
Approximation methods for the soundness 
of control laws derived by machine learning 

 
The design of controllers for large cyber physical systems (CPS, i.e. systems driven both by 
physical equations and digital controllers) is challenged today by machine learning approaches, 
and specifically reinforcement learning. The latter however still fail to provide guarantees on 
the behavior of the controllers it provides. The objective of this thesis is to explore a range of 
techniques that would make control design for CPS or any other large-scale complex system 
sound and scalable. The focus will be on quantitative methods, that provide performance 
guarantees, for example PAC bounds (probably approximately correct). 
 
Several research directions are envisioned. The main one concerns model approximation. For 
a given dynamic system with discrete state, like a stochastic automaton, this may mean reducing 
the size of the state space while preserving as much as possible the distribution over generated 
runs, which requires computing or estimating distances between models. Starting from a CPS 
with continuous state variables, this means finding the best discretization with bounded state 
size. One may as well take as starting point a (possibly infinite) collection of representative 
runs of that system, or a black box trace generator, and be interested in learning a model from 
these traces (system identification) in order to capture the most characteristic features of their 
dynamics. For all these directions, one will be interested both in designing approximation 
algorithms, in characterizing their convergence properties, and in providing bounds for their 
accuracy. 
 
A second research direction concerns approximation techniques in view of control design. 
There, the model (a Markov Decision Process for example) comes as the support to design an 
efficient control policy, toward some quantitative objective. Optimal control laws generally 
derive from iterative methods that do not scale up with model dimension, in particular if the 
latter come from discretization of continuous variables. The objective will be to explore various 
approximation techniques that would improve scalability, convergence speeds and provide both 
performance bounds and readability of the control laws. Model approximations are one possible 
way, but also controller regularization (for example through state aggregation), or 
approximations in the iterative procedure that yield optimal laws, or even control objective 
relaxations. 
 
As a possible use-case for the above techniques, we aim at designing distributed controllers for 
large CPS, for example a fleet of trains on a subway line. The objective will be both to design 
multi-agent control strategies, to estimate their performances and to verify safety properties like 
maintaining minimal headways. Applications to other complex mechanical devices are also 
envisioned, like those of the OpenAi Gym. 
 
This PhD will take place in the SUMO Team at INRIA Rennes (Brittany, France), under the 
joint supervision of  Loïc Hélouët and Eric Fabre. Funding is secured for this PhD, as a 3 
years contract. This research will be connected to the Maveriq ANR project. 
 
Candidates for this PhD should have a strong interest in formal methods. Former experience 
in probabilistic or quantitative model checking, or in learning techniques will be appreciated. 
For more information, please contact: 
eric.fabre@inria.fr 
loic.helouet@inria.fr 
 
Applicants must send their resume (CV), master marks, and a list of references. 
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