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Optimization scheme

General numerical optimization scheme

min
x∈Rd

f (x)

1 Init : by x0, an initial guess of a minimum x∗.
2 Recursion : until a convergence criterion is satisfied at xn

at xn, determine of a search direction dn ∈ Rd ,
linear search : find xn+1 along the semi-line xn + t dn, t ∈ R+ ;
amounts to minimizing φ(t) = f (xn + t dn) in t > 0.
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Optimization scheme

Remarks :

It is important to notice that f can’t be plotted (d large).
An optimization scheme is short-sighted i.e. only has access
to local knowledge on f .

The information available will determine the method to use :

order 0 : only f (xn) available,
1st order : ∇f (xn) also known
2nd order : ∇2f (xn) known (or estimated)

Stop criteria are on ‖∇f (xn)‖, on the relative norm of the last

step ‖x
n+1−xn‖
‖xn‖ , etc.

The linear search may simply be an approximate minimization.
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Linear search methods

Linear search

We look for a local minimum of φ :

min
t>0

φ(t) = f (xn + t dn)

Equivalently, and to simplify notations,
we can assume that f : R→ R and look for a minimum of f .

There exist many methods, according to the assumptions on f :
convex, unimodular, C 1, C 2, etc.
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Linear search methods

Newton-Raphson method

Assumes f is C 2. Principle :

approximate f by its second order expansion around xn,
f (x) = f (xn) + f ′(xn)(x−xn) + 1

2 f ′′(xn)(x−xn)2 +o(x−xn)2

take as xn+1 the min of the quadratic approx. of f .

xn+1 = xn − f ′(xn)

f ′′(xn)
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Linear search methods

Equivalently, amounts to finding a zero of f ′(x).

f ′(x) = f ′(xn) + f ′′(xn)(x − xn) + o(x − xn)

xn+1 = xn − f ′(xn)

f ′′(xn)
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Linear search methods

Secant method

Assumes f is only C 1.
Principle :

same as the Newton-Raphson method, but f ′′(xn) is

approximated by f ′(xn)−f ′(xn−1)
xn−xn−1

this yields xn+1 = xn − xn−xn−1

f ′(xn)−f ′(xn−1)
f ′(xn)

Standard to find the zero of a function when its derivative is
unknown.
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Linear search methods

Wolfe’s method

Assumes f is only C 1.

Principle :

approximate linear search

proposes an xn+1 that “sufficiently” decreases
|f ′(xn+1)| w.r.t. |f ′(xn)|
and that also significantly decreases f (xn+1) w.r.t. f (xn)

The search of xn+1 is done by dichotomy in an interval
[a = xn, b].
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Linear search methods

Let 0 < m1 <
1
2 < m2 < 1 be two parameters.

The point x is acceptable as xn+1 iff

f (x) ≤ f (x0) + m1(x − x0)f ′(x0)

f ′(x) ≥ m2f
′(x0)
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Gradient descent

Gradient descent (steepest descent)

Back to the general case : f : Rd → R

Principle :

Performs the linear search along the steepest descent direction

dn = −∇f (xn)

the optimal step t∗ minimizes φ(t) = f (xn + t dn), so

φ′(t∗) = ∇f (xn + t∗ dn)t dn = 0

the descent stops when the new gradient ∇f (xn+1) becomes
orthogonal to the current descent direction dn = −∇f (xn).
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Gradient descent

Properties :

+ Easy to implement, requires only first order information
on f .

- Slow convergence. Performs poorly even on simple functions
like quadratic forms !

In practice, a fast suboptimal descent step is preferred.
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Gradient descent

Example : on “Rosenbrock’s banana”

f (x) = 100(x2 − x2
1 )2 + (1− x1)2
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Conjugate gradient

Conjugate gradient

Overview :

A first order method, simple variation of the gradient descent,

designed to perform well on quadratic forms.

Idea = tilt the next search direction to better aim at the
minimum of the quadratic form.
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Conjugate gradient

We assume A is a positive symmetric matrix and

f (x) =
1

2
x tAx + btx and ∇f (x) = Ax + b

Principle :

start at x0, d0 = −∇f (x0) , −g0,

at xn, instead of dn = −∇f (xn) , −gn,
look for the minimum of f in the affine space

Wn+1 = x0 + sp{d0, d1, ..., dn−1, gn}

Lemma

xn+1 is the min of f in Wn+1 ⇒ gn+1 , ∇f (xn+1) ⊥ Wn+1
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Conjugate gradient

Lemma

xn is the minimum of f in Wn,
from xn, direction dn points to the minimum xn+1 in Wn+1 iff

(dn)t A d i = 0 for 0 ≤ i ≤ n − 1

The direction dn is said to be conjugate to all the previous d i .

Proof :

xn+1 = xn + tdn

gn+1 , ∇f (xn+1) = Axn+1 + b = gn + tAdn

From the previous lemma gn+1 ⊥ Wn+1 and gn ⊥ Wn, so

(gn+1)tgn = ‖gn‖2 + t(dn)tAgn = 0 ⇒ t 6= 0

(gn+1)td i = (gn)td i + t(dn)tAd i = 0 for 0 ≤ i ≤ n − 1
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Conjugate gradient
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Conjugate gradient

Question : How to find direction dn, conjugate to all previous d i ?

Notice g i+1 − g i = A(x i+1 − x i ) ∝ Ad i , so

(dn)t A d i = 0 ⇒ (dn)t g i+1 = (dn)t g i = cst

Since the g i form an orthogonal family, one has

dn ∝
n∑

i=0

g i

‖g i‖2
⇒ dn = −gn + cnd

n−1

Answer : steepest slope, slightly corrected by previous descent
direction.
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Conjugate gradient

Example : on Rosenbrock’s banana
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Conjugate gradient

Expressions of the correction coefficient cn :

cn = ‖gn‖2
‖gn−1‖2 Fletcher & Reeves (1964)

cn = (gn−gn−1)tgn

‖gn−1‖2 Polak & Ribière (1971)

cn = (gn)tAdn−1

‖dn−1‖2A

Properties :

converges in d steps for a quadratic form f : Rd → R
same complexity as the gradient method !

Works well on non quadratic forms if the Hessian doesn’t
change much between xn and xn+1

Caution : dn may not be a descent direction... In this case,
reset to −gn.
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Newton method

Newton method

Principle :

Replace f by its second order approximation at xn

φ(x) = f (xn) +∇f (xn)t (x − xn)

+
1

2
(x − xn)t ∇2f (xn) (x − xn)

take as xn+1 the min of φ(x)

∇φ(x) = ∇f (xn) +∇2f (xn) (x − xn)

which amounts to solving the linear system

∇2f (xn) (xn+1 − xn) = −∇f (xn)
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Newton method

Example : on Rosenbrock’s banana
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Newton method

Comments :

+ faster convergence (1 step for quadratic functions !),
but expensive : requires second order information on f

yields a stationary point of f : one still has to check that it is
a minimum

in practice, try dn = −[∇2f (xn)]−1∇f (xn)] as descent
direction, and perform a linear search

- no guarantee that dn is an admissible descent direction...

- no guarantee that xn+1 is a better point than xn...

- ∇2f (xn) may be singular, or badly conditioned...

the Levenberg-Marquardt regularization suggests to solve

[∇2f (xn) + µ1I ] dn = −∇f (xn)
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Quasi-Newton methods

Quasi-Newton methods

Principle :

Take advantage of the efficiency of the Newton method...

... when the Hessian ∇2f (x) is unavailable !

Idea : approximate [∇2f (xn)]−1 by matrix Kn in

xn+1 = xn − [∇2f (xn)]−1∇f (xn)

More precisely, explore direction dn = −Kn∇f (xn) from xn.
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Quasi-Newton methods

Quasi-Newton equation

Consider the second order Taylor expansion of f at xn

f (x) = f (xn) +∇f (xn)t (x − xn)

+
1

2
(x − xn)t ∇2f (xn) (x − xn) + o(‖x − xn‖2)

∇f (x) = ∇f (xn) +∇2f (xn) (x − xn) + o(‖x − xn‖)

The estimate Kn of the inverse Hessian must satisfy the
quasi-Newton equation (QNE)

xn+1 − xn = Kn+1 [∇f (xn+1)−∇f (xn)]

Notice that this should be Kn... but Kn is used to find xn+1,
so we impose the relation be satisfied at the next step.
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Quasi-Newton methods
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Quasi-Newton methods

All quasi-Newton Methods recursively build the Kn by

Kn+1 = Kn + Cn

where the correction Cn is adjusted to satisfy the QNE.

Notations :

un = xn − xn−1

vn = gn − gn−1

QNE : un+1 = Kn+1 vn+1
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Quasi-Newton methods

Correction Cn of rank 1

Kn+1 = Kn +
wn(wn)t

(wn)t vn+1
where wn = un+1 − Knv

n+1

If initialized with K0 = 1I, Kn converges in d steps to the true
A−1 for a quadratic form.

DFP (Davidon, Fletcher, Powell) correction of rank 2

Kn+1 = Kn +
un+1(un+1)t

(un+1)t vn+1
− Knv

n+1(vn+1)tKn

(vn+1)tKn vn+1

Converges in d steps to the true A−1 for a quadratic form.
Descent directions are conjugate w.r.t. A.
Coincides with the conjugate gradient method.



Optimization without constraints Optimization under constraints Conclusion

Quasi-Newton methods

Correction Cn of rank 1

Kn+1 = Kn +
wn(wn)t

(wn)t vn+1
where wn = un+1 − Knv

n+1

If initialized with K0 = 1I, Kn converges in d steps to the true
A−1 for a quadratic form.

DFP (Davidon, Fletcher, Powell) correction of rank 2

Kn+1 = Kn +
un+1(un+1)t

(un+1)t vn+1
− Knv

n+1(vn+1)tKn

(vn+1)tKn vn+1

Converges in d steps to the true A−1 for a quadratic form.
Descent directions are conjugate w.r.t. A.
Coincides with the conjugate gradient method.



Optimization without constraints Optimization under constraints Conclusion

Quasi-Newton methods

BFGS (Broyden, Fletcher, Goldfarb, Shanno, 1970),
correction of rank 3

Kn+1 = Kn −
un+1(vn+1)tKn + Knv

n+1(un+1)t

(un+1)t vn+1

+

(
1 +

(vn+1)tKnv
n+1

(un+1)tvn+1

)
un+1(un+1)t

(un+1)tvn+1

Considered as the best Quasi-Newton method.

In practice, one should check that −Kng
n is a descent

direction, i.e. −(gn)t Kng
n < 0, otherwise reinitialize by

Kn = 1I.
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Quasi-Newton methods
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Quasi-Newton methods

Example : on Rosenbrock’s banana
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Lagrange

Joseph Louis count of Lagrange

Giuseppe Ludovico di Lagrangia,
Italian mathematician, born in Turin (1736)
founder of the Academy of Turin (1758)
called by Euler to the Academy of Berlin
director of the French Academy of Sciences (1788)
survived the French revolution (b.c.w. Condorcet, ...)
resting at the Pantheon (1813)
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Lagrange

Among his contributions :

the calculus of variations,

the Taylor-Lagrange formula,

the least action principle in mechanics,

some results on the 3 bodies problem,
(the Lagrange points)

...

and the notion of Lagrangian !
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Equality constraints

Equality constraints

min
x

f (x) s.t. θj(x) = 0, 1 ≤ j ≤ m

D : θ(x) = [θ1(x), ..., θm(x)]t = 0
defines a manifold of dimension d −m in Rd

∇θj(x0)t (x − x0) = 0 : tangent hyperplane to θj(x) = 0 at
point x0

∇θ(x0)t (x − x0) = 0 : tangent space to D at x0
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Equality constraints

Definition

In domain D = {x ∈ Rd : θ(x) = 0}, the point x0 is regular iff the
gradients ∇θj(x0) of the m constraints are linearly independent.

Lemma

If x0 is regular, every (unit) direction d in the tangent space is

admissible, i.e. can be obtained as the limit of xn−x0

‖xn−x0‖ , with

limn xn = x0 and xn ∈ D.
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Equality constraints

Theorem

Let x∗ be a regular point of D, if x∗ is a local extremum of f in D,
then there exists a unique vector λ∗ ∈ Rm of Lagrange multipliers
such that

∇f (x∗) +
m∑

j=1

λ∗j ∇θj(x∗) = 0
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Equality constraints

Proof :

Project ∇f (x∗) on sp{∇θ1(x∗), ...,∇θm(x∗)}

∇f (x∗) =
m∑

j=1

−λ∗j ∇θj(x∗) + u

u belongs to the tangent space to D at x∗

progressing along −u decreases f and doesn’t change θ
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Equality constraints

Application

To solve minx f (x) s.t. θ(x) = 0,

1 build the Lagrangian

L(x , λ) = f (x) +
∑

j

λjθj(x)

2 find a stationary point (x∗, λ∗) of the Lagrangian, i.e. a zero
of ∇L(x , λ)

∇xL(x , λ) = ∇f (x) +
∑

j

λj∇θj(x)

∇λL(x , λ) = θ(x)

i.e. d + m (non-linear) equations, with d + m unknowns.
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Equality constraints

Example

Problem : find the radius x1 and the height x2 of a cooking pan in
order to minimize its surface, s.t. the capacity of the pan is 1 litre.

f (x) = πx1
2 + 2πx1x2

θ(x) = πx1
2x2 − 1
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Equality constraints
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Equality constraints

Solution : Lagrangian L(x , λ) = f (x) + λθ(x)

∂L(x , λ)

∂x1
= 2πx1 + 2πx2 + λ2πx1x2 = 0

∂L(x , λ)

∂x2
= 2πx1 + λπx1

2 = 0

We obtain x1
∗ = x2

∗ = − 2
λ .

Finally, θ(x∗) = 0 gives the value of λ to plug :

λ∗ = −π1/3

2 , so x1
∗ = x2

∗ = π−1/3.
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Equality constraints

Another interpretation

Consider the unconstrained problem, where λ is fixed

min
x

L(x , λ) = f (x) + λθ(x)

f and L have the same local minima in D = {x : θ(x) = 0}.

Let x∗(λ) be a local minimum of L(x , λ) in Rd .

If x∗(λ) ∈ D, then it is also a local min of f .

So one just has to adjust λ to get this property.
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Equality constraints

Second order conditions

Theorem

Let (x∗, λ∗) be a stationary point of L(x , λ), and consider the
Hessian of the Lagrangian

∇2
x L(x∗, λ∗) = ∇2f (x∗) +

m∑
j=1

λ∗j ∇2θj(x
∗)

NC : x∗ is a local min of f on D ⇒ ∇2
x L(x∗, λ∗) is a

positive quadratic form on the tangent space at x∗,
i.e. the kernel of matrix ∇θ(x∗)t .

SC : ∇2
x L(x∗, λ∗) is strictly positive on the tangent space

⇒ x∗ is a local min of f on D
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Equality constraints
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Inequality constraints

Inequality constraints

min
x

f (x) s.t. θj(x) ≤ 0, 1 ≤ j ≤ m

D : θ(x) = [θ1(x), ..., θm(x)]t ≤ 0 defines a volume in Rd

limited by m manifolds of dimension d − 1

At point x , constraint θj is active iff θj(x) = 0.
A(x) = {j : θj(x) = 0} = active set at x .

One could have simultaneously equality and inequality
constraints (not done here for a of matter clarity).
Equality constraints are always active.

∩j∈A(x0) {x : ∇θj(x0)t (x − x0) = 0}
defines the tangent space to D at x0
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Inequality constraints

Admissible directions

Let x0 ∈ D, we look for directions d ∈ Rd that keep us inside
domain D : x0 + ε · d ∈ D.

Definition

Direction d is admissible from x0 iff ∃(xn)n>0 in D such that

lim
n

xn = x0 and lim
n

xn − x0

‖xn − x0‖
=

d

‖d‖
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Inequality constraints

Admissible directions at x0 form a cone C(x0).

This cone is not necessarily convex...

C(x0) can be determined from the ∇θj(x0) of the active
constraints.
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Inequality constraints

Theorem

If x0 is a regular point, i.e. the gradients of the active constraints
at x0 are linearly independent, then C(x0) is the convex cone given
by

C(x0) = {u ∈ Rd : ∇θj(x0)t u ≤ 0, j ∈ A(x0)}

Interpretation : an admissible displacement must not increase the
value of θj(x

0) for an already active constraint, it can only
decrease it or leave it unchanged.
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Inequality constraints

Dual cone and Farkas lemma

For v1, ..., vJ ∈ Rd , consider cone C = {u : utv1 ≤ 0, ..., utvJ ≤ 0}.

Farkas-Minkowski lemma

Let g ∈ Rd , one has the equivalence

∀u ∈ C, g tu ≤ 0,

C is included in the half-space {u : g tu ≤ 0},
g belongs to the dual cone C′ = {w : ∀u ∈ C,w tu ≤ 0}
g =

∑J
j=1 αjvj where αj ≥ 0 for all j
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Inequality constraints

1st order optimality conditions

Theorem (Karush-Kuhn-Tucker conditions)

Let x∗ be a regular point of domain D. If x∗ is a local minimum of
f in D, there exists a unique set of generalized Lagrange
multipliers λ∗j for j ∈ A(x∗) such that

∇f (x∗) +
∑

j∈A(x∗)

λ∗j ∇θj(x∗) = 0 and λ∗j ≥ 0, j ∈ A(x∗)

Remarks :

Similar to the case of equality constraints : here only active
constraints are considered.

The positivity condition is new : translates the fact that one
side of the manifold is permitted.
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Inequality constraints
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Inequality constraints

Proof :

take any admissible direction :
d ∈ C(x∗) = {u : ut∇θj(x∗) ≤ 0, j ∈ A(x∗)}
progressing along d doesn’t decrease f : [−∇f (x∗)]td ≤ 0

this means that g = −∇f (x∗) belongs to the dual cone
C(x∗)′, so by Farkas lemma

−∇f (x∗) =
∑

j∈A(x∗)

λ∗j∇θj(x∗) and λ∗j ≥ 0
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Inequality constraints

Corollary

The Karush-Kuhn-Tucker conditions are equivalent to

∇f (x∗) +
m∑

j=1

λ∗j ∇θj(x∗) = 0 and λ∗j ≥ 0, 1 ≤ j ≤ m

with the extra complementarity condition

m∑
j=1

λ∗j θj(x
∗) = 0

This entails λ∗j = 0 for an inactive constraint θj at x∗.

To be usable, requires to know/guess the set of active
constraints at the optimum.

A(x∗) known, leaves a set of non-linear equations + positivity
constraints.
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Inequality constraints

Example

Problem : Minimize distance from point P to the red segment

min
x

f (x) = (x1 − 1)2 + (x2 − 2)2

subject to θ1(x) = x1 − x2 − 1 = 0

θ2(x) = x1 + x2 − 2 ≤ 0

θ3(x) = −x1 ≤ 0

θ4(x) = −x2 ≤ 0
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Inequality constraints

Objective : cancel the gradient of the Lagrangian

∂L(x , λ)

∂x1
= x1 − 1 + λ1 + λ2 − λ3 = 0

∂L(x , λ)

∂x2
= x2 − 2− λ1 + λ2 − λ4 = 0

equality
∂L(x , λ)

∂λ1
= x1 − x2 − 1 = 0

inequalities λ2(x1 + x2 − 2) = 0, λ2 ≥ 0

−λ3x1 = 0, λ3 ≥ 0

−λ4x2 = 0, λ4 ≥ 0

1st guess : A(x∗) = {1}, i.e. only θ1 active at the optimum.
Complementarity ⇒ λ∗2 = λ∗3 = λ∗4 = 0.
This yields x∗ = (2, 1) which violates θ2(x) ≤ 0.
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Inequality constraints

Objective : cancel the gradient of the Lagrangian

∂L(x , λ)

∂x1
= x1 − 1 + λ1 + λ2 − λ3 = 0

∂L(x , λ)

∂x2
= x2 − 2− λ1 + λ2 − λ4 = 0

equality
∂L(x , λ)

∂λ1
= x1 − x2 − 1 = 0

inequalities λ2(x1 + x2 − 2) = 0, λ2 ≥ 0

−λ3x1 = 0, λ3 ≥ 0

−λ4x2 = 0, λ4 ≥ 0

2nd guess : A(x∗) = {1, 2}, i.e. θ2 is added to the active set.
Complementarity ⇒ λ∗3 = λ∗4 = 0.
This yields x∗ = (3

2 ,
1
2) which belongs to D.
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Dual problem - Resolution by duality

Dual problem - Resolution by duality

[ For simplicity we consider the case of inequality constraints. ]

Idea: under some conditions, a stationary point (x∗, λ∗) of the
Lagrangian, i.e. ∇L(x∗, λ∗) = ∇f (x∗) +

∑
i λ
∗
i∇θ(x∗) = 0

corresponds to a saddle point of the Lagrangian, i.e.

inf
x

L(x , λ∗) = L(x∗, λ∗) = sup
λ

L(x∗, λ)

So the resolution amounts to finding such saddle points, and then
extract x∗.
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Dual problem - Resolution by duality

Saddle points

Definition

(x∗, λ∗) is a saddle point of L in Dx ×Dλ iff

sup
λ∈Dλ

L(x∗, λ) = L(x∗, λ∗) = inf
x∈Dx

L(x , λ∗)
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Dual problem - Resolution by duality

Lemma

If (x∗, λ∗) is a saddle point of L in Dx ×Dλ, then

sup
λ∈Dλ

inf
x∈Dx

L(x , λ) = L(x∗, λ∗) = inf
x∈Dx

sup
λ∈Dλ

L(x , λ)

Proof

one always has supλ infx L(x , λ) ≤ infx supλ L(x , λ)
the difference is called the duality gap, generally > 0
from the def. of a saddle point, one has

sup
λ

L(x∗, λ) = L(x∗, λ∗) = inf
x

L(x , λ∗)

then

inf
x

[ sup
λ

L(x , λ) ] ≤ sup
λ

L(x∗, λ)

inf
x

L(x , λ∗) ≤ sup
λ

[ inf
x

L(x , λ) ]

Morality: one can look for λ∗ first, and then for x∗...
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Dual problem - Resolution by duality

Saddle points of the Lagrangian

Theorem

If (x∗, λ∗) is a saddle point of the Lagrangian L in Rd × Rm
+, then

x∗ is a solution of the primal problem (P)

(P) min
x

f (x) s.t. θi (x) ≤ 0, 1 ≤ i ≤ m

Proof

From L(x∗, λ) ≤ L(x∗, λ∗), ∀λ ∈ Dλ = Rm
+

f (x∗) +
∑

i

λiθi (x
∗) ≤ f (x∗) +

∑
i

λ∗i θi (x
∗)

∑
i

(λi − λ∗i )θi (x
∗) ≤ 0

whence θi (x
∗) ≤ 0 by λi → +∞ : x∗ satisfies constraints
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Dual problem - Resolution by duality

Moreover,
∑

i −λ∗i θi (x∗) ≤ 0, by λi = 0,
and so

∑
i λ
∗
i θi (x

∗) = 0 (complementarity condition)

From L(x∗, λ∗) ≤ L(x , λ∗), ∀x ∈ Rd

f (x∗) +
∑

i

λ∗i θi (x
∗) ≤ f (x) +

∑
i

λ∗i θi (x)

so for all admissible x , i.e. such that θi (x) ≤ 0, 1 ≤ i ≤ m

f (x∗) ≤ f (x)

Summary :
saddle points of the Lagrangian, when they exist, give solutions to
the optimization problem.
But they don’t always exist...
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Dual problem - Resolution by duality

Existence of saddle points

Theorem

If f and the constraints θi are convex functions of x in Rd , and
if x∗ = arg minx f (x) in {x : θi (x) ≤ 0, 1 ≤ i ≤ m} is regular
then x∗ corresponds to a saddle point (x∗, λ∗) of the Lagrangian

Proof: from Kuhn-Tucker, derive the saddle point property

L(x∗, λ) = f (x∗) +
∑

i λiθi (x
∗)

≤ f (x∗) = f (x∗) +
∑

i λiθi (x
∗) = L(x∗, λ∗)

using admissibility of x∗, positivity of λi and complementarity

L(x , λ∗) = f (x) +
∑

i λ
∗
i θi (x) is a convex function of x

From the stationarity of L, one has
∇xL(x∗, λ∗) = ∇f (x∗) +

∑
i λ
∗
i∇θi (x∗) = 0

sufficient to show that x∗ is a minimum of the convex
function L(x , λ∗)
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Dual problem - Resolution by duality

Dual problem

Summary: Provided the Lagrangian has saddle points

Solutions to (P) minx f (x) s.t. θi (x) ≤ 0, 1 ≤ i ≤ m
are the 1st argument of a saddle point (x∗, λ∗) of the
Lagrangian L(x , λ)

If λ∗ were known, amounts to solving an unconstrained
problem

x∗ = arg min
x

L(x , λ∗)

How to find such a λ∗ ?
One has L(x∗, λ∗) = maxλ∈Rm

+
minx L(x , λ),

so λ∗ should be a solution of the dual problem

(D) max
λ

g(λ), s.t. λ ∈ Rm
+, where g(λ) = min

x
L(x , λ)
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Dual problem - Resolution by duality

Under some conditions, it is equivalent to solve the (P) or (D) :

Theorem

If the θi are continuous over Rd , and
∀λ ∈ Rm

+, x∗(λ) = arg minx L(x , λ) is unique, and
x∗(λ) is a continuous function of λ
then λ∗ solves (D) ⇒ x∗(λ∗) solves (P)

If (P) has at least one solution x∗, f and the θi are convex
and x∗ is regular, then (D) has at least a solution λ∗.

Remark
(D) is still an optimization problem under constraints...
... but constraints λ ∈ Rm

+ are much simpler to handle !
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Dual problem - Resolution by duality

Example

Minimize a quadratic function under a quadratic constraint in R
minx(x − x0)2 s.t. (x − x1)2 − d ≤ 0 with d > 0, x1 > x0

convex, regular case... unique saddle point of the Lagrangian
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Dual problem - Resolution by duality

L(x , λ) = (x − x0)2 + λ[(x − x1)2 − d ]

Compute g(λ) = minx∈R L(x , λ)
∇xL(x , λ) = 2(x − x0) + 2λ(x − x1) = 0 ⇒ x∗(λ) = x0+λx1

1+λ

g(λ) = (x1 − x0)2 λ
1+λ − λd

Solve (D) : maxλ≥0 g(λ)

g ′(λ) = (x1−x0)2

(1+λ)2
− d = 0

λ∗ = x1−x0√
d
−1 if ≥ 0, otherwise λ∗ = 0 (constraint is inactive)

When λ∗ > 0, x∗(λ∗) = x1 −
√

d
otherwise, for λ∗ = 0, x∗(λ∗) = x0
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Dual problem - Resolution by duality

Plot of the Lagrangian
Case where λ∗ > 0, i.e. x1 − x0 >

√
d

(here x0 = 1, x1 = 3, d = 1, λ∗ = 1)
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Dual problem - Resolution by duality

Plot of the Lagrangian
Case where λ∗ = 0, i.e. x1 − x0 ≤

√
d

(here x0 = 1, x1 = 1.5, d = 1)
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Numerical methods

Numerical methods

Same principle as for the unconstrained case, with 2 extra
difficulties

constraints limit the choice of admissible directions,

progressing along an admissible direction may meet the
boundary of D.
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Numerical methods

Penalty functions

Also called Lagrangian relaxation

Exterior points method : for equality constraints θ(x) = 0

Principle = penalize non-admissible solutions.

Let ψ(x) ≥ 0 and ψ(x) = 0 exactly on D,
for example ψ(x) = ‖θ(x)‖2

Consider the unconstrained problem

min
x

F (x) = f (x) + ck ψ(x), ck > 0

and let ck go to +∞.
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Numerical methods

Interior points method : better suited to inequalities θ(x) ≤ 0

Principle = completely forbid non-admissible solutions,
penalize those that get close to the boundaries of D.

Let ψ(x) ≥ 0 and ψ(x)→ +∞ when θj(x)→ 0−,
for example ψ(x) = −

∑
j

1
θj (x)

then same as exterior points method :
minx F (x) = f (x) + ck ψ(x)...
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Numerical methods

Projected gradient: equality constraints

Principle : project −∇f (xn) on the tangent space to constraints

lemma

Let C = [C1, ...,Cm] ∈ Rd×m be the matrix formed by m linearly
independent (column) vectors Cj of Rd . In Rr , the projection on
sp{C1, ...,Cm} is given by

πC (x) = Px with P = C (C tC )−1C t

Proof : This amounts to solving the quadratic problem

min
α∈Rm

‖x − Cα‖2

Remark : The projection on sp{C1, ...,Cm}⊥ = {x : C tx = 0} is
given by matrix Q = I − P
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Numerical methods

Affine equality constraints

Replace minx f (x) s.t. θ(x) = C tx − c = 0,
by minx F (x) with F (x) = f [πD(x)].

These two functions coincide on
D = {x : θ(x) = 0} = {x : x = πD(x)}
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Numerical methods

For x0 ∈ D, one has πD(x) = x0 + Q(x − x0), so

min
x

F (x) = f [x0 + Q(x − x0)]

∇F (x) = Q∇f [x0 + Q(x − x0)]

∇2F (x) = Q∇f [x0 + Q(x − x0)] Q

∇F (xn) is the projection of ∇f (xn) on D = {x : C tx = 0}
Iterations starting with x0 ∈ D stay in D.
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Numerical methods

Non linear equality constraints,

project ∇f (x) on the tangent space
sp{∇1θ(x), ...,∇mθ(x)}⊥...

... then project xn+1 on D.
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Numerical methods

Projected gradient: affine inequality constraints

Similar to the case of equality constraints, but only active
constraints are considered.

Some constraints may become active/inactive during the
linear search...

Stop when the Kuhn-Tucker conditions are met.
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Numerical methods
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Outline

1 Optimization without constraints
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Linear search methods
Gradient descent
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Quasi-Newton methods
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Conclusion

When facing a constrained optimization problem...
...one reflex : build the Lagrangian !

L(x , λ) = f (x) +
∑

j

λj θj(x)

solve ∇L(x , λ) = 0 to find a candidate optimum (x∗, λ∗)

check the positivity of its Hessian ∇2
xL(x∗, λ∗) to check if x∗

is a min, a max or a saddle point of f .
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L(x , λ) = f (x) +
∑

j

λj θj(x)

solve ∇L(x , λ) = 0 to find a candidate optimum (x∗, λ∗)

check the positivity of its Hessian ∇2
xL(x∗, λ∗) to check if x∗

is a min, a max or a saddle point of f .
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