agent community[9]. They are
all based on the perception/treatment/action loop, but they
mainly differ in the way the treatment unit is built. As in
the Newell theory, A. Sloman[13] proposed an architecture
of an intelligent agent in different layers, involving different
routes through the system from perception to action. In his
theory, automatic processes have dedicated portions of the
brain and can operate in parallel whenever they need, while
different management processes have to share a common
working memory, and their parallelism is then restricted.

According to Newell, our goal is to build a model which
will allow some adjustable and flexible behaviour to any
entity evolving in a complex environment and interacting
with other entities. Real-time execution is also fundamen-
tal to allow interactivity. This has lead us to state that
paradigms required for programming a realistic behavioural
model are: reactivity (which encompasses sporadic or asyn-
chronous events and exceptions), modularity in the be-
haviour description (which allows parallelism and concur-
rency of sub-behaviours), data-flow (for the specification of
the communication between different modules), hierarchical
structuring of the behaviour (which means the possibility of
preempting sub-behaviours). HPTS[5], like HCSM[1], is a
model based on hierarchical concurrent state machines. It
offers a set of programming paradigms which permit to ad-
dress hierarchical concurrent behaviours. HPTS offers also
the ability to manage temporal informations and undeter-
ministic choice[4]. Resource and priority management has
been integrated recently, and it will be presented in detail
in the core of this paper.

3. HPTS
HPTS[5] which stands for Hierarchical Parallel Transition

Systems, consists of a reactive system, which can be viewed
as a multi-agent system in which agents are organized as a
hierarchy of state machines. Each agent of the system can
be viewed as a black-box with an In/Out data-flow and a set
of control parameters. The synchronization of the agent ex-
ecution is operated using state machines. To allow an agent
to manage concurrent behaviours, sub-agents are organized
in sub-state machines. In the following, agents will be as-

similated to state machines. Each state machine of the sys-
tem is either an atomic state machine, or a composite state
machine. Though the model may be coded directly with
an imperative programming language like C++, we decided
to build a language for the behaviour description. Figure
1 presents the syntax of the behaviour programming lan-
guage which fully implements the HPTS formalism. As this
paper focuses on integration and management of resources
and priority levels, the behaviour description language is
not described in details. For a complete description of the
model (except for resources and priorities) refers to [4]. Key-
words are written in bold, whereas italic typeface represents
a non-terminal rule. A∗ stands for a 0..n repetition while
a+ stands for a 1..n repetition and a statement enclosed in
{ } is optional. The description of a state machine is done

SMACHINE Id ;�
PARAMS type Id {, type Id}∗ ; // Parameters

VARIABLES
�
{type Id ;}∗ � // Variables

OUT Id {, Id}∗ ; // Outputs

PRIORITY = numeric expression ;

INITIAL Id ; FINAL Id ;

STATES // States Declaration�
{

Id {[Id {, Id}]} {RANDOM} {USE resource list}; {
�

/*

state body */ � }
}+ �
{TRANSITION Id {PREFERENCE Value};�

ORIGIN Id ; EXTREMITY Id ; {DELAY float ;}

{WEIGHT float ;}

read-expr / write-expr {TIMEGATE} ; {
�

/* transition

body */ � }� }∗�
Figure 1: Syntax of the language.

in the following way: the body of the declaration contains
a list of states and a list of transitions between these states.
A state is defined by its name and its activity with regard to
data-flows. It accepts an optional duration parameter which
stands for the minimum and maximum amount of time spent
in the state. Resources used by a state are defined by us-
ing the instruction USE resource list. The management of
resources is explained in the next section. A state machine
can be parameterized; the set of parameters will be used to
characterize a state machine at its creation. Variables are
local to a state machine. Only variables that has been de-
clared as outputs can be viewed by the meta state machine.
A priority is attached to each state-machine and consists in
a numeric expression which allow the priority to evolve dur-
ing the simulation. The meaning of this priority function
will be explained in section 5. A transition is defined by an
origin, an extremity, a transition expression, two optional
parameters and a transition body. The transition expres-
sion consists of two parts: a read-expr which includes the
conditions to be fulfilled in order to fire the transition, and
a write-expr which is a list of the generated events and ba-
sic activity primitives on the state machine. A preference
value is defined for each transition, and its meaning will be
explained in section 5.

4. RESOURCES
In order to combine different behaviours, the notions of

resources and mutual exclusion have been included in the
model. This section focuses on the formalism used to de-
scribe resource allocations and the different constraints cre-
ated to allow safe concurrency on resources among all par-
allel state machines. Each state of a state machine can use
a set of resources noted R and a state machine is defined by
the following tuple A = (EA, TA, PA, iA, fA, prioA) in which:

- EA is a set of nodes.

- TA ⊂ EA × EA × (() → bool) × [−1.0; 1.0] is a set of
transitions. Each of them has an associated condition
and a degree of preference taking its value in inter-
val [−1.0; 1.0]. Notation () → bool refers to a function
without parameter that returns a boolean value.

- PA : EA → 2R is a function returning the set of re-
sources used by each state.

- iA ∈ EA, with PA(i) = ∅, is the initial state,

- fA ∈ EA is the final state.

- prioA : () → � is a function without parameter that
returns a real value corresponding to the priority of
the state machine.

Note that all elements defining a state machine are indexed
by the state machine they belong to. Those notations will
be used for all equations given in this article.

4.1 Resources handling
For all state machines, a set of resources R is de-

fined by the user. Those resources can be considered as
semaphores, thus they are used for mutual exclusion. Func-
tion PA : EA → 2R associates a set of taken resources to
each node of a state machine A. Entering a node implies that
resources it uses are marked as taken and exiting it implies
that those resources are released. A resource is kept when
it is used by two nodes which are connected by a transition.
Thus the behaviour description is as precise as simple. As
resources are semaphores, it is possible to explain the first
constraint that all nodes executed in parallel must respect.
Let e1, ..., en be n nodes respectively belonging to n different
state machines A1, ..., An. States e1, ..., en can be executed
in parallel only if the constraint explained below is true:

∀(i, j) ∈ {1..n}2
, i 6= j, PAi(ei) ∩ PAj (ej) = ∅ (1)

Let note Pk = � 1≤i<k
PAi(ei) the set containing all re-

sources used by nodes e1 to ek−1. This constraint is verified
when the following formula is set to true:�� � c1n(e1, ..., en) = (PAn(en) ∩ Pn = ∅) ∧

c1n−1(e1, ..., en−1)
c11(e1) = true

(2)

Using this constraint, it becomes possible to synchronize be-
haviours according to resources needed by them. As several
state machines may use the same resources, the problem of
dead locks has to be studied.

4.2 Dead locks
Dead locks occur when the dependency graph of the re-

sources is cyclic. In that case, resources taking part in dead
lock cannot be released, except if a controller empirically
decides to release some resources by killing a state machine.
However, this system is not sufficient to ensure consistency
and continuity in behaviours. Thus, to offer a maximal level
of security and make synchronization easier to handle, it is
necessary provide a mechanism to ensure that no dead lock
can arise. A transition between two nodes using resources
creates a dependency between resources associated to those
nodes: resources of the first node are released if resources
of the second one can be taken. In order to get informa-
tion about dependencies, the notion of inherited resources
associated to a node have been defined. Those inherited re-
sources are computed using a graph representing the struc-
ture of each state machine reduced to dependencies between
resource allocations. Let GA = (EGA , TGA) be the graph
associated to the finite state machine A, where

- EGA = EA is the set of states,

- TGA = {(e1, e2) | ∃c ∈ () → bool, ∃p ∈ � ,
(e1, e2, c, p) ∈ TA ∧ PA(e1) 6= ∅ ∧ PA(e2) 6= ∅ } is
the set of state transitions.

As vertices of this graph only connect nodes using resources,
it represents all dependencies between resource allocation
deduced from the state machine. Let define HA ∈ EA → 2R,
an application associating to each node its set of inherited
resources, by:

∀e ∈ EA, HA(e) = �
(s∈EGA

)∧(e
+

−−→
GA

s)

PA(s)

Note that inherited resources can be precomputed, assum-
ing that the structure of the state machine is known before
runtime. By using this information, it is possible to create
a constraint which have to be respected to ensure that no
dead lock can occur while being at the same timestep in
two nodes of parallel state machines. Let A1 and A2 be two
finite state machines. Let e1 ∈ EA1

and e2 ∈ EA2
be two

states belonging respectively to A1 and A2; e1 and e2 can
be executed in parallel without dead lock if:

(PA1
(e1) ∩ HA2

(e2) = ∅) ∨ (HA1
(e1) ∩ PA2

(e2) = ∅) (3)

This constraint ensures that at least, one state machine can
pass its transitions without conflict on resources. It ensures
that no cyclic dependency can occur in resource allocation,
and then no dead lock. But the set of inherited resources
does not describe precisely resource dependencies. Thus,
this constraint detects a superset of dead locks; some nodes
which could run in parallel without dead lock, will not. Con-
straint expressed in formula (3) is extensible to n nodes. Let
e1, ..., en be n nodes respectively belonging to n different
state machines A1, ..., An. Let define Hi = ∪1≤k<iHAk

(ek)
and Pi = ∪1≤k<iPAk

(ek). Nodes e1, ..., en can be run in par-
allel without dead locks if the constraint explained below is
true: ���� ��� c2n(e1, ..., en) = ((PAn(en) ∩ Hn = ∅) ∨

(HAn(en) ∩ Pn = ∅))
∧ c2n−1(e1, ..., en−1)

c21(e1) = true

(4)

As an extension of constraint expressed in formula (3), it
also detects a superset of dead locks. Furthermore, it is de-
pendent on the order of presentation of nodes. Nevertheless,
the verification complexity is O(n) in term of set operations,
where n represents the number of nodes. This make possible
to handle intensive computation of different nodes compat-
ibility.

As HPTS is a hierarchical model, each state machine can
create sons and wait for their ending; this synchronization
creates dependencies between state machines. Thus, there
are possibilities of dead locks if a state machine uses com-
mon resources with its sons while waiting for their ending.
Thus, another constraint has been added: resources used by
a state machine have to be different than resources used by
its descendants. The respect of this constraint implies that
all descendants can be executed and terminated before the
ending of its ascendants without dead lock nor conflicts on
resources.

4.3 Valid state combination selection
All nodes ending a transition having a valid condition and

starting from current node are accessible. Current node plus
all accessible nodes are considered as valid for the current
time-step. Thus, any of those nodes can become the new
active node of its associated state machine, depending on
resource availability. Let {A1, ..., An} be n state machines
running in parallel. Let ∀k ∈ [1..n], cAk

be the current node
of the finite state machine Ak. Let 	 Ak

be the set of valid
nodes associated to the finite state machine Ak at current
time-step.

∀k ∈ [1..n], 	 Ak
= {e | (cAk

, e, c, p) ∈ TAk
∧ c()} ∪ {cAk

}
(5)

Let note
 = � n

k=1 	 Ak
the set of all possible combinations

of valid nodes between all running state machines. Due to
the concurrency of state machines on resources, all combina-
tions are not valid. In fact, some combinations can contain
nodes using common resources (Cf. 4.1) or can produce a
dead lock (Cf. 4.2). Thus, using constraints defined in for-
mula (2) and (4), it is possible to create a subset (
 comp) of
 containing all the valid combinations of states:
 comp = {(e1, ..., en) | c2n(e1, ..., en) ∧ c1n(e1, ..., en)

∧ (e1, ..., en) ∈
 }

(6)

While state machines are running, this set contains at each
time-step all valid combinations available, but the best com-
bination have to be chosen among the others. In order to
define this notion of best combination, priorities and degrees
of preference are introduced.

5. SCHEDULING WITH PREFERENCES
AND PRIORITIES

In order to control the execution of parallel state machines
and to offer an automatic adaptation between different be-
haviours, it is necessary to add notions of priorities and pref-
erences. By combining those two notions, it is possible to
create a scheduling method which globally favours the re-
alization of most important behaviours while automatically
adapting the execution of running ones.

5.1 Degrees of preference

The degree of preference (p) is a coefficient which takes its
value in interval [−1.0; 1.0]. This coefficient, is associated to
a transition, and corresponds to the state machine proclivity
to use this transition when the associated condition is true.
Thus, depending on its value, this coefficient has different
meanings:

- p > 0: the transition favours the realization of this be-
haviour. By default, the transition having the greatest
degree of preference with a condition set to true should
be chosen.

- p < 0: the transition does not favour the realiza-
tion of this behaviour. Those transitions are used to
describe a coherent way of stopping or adapting be-
haviour while releasing some resources.

- p = 0: the behaviour is quite indifferent to this tran-
sition.

This coefficient allows to describe a behaviour with differ-
ent ways of realization; possible adaptation depending on
resources availability or need can be described.

5.2 Priorities
A priority function (prioA) is associated to each state ma-

chine. This function returns a real value representing the
importance of a behaviour in a given context. Depending
on its sign, this function has different meanings:

- prioA() > 0: the behaviour has to be executed, and is
adapted to the current context. This value can be in-
terpreted as a coefficient of adequacy between context
and behaviour.

- prioA() < 0: the behaviour is inhibited, the value can
be interpreted as a coefficient of inadequacy between
context and behaviour.

This function can be used to control the behaviour during
the running phase. As it is user defined, it can be corre-
lated with the internal state of the character (psychological
parameters, intentions) or with external stimuli. It provides
an easy way of control on the behaviour realization.

5.3 Scheduling method
Using preferences and priorities, it is possible to create a

weight function. This function associates a rate to each valid
state combination in
 comp (Cf. 4.3), allowing to choose the
best one in respect of degrees of preference and priorities.
Let reformulate equation (5) in order to associate to each
node the degree of preference associated to its valid transi-
tion(s):

∀k ∈ [1..n],	 ′
Ak

= {(e, p) | (cAk
, e, c, p) ∈ TAk

∧ c()}
∪ {(cAk

, 0)}
(7)

By default, a degree of preference equal to 0 is associ-
ated to current state machine node. Thus, staying in cur-
rent state does not favour nor penalize the realization of
this behaviour. Then it is possible to create a function
WAk

: 	 Ak
→ � associating to each valid node its weight:

∀e ∈ 	 Ak
, WAk

(e) = Max(e,p)∈ � ′

Ak

p × prioAk
() (8)

Let consider a weight WAk
(e) = prioAk

() × p associated to a
valid node e of a state machine Ak. This weight has different
meanings:

- WAk
(e) > 0, automaton is prone to transit in state e:

- prioAk
() > 0 ∧ p > 0: transiting to this node

favours the realization of this behaviour.

- prioAk
() < 0∧ p < 0: this behaviour is inhibited,

transitions which lead to a consistent ending of
this behaviour have to be favoured.

- WAk
(e) < 0, automaton is not prone to transit to state

e:

- prioAk
() > 0∧p < 0: transiting in this state does

not favor the realization of the behaviour. This
case can be used in order to propose a possibility
of adaptation of the behaviour releasing some re-
sources that are not necessary. It can also be used
to stop behaviour execution because a behaviour
having a greater priority needs resources used by
the considered behaviour.

- prioAk
() < 0 ∧ p > 0: the behaviour is inhibited,

this case can be used to propose another possibil-
ity of stopping behaviour by using less resources.

- WAk
(e) = 0, automaton is indifferent to transit to

node e.

As explained in section 4.3 we need to select the best com-
bination in the set
 comp containing all valid combinations.
Equation (8) associates a weight to each proposed node with
respect to degrees of preference and priorities. It is possible
to create another weighting function
 :
 comp → � asso-
ciating a weight to each combination of nodes:

∀(e1, ..., en) ∈
 comp,
 (e1, ..., en) =
n�

i=1

WAi(ei) (9)

The result of this function can be interpreted as a global
degree of satisfaction of states machines if the correspond-
ing combination is chosen. Thus, combinations maxi-
mizing this weighting function are those which globally
maximize the degree of satisfaction of many state ma-
chines. Behaviours having the greatest priorities will be
favoured in their realization while the inhibited ones or
those wich have less priority will release their resources
if possible and in a consistent way. Adaptation between
different concurrent behaviours becomes automatic. Let�

= Max(e1,...,en)∈ � comp

 (e1, ..., en) be the best degree of

satisfaction found in
 comp. The set of best combinations
(
 best) is defined by:
 best = {(e1, ..., en) | (e1, ..., en) ∈
 comp

∧
 (e1, ..., en) =
�
}

(10)

After the creation of the set
 best, the scheduler can choose
one of its combination as the new overall state machines
state. This scheduling method ensures consistency in be-
haviours while trying to automatically adapt their execution
to other executing behaviours in accordance with priorities
and degrees of preference.

5.4 Algorithm complexity
Assuming that scheduling is computed at each time-step,

it is usefull to limit its complexity. Using the method de-
scribed in sections 4.3 and 5.3, the algorithm complexity
could appear to be � n

k=1 card(Ak
) in term of computed

combinations and constraints verification. But constraints

expressed in (2) and (4) only use taken and inherited re-
sources associated to a node. Futhermore, while computing
weights associated to nodes (Cf. 5.3), only the best weight
obtained by combining preferences and priorities is impor-
tant. Exploiting those properties allows to reduce the com-
plexity of the algorithm. First of all, it is possible to com-
pute the set
 comp incrementally while verifying constraints
expressed in (2) and (4):�������� �������

 (n)
comp = {(e1, ..., en) | en ∈ 	 An ∧

(e1, ..., en−1) ∈
 (n−1)
comp ∧

((PAn(en) ∩ Hn = ∅)∨
(Pn ∩ HAn(en) = ∅)) ∧
(PAn(en) ∩ Pn = ∅)}
 (1)

comp = 	 A1

(11)

Incremental computation of the set
 comp allows, at each
level of computation, to suppress incompatible combinations
as soon as they are found. Moreover, the constraints verifi-
cation, at level k > 1, only use:

- taken and inherited resources associated to a node be-
longing to 	 Ak

,

- the union of taken resources and the union of inherited
resources associated to nodes constituting a combina-

tion of
 (k−1)
comp .

Let note � (k) a set of couple which are composed of the union
of taken resources and the union of inherited resources asso-
ciated to each combination of
 (k)

comp. Let consider a couple
(P,H) belonging to � (k). This couple (P,H) is associated

to a set of combinations of
 (k)
comp, let note � (k)

P,H this set

of combinations. All combinations in � (k)
P,H are equivalent

for constraints verification. The difference between such
combinations is their weight, only those having the great-
est weight can contribute to the calculus of combinations
of the set
 best. It is possible to create a filtering func-

tion � (k) in order to filter combinations of the set
 (k)
comp.

This function creates a subset of
 (k)
comp, keeping for each

couple (P,H) of � (k) one of the combinations of � (k)
P,H wich

obtains the best weight. Thus, the following property is

deduced: card(� (k)(
 (k)
comp)) = card(� (k)). Applying this

function on
 (k)
comp does not modify the scheduling result.

Actually, choosing one of the combinations obtaining the
best weight is done during computation instead of at the
end of computation. Moreover, (P, H) ∈ 2R × 2R, thus the
following property is deduced:

card(� (k)(
 (k)
comp)) ≤ min(� k

i=1 	 Ai , 2
2×card(R)) (12)

This function allows to limit the number of computed and
stored combinations, and then limits the algorithm complex-
ity in term of stored combinations and computation. More-
over, it is possible to apply this function on each set 	 Ak

.
Finally, the set
 comp is computed as follow:�������� �������

 (n)
comp = {(e1, ..., en) | en ∈ � (1)(An) ∧

(e1, ..., en−1) ∈ � (n−1)(
 (n−1)
comp) ∧

((PAn(en) ∩ Hn = ∅)∨
(Pn ∩ HAk

(en) = ∅)) ∧
(PAn(en) ∩ Pn = ∅)}
 (1)

comp = � (1)(A1
)

(13)

After computing the set
 comp, the method described in sec-
tion 5.3 is applied in order to extract the set
 best and to
choose a combination. This algorithm allows to schedule a
large number of behaviours with about 1 to 9-10 resources
without problems of memory and in real time. Note that
maximum number of stored combinations has a very small
probability to arise, due to the verification of constraints
expressed in (2) and (4). Moreover, it is possible to handle
more resources by partitionning the set of running state ma-
chines as regard to the resources used by each of them and
to compute a scheduling for each partition.

5.5 Illustration on a case study
Let study the scheduling algorithm on the three state

machines (a1,a2,a3) detailed in Fig. 2. They are run-
ning in parallel with concurrency on the set of resources
R = {E, Hr, Hl} (Eyes, Right Hand, Left Hand). Current
nodes and priorities of the three state machines are respec-
tively: (s1, 11), (s5, 4) and (s7, 6). Knowing the current
node and priority of each state machine, and assuming that
all conditions associated to transitions are set to true, the
set of valid states with their weights can be computed.

{}

{E,Hl}{Hl}

{}

{Hr} {E,Hr}

0.7

1

1

1

1

1

State s7

State s8

State s9

State s10

State s11

State machine a3

{} {E} {E,Hr} {}
1 1 1

−1

State s1 State s2 State s3

State machine a1

{} {E} {E,Hr} {}

1 1 1

−1
State s4 State s5 State s6

State mahine a2

Figure 2: Three state machines running in parallel.

Valid Taken Inherited Weight
State Resources Resources

a1 s1 ∅ ∅ 0
s2 {E} {E, Hr} 1 × 11 = 11

a2 s4 ∅ ∅ −1 × 4 = −4
s5 {E} {E, Hr} 0
s6 {E, Hr} ∅ 1 × 4 = 4

a3 s7 ∅ ∅ 0
s8 {Hl} {E, Hl} 0.7 × 6 = 4.2
s9 {Hr} {E, Hr} 1 × 6 = 6

Figure 3: State attributes.

In Fig. 3 each valid node for each state machine is enumer-

ated with its taken and inherited resources and its weight.
First step of the algorithm: This iteration consists

in initializing the set � (1)(
 (1)
comp) with valid states of state

machine a1. In Fig. 4, all nodes contained by � (1)(
 (1)
comp)

and their associated information are described.

Taken Inherited Node Weight
Resources Resources Combination

∅ ∅ (s1) 0
{E} {E, Hr} (s2) 11

Figure 4: � (1)(
 (1)
comp).

Second step of the algorithm: During this itera-

tion, the compatibility between states of � (1)(
 (1)
comp) and

valid states of a2 is computed and a weight is associated

to each valid combinations. The set � (2)(
 (2)
comp) is con-

structed while filtering valid combinations. Combinations
(s5,s1) and (s2,s4) have the same couple of taken and inher-
ited resources. So, the filtering function only keeps combi-
nation (s2,s4) because it obtains the best weight. The set� (2)(
 (2)

comp) and information associated to its combinations
are described in Fig. 5.

Taken inherited node weight
resources resources combination

{E} {E, Hr} (s2,s4) 7
{E, Hr} ∅ (s1,s6) 4

∅ ∅ (s1,s4) -4

Figure 5: � (2)(
 (2)
comp).

Third step of the algorithm: The compatibility be-

tween combinations of � (2)(
 (2)
comp) and valid nodes of state

machine a3 is computed and a weight is associated to each

valid combinations. Finally, the set � (3)(
 (3)
comp) is computed

while filtering valid combinations (cf figure 6).

Taken Inherited Node Weight
Resources Resources Combination
{E, Hl} {E, Hl, Hr} (s2,s4,s8) 11.2

{E, Hl, Hr} {E, Hl} (s1,s6,s8) 8.2
{E} {E, Hr} (s2,s4,s7) 7

{E, Hr} ∅ (s1,s6,s7) 4
{Hl} {E, Hl} (s1,s4,s8) 0.2
∅ ∅ (s1,s4,s7) -4

Figure 6: � (3)(
 (3)
comp).

Choosing best combination: The combination belong-

ing to � (3)(
 (3)
comp) obtaining the best weight is chosen as the

new overall state machines state. In this example, combi-
nation (s2,s4,s8) will be chosen. State machine a1 returns
in node s2 in order to enable transition of state machine
a2. State machine a3 adapts its execution by transiting to
node s8 whereas it would rather have transited to node s9.
This example demonstrates the influence of priorities in the
scheduling algorithm and the automatic adaptation of state
machines transitions in order to respect resource constraints.

true, 1 GetHand

true, 1

true, 1

endOfMovement, 1
endOfMovement, 1
endOfMovement, −1

endOfMovement, 1
endOfMovement, −1

PutObject

End

{rH, H}

true, 0.4

true, −0.4
true, −1 true, −1

endOfMovement, 0.6

MoveAndWatch

{rH}

Begin TakeObject

MoveObject

{rH, H, E} {H, E}

{rH, H, E}

endOfMovement, −1
endOfMovement, 1

Figure 7: Moving object behaviour.

6. EXAMPLE
In this section, we will study the example given in intro-

duction (drink a coffee and smoke a cigarette while reading a
newspaper) and show how the scheduler is able to reproduce
this behaviour just by describing independently the three
sub-behaviours and their associated priority functions. All
state machines use the following set of resources: Hl (left
hand), Hr (right hand), rHl (reserve left hand), rHr (reserve
right hand), M (mouth) and E (eyes). Resources rHl/rHr
are used to handle releasing of resources Hl/Hr. The sched-
uler can only act on the next transition of a state machine.
Hands are resources that often need more than one timestep
to be freed, for instance, putting down an object to free the
hand resource. Then a state which only use resource Hr/Hl
corresponds to a behaviour of freeing a hand resource. All
state machines used to solve this problem are presented in
figures 8, 9 and 10. In these state machines, resource H
stands for Hr or Hl as it exists the same behaviour for each
hand. Note that descriptions of state machines are totally
independent one from each other.

true, 1

Begin

GetHand

takeObject

true, −1

PutObject

End

true, −1

endOfMovement and not(endOfConsume), 1
endOfMovement and not(endOfConsume), −1

endOfMovement and endOfConsume, 1
endOfMovement and endOfConsume, −1

{rH}

MoveObjectToMouth

{rH, H, M}

Pause
{rH, H}

{rH, H, E} {rH, H, E}

{H, E}
Consume

endWait, −1

movementEnd, 1

true, 1

movementEnd, 1

true, 1

true, −1
true, −1

true, 1

endWait, 1

Figure 8: Common behaviour for drinking and
smoking.

Begin
true, 1

ReadWord

End

focusOnWord, 1

WatchNextWord

true, −1

true, 1

endOfPhrase, −0.7

ParagraphPause

true, 0.7

true, 0.4

endOfParagraph, −0.4

true, 0.2

endOfChapter, −0.2

endOfPage, 1

wordRead, 1

{E}{E}

SentencePause

ChapterPause

WordPause

Figure 9: Reading behaviour.

Drinking and smoking : Those two behaviours are de-
scribed through the same state machine consisting in grasp-
ing the object of interest, moving it to the mouth and keep-
ing the object into the hand. The object is put on the table

Begin

true, 1 GetHand
{rH}

true, 1

TakeObject

endOfMovement, 1

{rH, H}

endOfMovement, −1

PutObject

endOfMovement, 1
endOfMovement, −1

End

MoveForVision

true, 1

true, −1 true, −1

{rH, H, E} {H, E}

Figure 10: Behaviour handling hands while reading.

if another behaviour needs hand resource or if the current
behaviour becomes inhibited.

Reading the newspaper : This behaviour consists in two
parallel sub-behaviours. One consists in reading the news-
paper with different possibilities of pause depending on the
text structure. Those different levels of interruption are de-
scribed through degrees of preference. The second consists
in manipulating the newspaper taking it into the hand and
moving it near the eyes.

Note that thanks to resources, each behaviour is described
independently from the others but propose different possi-
bilities of adaptation. Each possibility of adaptation is de-
scribed through degrees of preference which allow to specify
the cost of such adaptation. Moreover, as a mechanism en-
sures that no deadlock can arise, conceiving a behaviour
does not need to know other described behaviours.

Defining priorities: the importance of behaviours de-
scribed below depends on different parameters. The diffi-
culty arises with the fact of unifying priority functions that
depend on different parameters.

Drinking and smoking : those two behaviours have vari-
able priorities evolving with the time. Those priorities are
directly correlated to the thirst/need of nicotine. Let note
p(t) the priority function where t represents the time. It has
the following definition:�

p(t) = p(t − dt) + dp1 × dt if not(consuming)

p(t) = p(t − dt) − dp2 × dt if consuming
(14)

where dp1 (respectively dp2) is the increase rate (respectively
the decrease rate) of the thirst or the need of nicotine. Con-
suming stands for drinking or smoking depending on the
behaviour.

Reading : priority of reading behaviour is correlated to
the interest of the reader for the text. In this example, the
function is defined as a constant. The behaviour having the
greatest priority is the reading one while behaviour allowing
to manipulate the sheet has a lower priority.

In order to handle the reading behaviour, another be-
haviour has been added which consists in moving a sheet
of paper with the right hand in front of the agent in order
to read, and when the sheet is read, it is moved and the next
sheet is taken. Moving the sheet of paper is handled by the
behaviour described in figure 7.

Note that once behaviours are described through state
machines, they are controlled through their priority. This
property allow to handle every type of executive behaviour
without need of information about their internal structure in
term of resources or possible adaptations. Figure 11 shows
the activity of each running behaviour. Activity is defined
by states using resources Hr/Hl/E/M, which can be assimi-
lated to active resources (i.e. resources enabling manipula-

Figure 11: Activity of behaviours during simulation.

tion of body parts). In this figure, 1 stands for the activity
of reading the sheet of paper, 2 the activity of moving the
sheet of paper, 3 the activity of smoking with the left hand, 4
the activity of drinking with the right hand, 5 the activity of
manipulating the sheet of paper with the left hand and 6 the
activity of manipulating the sheet of paper with the right
hand. Parallelization of actions shown in this figure and
mutual exclusion of behaviours are automatically handled
by the scheduler. It exploits all propositions of transitions
of state machines describing behaviours. For example, at
time 30−40, interruption of smoking behaviour, whereas its
priority is active, is due to request of left hand resource by
behaviour consisting in manipulating the sheet, which has
a greater priority. This organization of behaviours has been
automatically generated by the scheduler such as the overall
realization of the example (Cf. figure 12).

Figure 12: Behavioural Coordination Example.

7. CONCLUSION
We have presented in this paper a generic approach to in-

tegrate the management of resources and priority levels into

HPTS, our formal model. In the contrary of some previous
approach, it is not necessary to specify exhaustively all be-
haviours that are mutually exclusive; this is done implicitely
just by attaching resources to nodes and a priority function
to each state machine, and by using a scheduler. The exam-
ple has illustrated the advantage of the scheduling system
which allows to describe independently all behaviours with
their different possibilities of adaptation. During running
phase, the adaptation of all running behaviours is automatic.
Moreover, consistency is ensured because the scheduler can
only exploit consistent propositions of transition for each be-
haviour depending on the others. By now, our scheduler is
able to handle a fixed number of resources (about ten for real
time constraints) declared at compilation time. An exten-
sion will consist in allowing resource declaration at runtime
in order to handle external resources. Another extension will
be to connect this work to a higher level of reasoning pro-
cess, in order to determine automatically which behaviour
should be activated or inhibited.

8. REFERENCES
[1] O. Ahmad, J. Cremer, S. Hansen, J. Kearney, and

P. Willemsen. Hierarchical, concurrent state machines for
behavior modeling and scenario control. In Conference on
AI, Planning, and Simulation in High Autonomy Systems,
Gainesville, Florida, USA, 1994.

[2] N. Badler, B. Reich, and B. Webber. Towards personalities
for animated agents with reactive and planning behaviors.
Lecture Notes in Artificial Intelligence, Creating
Personalities for synthetic actors, (1195):43–57, 1997.

[3] V. Decugis and J. Ferber. Action selection in an
autonomous agent with a hierarchical distributed reactive
planning architecture. In Autonomous Agents’98, pages
354–361, Minneapolis, USA, 1998. ACM.

[4] S. Donikian. HPTS: a behaviour modelling language for
autonomous agents. In Fifth International Conference on
Autonomous Agents, Montreal, Canada, May 2001. ACM
Press.

[5] S. Donikian and E. Rutten. Reactivity, concurrency,
data-flow and hierarchical preemption for behavioural
animation. In E. B. R.C. Veltkamp, editor, Programming
Paradigms in Graphics’95, Eurographics Collection.
Springer-Verlag, 1995.

[6] A. Finzi, F. Pirri, and R. Reiter. Open world planning in
the situation calculus. In AAAI/IAAI, pages 754–760, 2000.

[7] J. Funge, X. Tu, and D. Terzopoulos. Cognitive modeling:
Knowledge, reasoning and planning for intelligent
characters. In SIGGRAPH’99, pages 29–38, Los Angeles,
Aug. 1999.

[8] P. Maes. Situated agents can have goals. Robotics and
Autonomous Systems, 6:49–70, 1990.

[9] J. C. Meyer and P. Schobbens, editors. Formal Models of
Agents, volume 1760 of Lecture Notes in Artificial
Intelligence. Springer, 2000.

[10] A. Nareyek. A planning model for agents in dynamic and
uncertain real-time environments. In AIPS-98 Workshop
on Integrating Planning, Scheduling and Execution in
Dynamic and Uncertain Environments, pages 7–14, 1998.

[11] A. Newell. Unified Theories of Cognition. Harvard
University Press, 1990.

[12] H. Noser and D. Thalmann. Sensor based synthetic actors
in a tennis game simulation. In Computer Graphics
International’97, pages 189–198, Hasselt, Belgium, June
1997. IEEE Computer Society Press.

[13] A. Sloman. What sort of control system is able to have a
personality. In R. Trappl and P. Petta, editors, Creating
Personalities for Synthetic Actors, volume 1195 of Lecture
Notes in Artificial Intelligence, pages 166–208.
Springer-Verlag, 1997.

