## Outline

- 1 Optimization without constraints
  - Optimization scheme
  - Linear search methods
  - Gradient descent
  - Conjugate gradient
  - Newton method
  - Quasi-Newton methods
- Optimization under constraints
  - Lagrange
  - Equality constraints
  - Inequality constraints
  - Dual problem Resolution by duality
  - Numerical methods
    - Penalty functions
    - Projected gradient: equality constraints
    - Projected gradient: inequality constraints
  - 3 Conclusion

## Outline

- 1 Optimization without constraints
  - Optimization scheme
  - Linear search methods
  - Gradient descent
  - Conjugate gradient
  - Newton method
  - Quasi-Newton methods
  - 2 Optimization under constraints
    - Lagrange
    - Equality constraints
    - Inequality constraints
    - Dual problem Resolution by duality
    - Numerical methods
      - Penalty functions
      - Projected gradient: equality constraints
      - Projected gradient: inequality constraints
  - B) Conclusion

Optimization under constraints Conclusion

Optimization scheme

## General numerical optimization scheme

# $\min_{x\in\mathbb{R}^d} f(x)$

- **1** <u>Init</u>: by  $x^0$ , an initial guess of a minimum  $x^*$ .
- 2 <u>Recursion</u>: until a convergence criterion is satisfied at  $x^n$ 
  - at  $x^n$ , determine of a search direction  $d^n \in \mathbb{R}^d$ ,
  - linear search: find  $x^{n+1}$  along the semi-line  $x^n + t d^n$ ,  $t \in \mathbb{R}^+$ ; amounts to minimizing  $\phi(t) = f(x^n + t d^n)$  in t > 0.

Optimization scheme

Remarks :

- It is important to notice that *f* can't be plotted (*d* large). An optimization scheme is short-sighted *i.e.* only has access to local knowledge on *f*.
- The information available will determine the method to use :
  - order 0 : only  $f(x^n)$  available,
  - 1st order :  $\nabla f(x^n)$  also known
  - 2nd order :  $\nabla^2 f(x^n)$  known (or estimated)
- Stop criteria are on  $\|\nabla f(x^n)\|$ , on the relative norm of the last step  $\frac{\|x^{n+1}-x^n\|}{\|x^n\|}$ , etc.
- The linear search may simply be an approximate minimization.

### Linear search

We look for a local minimum of  $\phi$ :

$$\min_{t>0} \phi(t) = f(x^n + t d^n)$$

Equivalently, and to simplify notations, we can assume that  $f : \mathbb{R} \to \mathbb{R}$  and look for a minimum of f.

There exist many methods, according to the assumptions on f: convex, unimodular,  $C^1$ ,  $C^2$ , etc.

## Newton-Raphson method

Assumes f is  $C^2$ . Principle:

- approximate f by its second order expansion around  $x^n$ ,  $f(x) = f(x^n) + f'(x^n)(x - x^n) + \frac{1}{2}f''(x^n)(x - x^n)^2 + o(x - x^n)^2$
- take as  $x^{n+1}$  the min of the quadratic approx. of f.

$$x^{n+1} = x^n - \frac{f'(x^n)}{f''(x^n)}$$



### Equivalently, amounts to finding a zero of f'(x).

$$f'(x) = f'(x^{n}) + f''(x^{n})(x - x^{n}) + o(x - x^{n})$$
$$x^{n+1} = x^{n} - \frac{f'(x^{n})}{f''(x^{n})}$$



## Secant method

Assumes f is only  $C^1$ . Principle:

- same as the Newton-Raphson method, but  $f''(x^n)$  is approximated by  $\frac{f'(x^n)-f'(x^{n-1})}{x^n-x^{n-1}}$
- this yields  $x^{n+1} = x^n \frac{x^n x^{n-1}}{f'(x^n) f'(x^{n-1})} f'(x^n)$
- Standard to find the zero of a function when its derivative is unknown.

## Wolfe's method

Assumes f is only  $C^1$ .

Principle :

- approximate linear search
- proposes an  $x^{n+1}$  that "sufficiently" decreases  $|f'(x^{n+1})|$  w.r.t.  $|f'(x^n)|$
- and that also significantly decreases  $f(x^{n+1})$  w.r.t.  $f(x^n)$
- The search of  $x^{n+1}$  is done by dichotomy in an interval  $[a = x^n, b]$ .

Let  $0 < m_1 < \frac{1}{2} < m_2 < 1$  be two parameters. The point x is acceptable as  $x^{n+1}$  iff

$$\begin{array}{rcl} f(x) & \leq & f(x^0) + m_1(x - x^0)f'(x_0) \\ f'(x) & \geq & m_2f'(x^0) \end{array}$$



Gradient descent

## Gradient descent (steepest descent)

Back to the general case:  $f: \mathbb{R}^d \to \mathbb{R}$ 

Principle :

• Performs the linear search along the steepest descent direction

$$d^n = -\nabla f(x^n)$$

• the optimal step  $t^*$  minimizes  $\phi(t) = f(x^n + t d^n)$ , so

$$\phi'(t^*) = \nabla f(x^n + t^* d^n)^t d^n = 0$$

 the descent stops when the new gradient ∇f(x<sup>n+1</sup>) becomes orthogonal to the current descent direction d<sup>n</sup> = −∇f(x<sup>n</sup>).

#### Gradient descent



Properties :

- + Easy to implement, requires only first order information on *f*.
- - Slow convergence. Performs poorly even on simple functions like quadratic forms !
- In practice, a fast suboptimal descent step is preferred.

#### Gradient descent

### Example: on "Rosenbrock's banana"

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$



## Conjugate gradient

Overview :

- A first order method, simple variation of the gradient descent,
- designed to perform well on quadratic forms.
- Idea = tilt the next search direction to better aim at the minimum of the quadratic form.



We assume A is a positive symmetric matrix and

$$f(x) = \frac{1}{2}x^tAx + b^tx$$
 and  $\nabla f(x) = Ax + b^tx$ 

Principle :

- start at  $x^0$ ,  $d^0 = -\nabla f(x^0) \triangleq -g^0$ ,
- at x<sup>n</sup>, instead of d<sup>n</sup> = -∇f(x<sup>n</sup>) ≜ -g<sup>n</sup>, look for the minimum of f in the affine space

$$\mathcal{W}_{n+1} = x^0 + sp\{d^0, d^1, ..., d^{n-1}, g^n\}$$

### Lemma

 $x^{n+1}$  is the min of f in  $\mathcal{W}_{n+1} \Rightarrow g^{n+1} \triangleq \nabla f(x^{n+1}) \perp \mathcal{W}_{n+1}$ 

We assume A is a *positive* symmetric matrix and

$$f(x) = \frac{1}{2}x^tAx + b^tx$$
 and  $\nabla f(x) = Ax + b^tx$ 

Principle :

- start at  $x^0$ ,  $d^0 = -\nabla f(x^0) \triangleq -g^0$ ,
- at  $x^n$ , instead of  $d^n = -\nabla f(x^n) \triangleq -g^n$ , look for the minimum of f in the affine space

$$\mathcal{W}_{n+1} = x^0 + sp\{d^0, d^1, ..., d^{n-1}, g^n\}$$

### Lemma

$$x^{n+1}$$
 is the min of  $f$  in  $\mathcal{W}_{n+1} \Rightarrow g^{n+1} \triangleq \nabla f(x^{n+1}) \perp \mathcal{W}_{n+1}$ 

### Lemma

 $x^n$  is the minimum of f in  $\mathcal{W}_n$ ,

from  $x^n$ , direction  $d^n$  points to the minimum  $x^{n+1}$  in  $\mathcal{W}_{n+1}$  iff

$$(d^n)^t A d^i = 0$$
 for  $0 \le i \le n-1$ 

The direction  $d^n$  is said to be conjugate to all the previous  $d^i$ .

Proof:

$$x^{n+1} = x^n + td^n$$
  
$$g^{n+1} \triangleq \nabla f(x^{n+1}) = Ax^{n+1} + b = g^n + tAd^n$$

From the previous lemma  $g^{n+1}\perp \mathcal{W}_{n+1}$  and  $g^n\perp \mathcal{W}_n$ , so

$$(g^{n+1})^t g^n = ||g^n||^2 + t(d^n)^t A g^n = 0 \implies t \neq 0 (g^{n+1})^t d^i = (g^n)^t d^i + t(d^n)^t A d^i = 0 \quad \text{for } 0 \le i \le n-1$$

### Lemma

 $x^n$  is the minimum of f in  $\mathcal{W}_n$ ,

from  $x^n$ , direction  $d^n$  points to the minimum  $x^{n+1}$  in  $\mathcal{W}_{n+1}$  iff

$$(d^n)^t A d^i = 0$$
 for  $0 \le i \le n-1$ 

The direction  $d^n$  is said to be conjugate to all the previous  $d^i$ .

Proof :

$$x^{n+1} = x^n + td^n$$
  
$$g^{n+1} \triangleq \nabla f(x^{n+1}) = Ax^{n+1} + b = g^n + tAd^n$$

From the previous lemma  $g^{n+1} \perp \mathcal{W}_{n+1}$  and  $g^n \perp \mathcal{W}_n$ , so

$$\begin{aligned} (g^{n+1})^t g^n &= \|g^n\|^2 + t(d^n)^t A g^n = 0 &\Rightarrow t \neq 0 \\ (g^{n+1})^t d^i &= (g^n)^t d^i + t(d^n)^t A d^i = 0 & \text{for } 0 \le i \le n-1 \end{aligned}$$

**Question :** How to find direction  $d^n$ , conjugate to all previous  $d^i$ ? Notice  $g^{i+1} - g^i = A(x^{i+1} - x^i) \propto Ad^i$ , so  $(d^n)^t A d^i = 0 \implies (d^n)^t g^{i+1} = (d^n)^t g^i = cst$ 

Since the  $g^i$  form an orthogonal family, one has

$$d^n \propto \sum_{i=0}^n \frac{g^i}{\|g^i\|^2} \Rightarrow d^n = -g^n + c_n d^{n-1}$$

**Answer :** steepest slope, slightly corrected by previous descent direction.

### Example: on Rosenbrock's banana



Expressions of the correction coefficient  $c_n$ :

• 
$$c_n = \frac{\|g^n\|^2}{\|g^{n-1}\|^2}$$
 Fletcher & Reeves (1964)  
•  $c_n = \frac{(g^n - g^{n-1})^t g^n}{\|g^{n-1}\|^2}$  Polak & Ribière (1971)  
•  $c_n = \frac{(g^n)^t A d^{n-1}}{\|d^{n-1}\|_A^2}$ 

Properties :

- converges in d steps for a quadratic form  $f : \mathbb{R}^d \to \mathbb{R}$
- same complexity as the gradient method !
- Works well on non quadratic forms if the Hessian doesn't change much between  $x^n$  and  $x^{n+1}$
- Caution:  $d^n$  may not be a descent direction... In this case, reset to  $-g^n$ .

Expressions of the correction coefficient  $c_n$ :

• 
$$c_n = \frac{\|g^n\|^2}{\|g^{n-1}\|^2}$$
 Fletcher & Reeves (1964)  
•  $c_n = \frac{(g^n - g^{n-1})^t g^n}{\|g^{n-1}\|^2}$  Polak & Ribière (1971)  
•  $c_n = \frac{(g^n)^t A d^{n-1}}{\|d^{n-1}\|_A^2}$ 

Properties :

- converges in d steps for a quadratic form  $f : \mathbb{R}^d \to \mathbb{R}$
- same complexity as the gradient method !
- Works well on non quadratic forms if the Hessian doesn't change much between  $x^n$  and  $x^{n+1}$
- Caution: d<sup>n</sup> may not be a descent direction... In this case, reset to -g<sup>n</sup>.

Newton method

## Newton method

Principle :

• Replace f by its second order approximation at  $x^n$ 

$$\phi(x) = f(x^{n}) + \nabla f(x^{n})^{t} (x - x^{n}) + \frac{1}{2} (x - x^{n})^{t} \nabla^{2} f(x^{n}) (x - x^{n})$$

• take as  $x^{n+1}$  the min of  $\phi(x)$ 

$$abla \phi(x) = 
abla f(x^n) + 
abla^2 f(x^n) (x - x^n)$$

which amounts to solving the linear system

$$\nabla^2 f(x^n) (x^{n+1} - x^n) = -\nabla f(x^n)$$

#### Newton method

### Example: on Rosenbrock's banana



### Comments :

- + faster convergence (1 step for quadratic functions !), but expensive: requires second order information on f
- yields a stationary point of f : one still has to check that it is a minimum
- in practice, try d<sup>n</sup> = −[∇<sup>2</sup>f(x<sup>n</sup>)]<sup>-1</sup>∇f(x<sup>n</sup>)] as descent direction, and perform a linear search
- - no guarantee that  $d^n$  is an admissible descent direction...
- - no guarantee that  $x^{n+1}$  is a better point than  $x^n$ ...
- -  $\nabla^2 f(x^n)$  may be singular, or badly conditioned...
- the Levenberg-Marquardt regularization suggests to solve

$$[\nabla^2 f(x^n) + \mu \mathbf{1}] d^n = -\nabla f(x^n)$$

## Quasi-Newton methods

Principle :

- Take advantage of the efficiency of the Newton method...
- ... when the Hessian  $\nabla^2 f(x)$  is unavailable !
- Idea: approximate  $[\nabla^2 f(x^n)]^{-1}$  by matrix  $K_n$  in

$$x^{n+1} = x^n - [\nabla^2 f(x^n)]^{-1} \nabla f(x^n)$$

• More precisely, explore direction  $d^n = -K_n \nabla f(x^n)$  from  $x^n$ .

## Quasi-Newton equation

• Consider the second order Taylor expansion of f at  $x^n$ 

$$f(x) = f(x^{n}) + \nabla f(x^{n})^{t} (x - x^{n}) + \frac{1}{2} (x - x^{n})^{t} \nabla^{2} f(x^{n}) (x - x^{n}) + o(||x - x^{n}||^{2}) \nabla f(x) = \nabla f(x^{n}) + \nabla^{2} f(x^{n}) (x - x^{n}) + o(||x - x^{n}||)$$

• The estimate  $K_n$  of the inverse Hessian must satisfy the quasi-Newton equation (QNE)

$$x^{n+1} - x^n = K_{n+1} [\nabla f(x^{n+1}) - \nabla f(x^n)]$$

• Notice that this should be  $K_n...$  but  $K_n$  is used to find  $x^{n+1}$ , so we impose the relation be satisfied at the next step.

## Quasi-Newton equation

• Consider the second order Taylor expansion of f at  $x^n$ 

$$f(x) = f(x^{n}) + \nabla f(x^{n})^{t} (x - x^{n}) + \frac{1}{2} (x - x^{n})^{t} \nabla^{2} f(x^{n}) (x - x^{n}) + o(||x - x^{n}||^{2}) \nabla f(x) = \nabla f(x^{n}) + \nabla^{2} f(x^{n}) (x - x^{n}) + o(||x - x^{n}||)$$

• The estimate  $K_n$  of the inverse Hessian must satisfy the quasi-Newton equation (QNE)

$$x^{n+1} - x^n = K_{n+1} [\nabla f(x^{n+1}) - \nabla f(x^n)]$$

Notice that this should be K<sub>n</sub>... but K<sub>n</sub> is used to find x<sup>n+1</sup>, so we impose the relation be satisfied at the next step.

All quasi-Newton Methods recursively build the  $K_n$  by

$$K_{n+1} = K_n + C_n$$

where the correction  $C_n$  is adjusted to satisfy the QNE.

Notations :

$$u^{n} = x^{n} - x^{n-1}$$
$$v^{n} = g^{n} - g^{n-1}$$
QNE :  $u^{n+1} = K_{n+1} v^{n+1}$ 

• Correction  $C_n$  of rank 1

$$K_{n+1} = K_n + \frac{w^n (w^n)^t}{(w^n)^t v^{n+1}}$$
 where  $w^n = u^{n+1} - K_n v^{n+1}$ 

- If initialized with  $K_0 = 1$ ,  $K_n$  converges in d steps to the true  $A^{-1}$  for a quadratic form.
- DFP (Davidon, Fletcher, Powell) correction of rank 2

$$K_{n+1} = K_n + \frac{u^{n+1}(u^{n+1})^t}{(u^{n+1})^t v^{n+1}} - \frac{K_n v^{n+1}(v^{n+1})^t K_n}{(v^{n+1})^t K_n v^{n+1}}$$

- Converges in d steps to the true  $A^{-1}$  for a quadratic form.
- Descent directions are conjugate w.r.t. A.
- Coincides with the conjugate gradient method.

• Correction  $C_n$  of rank 1

$$K_{n+1} = K_n + \frac{w^n (w^n)^t}{(w^n)^t v^{n+1}}$$
 where  $w^n = u^{n+1} - K_n v^{n+1}$ 

- If initialized with  $K_0 = 1$ ,  $K_n$  converges in d steps to the true  $A^{-1}$  for a quadratic form.
- DFP (Davidon, Fletcher, Powell) correction of rank 2

$$K_{n+1} = K_n + \frac{u^{n+1}(u^{n+1})^t}{(u^{n+1})^t v^{n+1}} - \frac{K_n v^{n+1}(v^{n+1})^t K_n}{(v^{n+1})^t K_n v^{n+1}}$$

- Converges in d steps to the true  $A^{-1}$  for a quadratic form.
- Descent directions are conjugate w.r.t. A.
- Coincides with the conjugate gradient method.

• **BFGS** (Broyden, Fletcher, Goldfarb, Shanno, 1970), correction of rank 3

$$\begin{aligned} \mathcal{K}_{n+1} &= \mathcal{K}_n - \frac{u^{n+1} (v^{n+1})^t \mathcal{K}_n + \mathcal{K}_n v^{n+1} (u^{n+1})^t}{(u^{n+1})^t v^{n+1}} \\ &+ \left( 1 + \frac{(v^{n+1})^t \mathcal{K}_n v^{n+1}}{(u^{n+1})^t v^{n+1}} \right) \frac{u^{n+1} (u^{n+1})^t}{(u^{n+1})^t v^{n+1}} \end{aligned}$$

### Considered as the best Quasi-Newton method.

In practice, one should check that -K<sub>n</sub>g<sup>n</sup> is a descent direction, *i.e.* -(g<sup>n</sup>)<sup>t</sup> K<sub>n</sub>g<sup>n</sup> < 0, otherwise reinitialize by K<sub>n</sub> = 1.

• **BFGS** (Broyden, Fletcher, Goldfarb, Shanno, 1970), correction of rank 3

$$K_{n+1} = K_n - \frac{u^{n+1}(v^{n+1})^t K_n + K_n v^{n+1}(u^{n+1})^t}{(u^{n+1})^t v^{n+1}} + \left(1 + \frac{(v^{n+1})^t K_n v^{n+1}}{(u^{n+1})^t v^{n+1}}\right) \frac{u^{n+1}(u^{n+1})^t}{(u^{n+1})^t v^{n+1}}$$

Considered as the best Quasi-Newton method.

In practice, one should check that -K<sub>n</sub>g<sup>n</sup> is a descent direction, *i.e.* -(g<sup>n</sup>)<sup>t</sup> K<sub>n</sub>g<sup>n</sup> < 0, otherwise reinitialize by K<sub>n</sub> = 1.

### Example: on Rosenbrock's banana



## Outline

- Optimization without constraints
  - Optimization scheme
  - Linear search methods
  - Gradient descent
  - Conjugate gradient
  - Newton method
  - Quasi-Newton methods
- Optimization under constraints
  - Lagrange
  - Equality constraints
  - Inequality constraints
  - Dual problem Resolution by duality
  - Numerical methods
    - Penalty functions
    - Projected gradient: equality constraints
    - Projected gradient: inequality constraints

**Conclusior** 

Optimization without constraints

Lagrange

## Joseph Louis count of Lagrange



- Giuseppe Ludovico di Lagrangia, Italian mathematician, born in Turin (1736)
- founder of the Academy of Turin (1758)
- called by Euler to the Academy of Berlin
- director of the French Academy of Sciences (1788) survived the French revolution (b.c.w. Condorcet, ...)
- resting at the Pantheon (1813)
#### Lagrange

### Among his contributions:

- the calculus of variations,
- the Taylor-Lagrange formula,
- the least action principle in mechanics,
- some results on the 3 bodies problem, (the Lagrange points)

• ...

• and the notion of Lagrangian !



Optimization without constraints

Optimization under constraints Conclusion

Equality constraints

## Equality constraints

$$\min_{x} f(x) \quad \text{s.t.} \quad \theta_j(x) = 0, \ \ 1 \leq j \leq m$$

- $\mathcal{D}$ :  $\theta(x) = [\theta_1(x), ..., \theta_m(x)]^t = 0$ defines a manifold of dimension d - m in  $\mathbb{R}^d$
- $\nabla \theta_j(x^0)^t (x x^0) = 0$  : tangent hyperplane to  $\theta_j(x) = 0$  at point  $x^0$



•  $\nabla \theta(x^0)^t (x - x^0) = 0$  : tangent space to  $\mathcal{D}$  at  $x^0$ 

#### Definition

In domain  $\mathcal{D} = \{x \in \mathbb{R}^d : \theta(x) = 0\}$ , the point  $x^0$  is regular iff the gradients  $\nabla \theta_j(x^0)$  of the *m* constraints are linearly independent.

#### Lemma

If  $x^0$  is regular, every (unit) direction d in the tangent space is admissible, *i.e.* can be obtained as the limit of  $\frac{x^n - x^0}{\|x^n - x^0\|}$ , with  $\lim_n x^n = x^0$  and  $x^n \in \mathcal{D}$ .





#### Theorem

Let  $x^*$  be a regular point of  $\mathcal{D}$ , if  $x^*$  is a local extremum of f in  $\mathcal{D}$ , then there exists a unique vector  $\lambda^* \in \mathbb{R}^m$  of Lagrange multipliers such that

$$abla f(x^*) + \sum_{j=1}^m \lambda_j^* \nabla heta_j(x^*) = 0$$

### Proof :

• Project 
$$\nabla f(x^*)$$
 on  $sp\{\nabla \theta_1(x^*), ..., \nabla \theta_m(x^*)\}$ 

$$abla f(x^*) = \sum_{j=1}^m -\lambda_j^* \nabla \theta_j(x^*) + u$$

- u belongs to the tangent space to  $\mathcal{D}$  at  $x^*$
- progressing along -u decreases f and doesn't change  $\theta$



## Application

To solve 
$$\min_x f(x)$$
 s.t.  $\theta(x) = 0$ ,

build the Lagrangian

$$L(x,\lambda) = f(x) + \sum_{j} \lambda_{j} \theta_{j}(x)$$

g find a stationary point (x<sup>\*</sup>, λ<sup>\*</sup>) of the Lagrangian, *i.e.* a zero of ∇L(x, λ)

$$abla_{\mathbf{x}} L(\mathbf{x}, \lambda) = \nabla f(\mathbf{x}) + \sum_{j} \lambda_{j} \nabla \theta_{j}(\mathbf{x})$$
  
 $abla_{\lambda} L(\mathbf{x}, \lambda) = \theta(\mathbf{x})$ 

*i.e.* d + m (non-linear) equations, with d + m unknowns.



**Problem :** find the radius  $x_1$  and the height  $x_2$  of a cooking pan in order to minimize its surface, s.t. the capacity of the pan is 1 litre.

$$f(x) = \pi x_1^2 + 2\pi x_1 x_2 \theta(x) = \pi x_1^2 x_2 - 1$$





Solution : Lagrangian  $L(x, \lambda) = f(x) + \lambda \theta(x)$ 

$$\frac{\partial L(x,\lambda)}{\partial x_1} = 2\pi x_1 + 2\pi x_2 + \lambda 2\pi x_1 x_2 = 0$$
  
$$\frac{\partial L(x,\lambda)}{\partial x_2} = 2\pi x_1 + \lambda \pi x_1^2 = 0$$

We obtain  $x_1^* = x_2^* = -\frac{2}{\lambda}$ . Finally,  $\theta(x^*) = 0$  gives the value of  $\lambda$  to plug:  $\lambda^* = -\frac{\pi^{1/3}}{2}$ , so  $x_1^* = x_2^* = \pi^{-1/3}$ . Optimization without constraints

Equality constraints

## Another interpretation

 $\bullet$  Consider the unconstrained problem, where  $\lambda$  is fixed

$$\min_{x} L(x,\lambda) = f(x) + \lambda \theta(x)$$

- f and L have the same local minima in  $\mathcal{D} = \{x : \theta(x) = 0\}$ .
- Let  $x^*(\lambda)$  be a local minimum of  $L(x,\lambda)$  in  $\mathbb{R}^d$ .
- If  $x^*(\lambda) \in \mathcal{D}$ , then it is also a local min of f.
- So one just has to adjust  $\lambda$  to get this property.

Optimization without constraints

Optimization under constraints Conclusion

Equality constraints

## Second order conditions

#### Theorem

Let  $(x^*, \lambda^*)$  be a stationary point of  $L(x, \lambda)$ , and consider the Hessian of the Lagrangian

$$abla_x^2 L(x^*,\lambda^*) = 
abla^2 f(x^*) + \sum_{j=1}^m \lambda_j^* 
abla^2 heta_j(x^*)$$

- NC:  $x^*$  is a local min of f on  $\mathcal{D} \Rightarrow \nabla_x^2 L(x^*, \lambda^*)$  is a positive quadratic form on the tangent space at  $x^*$ , *i.e.* the kernel of matrix  $\nabla \theta(x^*)^t$ .
- SC: ∇<sup>2</sup><sub>x</sub> L(x\*, λ\*) is strictly positive on the tangent space
   ⇒ x\* is a local min of f on D



Optimization without constraints

Inequality constraints

## Inequality constraints

$$\min_{x} f(x)$$
 s.t.  $\theta_j(x) \leq 0, \ 1 \leq j \leq m$ 

- D: θ(x) = [θ<sub>1</sub>(x),...,θ<sub>m</sub>(x)]<sup>t</sup> ≤ 0 defines a volume in ℝ<sup>d</sup> limited by m manifolds of dimension d − 1
- At point x, constraint θ<sub>j</sub> is active iff θ<sub>j</sub>(x) = 0.
   A(x) = {j : θ<sub>j</sub>(x) = 0} = active set at x.
- One could have simultaneously equality and inequality constraints (not done here for a of matter clarity). Equality constraints are always active.
- ∩<sub>j∈A(x<sup>0</sup>)</sub> {x : ∇θ<sub>j</sub>(x<sup>0</sup>)<sup>t</sup> (x − x<sup>0</sup>) = 0} defines the tangent space to D at x<sup>0</sup>

## Admissible directions

Let  $x^0 \in \mathcal{D}$ , we look for directions  $d \in \mathbb{R}^d$  that keep us inside domain  $\mathcal{D}: x^0 + \epsilon \cdot d \in \mathcal{D}$ .

#### Definition

Direction d is admissible from  $x^0$  iff  $\exists (x^n)_{n>0}$  in  $\mathcal{D}$  such that

$$\lim_{n} x^{n} = x^{0} \qquad \text{and} \qquad \lim_{n} \frac{x^{n} - x^{0}}{\|x^{n} - x^{0}\|} = \frac{d}{\|d\|}$$

- Admissible directions at  $x^0$  form a cone  $C(x^0)$ .
- This cone is not necessarily convex...



C(x<sup>0</sup>) can be determined from the ∇θ<sub>j</sub>(x<sup>0</sup>) of the active constraints.

#### Theorem

If  $x^0$  is a regular point, *i.e.* the gradients of the active constraints at  $x^0$  are linearly independent, then  $C(x^0)$  is the *convex* cone given by

$$\mathcal{C}(x^0) = \{ u \in \mathbb{R}^d : \nabla \theta_j(x^0)^t \ u \le 0, j \in \mathcal{A}(x^0) \}$$

Interpretation: an admissible displacement must not increase the value of  $\theta_j(x^0)$  for an already active constraint, it can only decrease it or leave it unchanged.

## Dual cone and Farkas lemma

For  $v_1, ..., v_J \in \mathbb{R}^d$ , consider cone  $\mathcal{C} = \{u : u^t v_1 \leq 0, ..., u^t v_J \leq 0\}$ .

### Farkas-Minkowski lemma

Let  $g \in \mathbb{R}^d$ , one has the equivalence

- $\forall u \in \mathcal{C}, g^t u \leq 0$ ,
- C is included in the half-space  $\{u : g^t u \leq 0\}$ ,
- g belongs to the dual cone  $C' = \{w : \forall u \in C, w^t u \leq 0\}$
- $g = \sum_{j=1}^{J} \alpha_j v_j$  where  $\alpha_j \ge 0$  for all j



## 1st order optimality conditions

### Theorem (Karush-Kuhn-Tucker conditions)

Let  $x^*$  be a regular point of domain  $\mathcal{D}$ . If  $x^*$  is a local minimum of f in  $\mathcal{D}$ , there exists a unique set of generalized Lagrange multipliers  $\lambda_i^*$  for  $j \in \mathcal{A}(x^*)$  such that

$$abla f(x^*) + \sum_{j\in\mathcal{A}(x^*)}\lambda_j^*\,
abla heta_j(x^*) = 0 \quad ext{and} \quad \lambda_j^*\geq 0, \ j\in\mathcal{A}(x^*)$$

Remarks :

- Similar to the case of equality constraints : here only *active* constraints are considered.
- The positivity condition is new : translates the fact that one side of the manifold is permitted.

## 1st order optimality conditions

### Theorem (Karush-Kuhn-Tucker conditions)

Let  $x^*$  be a regular point of domain  $\mathcal{D}$ . If  $x^*$  is a local minimum of f in  $\mathcal{D}$ , there exists a unique set of generalized Lagrange multipliers  $\lambda_i^*$  for  $j \in \mathcal{A}(x^*)$  such that

$$abla f(x^*) + \sum_{j\in\mathcal{A}(x^*)}\lambda_j^*\,
abla heta_j(x^*) = 0 \quad ext{and} \quad \lambda_j^*\geq 0, \;\; j\in\mathcal{A}(x^*)$$

Remarks :

- Similar to the case of equality constraints : here only *active* constraints are considered.
- The positivity condition is new: translates the fact that one side of the manifold is permitted.

#### Proof :

- take any admissible direction :  $d \in C(x^*) = \{u : u^t \nabla \theta_j(x^*) \le 0, j \in A(x^*)\}$
- progressing along d doesn't decrease  $f: [-\nabla f(x^*)]^t d \leq 0$
- this means that  $g = -\nabla f(x^*)$  belongs to the dual cone  $\mathcal{C}(x^*)'$ , so by Farkas lemma

$$-
abla f(x^*) = \sum_{j\in\mathcal{A}(x^*)}\lambda_j^*
abla heta_j(x^*) \quad ext{ and } \quad \lambda_j^* \geq 0$$

## Corollary

The Karush-Kuhn-Tucker conditions are equivalent to

$$abla f(x^*) + \sum_{j=1}^m \lambda_j^* \, 
abla heta_j(x^*) = 0 \quad ext{ and } \quad \lambda_j^* \geq 0, \ \ 1 \leq j \leq m$$

with the extra complementarity condition

$$\sum_{j=1}^m \lambda_j^* \, \theta_j(x^*) = 0$$

- This entails  $\lambda_i^* = 0$  for an inactive constraint  $\theta_j$  at  $x^*$ .
- To be usable, requires to know/guess the set of active constraints at the optimum.
- A(x\*) known, leaves a set of non-linear equations + positivity constraints.



**Problem :** Minimize distance from point P to the red segment



### Objective : cancel the gradient of the Lagrangian



**1st guess:**  $A(x^*) = \{1\}$ , *i.e.* only  $\theta_1$  active at the optimum. Complementarity  $\Rightarrow \lambda_2^* = \lambda_3^* = \lambda_4^* = 0$ . This yields  $x^* = (2, 1)$  which violates  $\theta_2(x) \le 0$ .

### Objective : cancel the gradient of the Lagrangian



**2nd guess**:  $\mathcal{A}(x^*) = \{1, 2\}$ , *i.e.*  $\theta_2$  is added to the active set. Complementarity  $\Rightarrow \lambda_3^* = \lambda_4^* = 0$ . This yields  $x^* = (\frac{3}{2}, \frac{1}{2})$  which belongs to  $\mathcal{D}$ .

## Dual problem - Resolution by duality

[ For simplicity we consider the case of inequality constraints. ]

Idea: under some conditions, a stationary point  $(x^*, \lambda^*)$  of the Lagrangian, i.e.  $\nabla L(x^*, \lambda^*) = \nabla f(x^*) + \sum_i \lambda_i^* \nabla \theta(x^*) = 0$  corresponds to a *saddle point* of the Lagrangian, i.e.

$$\inf_{x} L(x, \lambda^*) = L(x^*, \lambda^*) = \sup_{\lambda} L(x^*, \lambda)$$

So the resolution amounts to finding such saddle points, and then extract  $x^*$ .



## Saddle points

### Definition

$$(x^*, \lambda^*)$$
 is a saddle point of L in  $\mathcal{D}_x \times \mathcal{D}_\lambda$  iff

$$\sup_{\lambda\in\mathcal{D}_{\lambda}}L(x^{*},\lambda)=L(x^{*},\lambda^{*})=\inf_{x\in\mathcal{D}_{x}}L(x,\lambda^{*})$$



Optimization under constraints 

#### Lemma

If  $(x^*, \lambda^*)$  is a saddle point of L in  $\mathcal{D}_x \times \mathcal{D}_\lambda$ , then  $\sup_{\lambda \in \mathcal{D}_\lambda} \inf_{x \in \mathcal{D}_x} L(x, \lambda) = L(x^*, \lambda^*) = \inf_{x \in \mathcal{D}_x} \sup_{\lambda \in \mathcal{D}_\lambda} L(x, \lambda)$ 

### Proof

- one always has sup<sub>λ</sub> inf<sub>x</sub> L(x, λ) ≤ inf<sub>x</sub> sup<sub>λ</sub> L(x, λ) the difference is called the *duality gap*, generally > 0
- from the def. of a saddle point, one has

$$\sup_{\lambda} L(x^*, \lambda) = L(x^*, \lambda^*) = \inf_{x} L(x, \lambda^*)$$

then

$$\inf_{x} [\sup_{\lambda} L(x,\lambda)] \leq \sup_{\lambda} L(x^{*},\lambda)$$
$$\inf_{x} L(x,\lambda^{*}) \leq \sup_{\lambda} [\inf_{x} L(x,\lambda)]$$

#### Lemma

If  $(x^*, \lambda^*)$  is a saddle point of L in  $\mathcal{D}_x \times \mathcal{D}_\lambda$ , then  $\sup_{\lambda \in \mathcal{D}_\lambda} \inf_{x \in \mathcal{D}_x} L(x, \lambda) = L(x^*, \lambda^*) = \inf_{x \in \mathcal{D}_x} \sup_{\lambda \in \mathcal{D}_\lambda} L(x, \lambda)$ 

### Proof

- one always has  $\sup_{\lambda} \inf_{x} L(x, \lambda) \leq \inf_{x} \sup_{\lambda} L(x, \lambda)$ the difference is called the *duality gap*, generally > 0
- from the def. of a saddle point, one has

$$\sup_{\lambda} L(x^*, \lambda) = L(x^*, \lambda^*) = \inf_{x} L(x, \lambda^*)$$

then

$$\inf_{x} [\sup_{\lambda} L(x,\lambda)] \leq \sup_{\lambda} L(x^{*},\lambda)$$
$$\inf_{x} L(x,\lambda^{*}) \leq \sup_{\lambda} [\inf_{x} L(x,\lambda)]$$

#### Lemma

# If $(x^*, \lambda^*)$ is a saddle point of L in $\mathcal{D}_x \times \mathcal{D}_\lambda$ , then $\sup_{\lambda \in \mathcal{D}_\lambda} \inf_{x \in \mathcal{D}_x} L(x, \lambda) = L(x^*, \lambda^*) = \inf_{x \in \mathcal{D}_x} \sup_{\lambda \in \mathcal{D}_\lambda} L(x, \lambda)$

### Proof

- one always has sup<sub>λ</sub> inf<sub>x</sub> L(x, λ) ≤ inf<sub>x</sub> sup<sub>λ</sub> L(x, λ) the difference is called the *duality gap*, generally > 0
- from the def. of a saddle point, one has

$$\sup_{\lambda} L(x^*, \lambda) = L(x^*, \lambda^*) = \inf_{x} L(x, \lambda^*)$$

then

$$\inf_{x} [\sup_{\lambda} L(x,\lambda)] \leq \sup_{\lambda} L(x^{*},\lambda)$$
$$\inf_{x} L(x,\lambda^{*}) \leq \sup_{\lambda} [\inf_{x} L(x,\lambda)]$$

#### Lemma

# If $(x^*, \lambda^*)$ is a saddle point of L in $\mathcal{D}_x \times \mathcal{D}_\lambda$ , then $\sup_{\lambda \in \mathcal{D}_\lambda} \inf_{x \in \mathcal{D}_x} L(x, \lambda) = L(x^*, \lambda^*) = \inf_{x \in \mathcal{D}_x} \sup_{\lambda \in \mathcal{D}_\lambda} L(x, \lambda)$

### Proof

- one always has sup<sub>λ</sub> inf<sub>x</sub> L(x, λ) ≤ inf<sub>x</sub> sup<sub>λ</sub> L(x, λ) the difference is called the *duality gap*, generally > 0
- from the def. of a saddle point, one has

$$\sup_{\lambda} L(x^*, \lambda) = L(x^*, \lambda^*) = \inf_{x} L(x, \lambda^*)$$

then

$$\inf_{x} [\sup_{\lambda} L(x,\lambda)] \leq \sup_{\lambda} L(x^{*},\lambda)$$
$$\inf_{x} L(x,\lambda^{*}) \leq \sup_{\lambda} [\inf_{x} L(x,\lambda)]$$

Optimization without constraints

Optimization under constraints Conclusion

Dual problem - Resolution by duality

## Saddle points of the Lagrangian

#### Theorem

If  $(x^*, \lambda^*)$  is a saddle point of the Lagrangian L in  $\mathbb{R}^d \times \mathbb{R}^m_+$ , then  $x^*$  is a solution of the primal problem (P)

$$(P) \quad \min_{x} f(x) \quad \text{s.t.} \quad \theta_i(x) \le 0, \ 1 \le i \le m$$

#### Proof

• From 
$$L(x^*, \lambda) \leq L(x^*, \lambda^*), \quad \forall \lambda \in \mathcal{D}_{\lambda} = \mathbb{R}^m_+$$

$$f(x^*) + \sum_{i} \lambda_i \theta_i(x^*) \le f(x^*) + \sum_{i} \lambda_i^* \theta_i(x^*)$$
$$\sum_{i} (\lambda_i - \lambda_i^*) \theta_i(x^*) \le 0$$

whence  $heta_i(x^*) \leq 0$  by  $\lambda_i o +\infty$ :  $x^*$  satisfies constraints

Optimization without constraints

Optimization under constraints Conclusion

Dual problem - Resolution by duality

## Saddle points of the Lagrangian

### Theorem

If  $(x^*, \lambda^*)$  is a saddle point of the Lagrangian L in  $\mathbb{R}^d \times \mathbb{R}^m_+$ , then  $x^*$  is a solution of the primal problem (P)

$$(P) \quad \min_{x} f(x) \quad \text{s.t.} \quad \theta_i(x) \le 0, \ 1 \le i \le m$$

### Proof

• From 
$$L(x^*, \lambda) \leq L(x^*, \lambda^*), \quad \forall \lambda \in \mathcal{D}_{\lambda} = \mathbb{R}^m_+$$
  
$$f(x^*) + \sum \lambda_i \theta_i(x^*) \leq f(x^*) + \sum \lambda_i^* \theta_i(x^*)$$

$$\sum_{i} (\lambda_{i} - \lambda_{i}^{*})\theta_{i}(x^{*}) \leq 0$$

whence  $\theta_i(x^*) \leq 0$  by  $\lambda_i \to +\infty$ :  $x^*$  satisfies constraints

• Moreover,  $\sum_{i} -\lambda_{i}^{*}\theta_{i}(x^{*}) \leq 0$ , by  $\lambda_{i} = 0$ , and so  $\sum_{i} \lambda_{i}^{*}\theta_{i}(x^{*}) = 0$  (complementarity condition)

• From  $L(x^*, \lambda^*) \leq L(x, \lambda^*), \ \forall x \in \mathbb{R}^d$ 

$$f(x^*) + \sum_i \lambda_i^* \theta_i(x^*) \leq f(x) + \sum_i \lambda_i^* \theta_i(x)$$

so for all admissible x, i.e. such that  $\theta_i(x) \leq 0, \ 1 \leq i \leq m$ 

 $f(x^*) \leq f(x)$ 

### Summary :

saddle points of the Lagrangian, when they exist, give solutions to the optimization problem.

But they don't always exist...

• Moreover, 
$$\sum_{i} -\lambda_{i}^{*} \theta_{i}(x^{*}) \leq 0$$
, by  $\lambda_{i} = 0$ ,  
and so  $\sum_{i} \lambda_{i}^{*} \theta_{i}(x^{*}) = 0$  (complementarity condition)

• From  $L(x^*, \lambda^*) \leq L(x, \lambda^*), \ \forall x \in \mathbb{R}^d$ 

$$f(x^*) + \sum_i \lambda_i^* heta_i(x^*) \leq f(x) + \sum_i \lambda_i^* heta_i(x)$$

so for all admissible x, i.e. such that  $heta_i(x) \leq 0, \ 1 \leq i \leq m$   $f(x^*) \leq f(x)$ 

Summary :

saddle points of the Lagrangian, when they exist, give solutions to the optimization problem.

But they don't always exist...

• Moreover, 
$$\sum_{i} -\lambda_{i}^{*} \theta_{i}(x^{*}) \leq 0$$
, by  $\lambda_{i} = 0$ ,  
and so  $\sum_{i} \lambda_{i}^{*} \theta_{i}(x^{*}) = 0$  (complementarity condition)

• From  $L(x^*, \lambda^*) \leq L(x, \lambda^*), \ \forall x \in \mathbb{R}^d$ 

$$f(x^*) + \sum_i \lambda_i^* heta_i(x^*) \leq f(x) + \sum_i \lambda_i^* heta_i(x)$$

so for all admissible x, i.e. such that  $\theta_i(x) \leq 0, \ 1 \leq i \leq m$ 

$$f(x^*) \leq f(x)$$

### Summary :

saddle points of the Lagrangian, when they exist, give solutions to the optimization problem.

But they don't always exist...

## Existence of saddle points

#### Theorem

If f and the constraints  $\theta_i$  are **convex** functions of x in  $\mathbb{R}^d$ , and if  $x^* = \arg \min_x f(x)$  in  $\{x : \theta_i(x) \le 0, 1 \le i \le m\}$  is regular then  $x^*$  corresponds to a saddle point  $(x^*, \lambda^*)$  of the Lagrangian

**Proof:** from Kuhn-Tucker, derive the saddle point property

• 
$$L(x^*, \lambda) = f(x^*) + \sum_i \lambda_i \theta_i(x^*)$$
  
 $\leq f(x^*) = f(x^*) + \sum_i \lambda_i \theta_i(x^*) = L(x^*, \lambda^*)$   
using admissibility of  $x^*$  positivity of  $\lambda_i$  and compleme

• 
$$L(x, \lambda^*) = f(x) + \sum_i \lambda_i^* \theta_i(x)$$
 is a convex function of  $x$   
From the stationarity of  $L$ , one has  
 $\nabla_x L(x^*, \lambda^*) = \nabla f(x^*) + \sum_i \lambda_i^* \nabla \theta_i(x^*) = 0$   
sufficient to show that  $x^*$  is a minimum of the convex  
function  $L(x, \lambda^*)$
# Existence of saddle points

#### Theorem

If f and the constraints  $\theta_i$  are **convex** functions of x in  $\mathbb{R}^d$ , and if  $x^* = \arg \min_x f(x)$  in  $\{x : \theta_i(x) \le 0, 1 \le i \le m\}$  is regular then  $x^*$  corresponds to a saddle point  $(x^*, \lambda^*)$  of the Lagrangian

Proof: from Kuhn-Tucker, derive the saddle point property

• 
$$L(x^*, \lambda) = f(x^*) + \sum_i \lambda_i \theta_i(x^*)$$
  
 $\leq f(x^*) = f(x^*) + \sum_i \lambda_i \theta_i(x^*) = L(x^*, \lambda^*)$ 

using admissibility of  $x^*$ , positivity of  $\lambda_i$  and complementarity

• 
$$L(x, \lambda^*) = f(x) + \sum_i \lambda_i^* \theta_i(x)$$
 is a convex function of  $x$   
From the stationarity of  $L$ , one has  
 $\nabla_x L(x^*, \lambda^*) = \nabla f(x^*) + \sum_i \lambda_i^* \nabla \theta_i(x^*) = 0$   
sufficient to show that  $x^*$  is a minimum of the convex  
function  $L(x, \lambda^*)$ 

# Existence of saddle points

#### Theorem

If f and the constraints  $\theta_i$  are **convex** functions of x in  $\mathbb{R}^d$ , and if  $x^* = \arg \min_x f(x)$  in  $\{x : \theta_i(x) \le 0, 1 \le i \le m\}$  is regular then  $x^*$  corresponds to a saddle point  $(x^*, \lambda^*)$  of the Lagrangian

Proof: from Kuhn-Tucker, derive the saddle point property

• 
$$L(x^*, \lambda) = f(x^*) + \sum_i \lambda_i \theta_i(x^*)$$
  
 $\leq f(x^*) = f(x^*) + \sum_i \lambda_i \theta_i(x^*) = L(x^*, \lambda^*)$ 

using admissibility of  $x^*$ , positivity of  $\lambda_i$  and complementarity

• 
$$L(x, \lambda^*) = f(x) + \sum_i \lambda_i^* \theta_i(x)$$
 is a convex function of x  
From the stationarity of L, one has  
 $\nabla_x L(x^*, \lambda^*) = \nabla f(x^*) + \sum_i \lambda_i^* \nabla \theta_i(x^*) = 0$   
sufficient to show that  $x^*$  is a minimum of the convex  
function  $L(x, \lambda^*)$ 

# Dual problem

#### Summary: Provided the Lagrangian has saddle points

- Solutions to (P)  $\min_x f(x)$  s.t.  $\theta_i(x) \le 0, \ 1 \le i \le m$ are the 1st argument of a saddle point  $(x^*, \lambda^*)$  of the Lagrangian  $L(x, \lambda)$
- If  $\lambda^*$  were known, amounts to solving an  ${\bf unconstrained}$  problem

$$x^* = \arg\min_{x} L(x, \lambda^*)$$

How to find such a λ\*?
 One has L(x\*, λ\*) = max<sub>λ∈ℝ+</sub>min<sub>x</sub> L(x, λ), so λ\* should be a solution of the dual problem

(D) 
$$\max_{\lambda} g(\lambda)$$
, s.t.  $\lambda \in \mathbb{R}^m_+$ , where  $g(\lambda) = \min_{x} L(x, \lambda)$ 

# Dual problem

Summary: Provided the Lagrangian has saddle points

- Solutions to (P)  $\min_x f(x)$  s.t.  $\theta_i(x) \le 0, \ 1 \le i \le m$ are the 1st argument of a saddle point  $(x^*, \lambda^*)$  of the Lagrangian  $L(x, \lambda)$
- If  $\lambda^*$  were known, amounts to solving an **unconstrained** problem

$$x^* = \arg\min_x L(x, \lambda^*)$$

How to find such a λ\* ?
 One has L(x\*, λ\*) = max<sub>λ∈ℝ+</sub>min<sub>x</sub> L(x, λ),
 so λ\* should be a solution of the dual problem

$$(D) \max_{\lambda} g(\lambda), \text{ s.t. } \lambda \in \mathbb{R}^m_+, \text{ where } g(\lambda) = \min_{x} L(x,\lambda)$$

# Dual problem

Summary: Provided the Lagrangian has saddle points

- Solutions to (P)  $\min_x f(x)$  s.t.  $\theta_i(x) \le 0, \ 1 \le i \le m$ are the 1st argument of a saddle point  $(x^*, \lambda^*)$  of the Lagrangian  $L(x, \lambda)$
- If  $\lambda^*$  were known, amounts to solving an **unconstrained** problem

$$x^* = \arg\min_x L(x, \lambda^*)$$

How to find such a λ<sup>\*</sup> ?
 One has L(x<sup>\*</sup>, λ<sup>\*</sup>) = max<sub>λ∈ℝ<sup>m</sup>+</sub> min<sub>x</sub> L(x, λ), so λ<sup>\*</sup> should be a solution of the dual problem

$$(D) \quad \max_{\lambda} g(\lambda), \ \text{ s.t. } \lambda \in \mathbb{R}^m_+, \quad \text{where } \quad g(\lambda) = \min_{x} L(x,\lambda)$$

Under some conditions, it is equivalent to solve the (P) or (D) :

#### Theorem

- If the  $\theta_i$  are continuous over  $\mathbb{R}^d$ , and  $\forall \lambda \in \mathbb{R}^m_+$ ,  $x^*(\lambda) = \arg \min_x L(x, \lambda)$  is unique, and  $x^*(\lambda)$  is a continuous function of  $\lambda$ then  $\lambda^*$  solves (D)  $\Rightarrow x^*(\lambda^*)$  solves (P)
- If (P) has at least one solution x\*, f and the θ<sub>i</sub> are convex and x\* is regular, then (D) has at least a solution λ\*.

Remark

(D) is still an optimization problem under constraints...

... but constraints  $\lambda \in \mathbb{R}^m_+$  are much simpler to handle !

Under some conditions, it is equivalent to solve the (P) or (D) :

#### Theorem

- If the  $\theta_i$  are continuous over  $\mathbb{R}^d$ , and  $\forall \lambda \in \mathbb{R}^m_+$ ,  $x^*(\lambda) = \arg \min_x L(x, \lambda)$  is unique, and  $x^*(\lambda)$  is a continuous function of  $\lambda$ then  $\lambda^*$  solves (D)  $\Rightarrow x^*(\lambda^*)$  solves (P)
- If (P) has at least one solution x\*, f and the θ<sub>i</sub> are convex and x\* is regular, then (D) has at least a solution λ\*.

#### Remark

(D) is still an optimization problem under constraints...

... but constraints  $\lambda \in \mathbb{R}^m_+$  are much simpler to handle !

## Example

Minimize a quadratic function under a quadratic constraint in  ${\mathbb R}$ 

- $\min_x (x x_0)^2$  s.t.  $(x x_1)^2 d \le 0$  with  $d > 0, x_1 > x_0$
- convex, regular case... unique saddle point of the Lagrangian



• 
$$L(x, \lambda) = (x - x_0)^2 + \lambda[(x - x_1)^2 - d]$$
  
• Compute  $g(\lambda) = \min_{x \in \mathbb{R}} L(x, \lambda)$   
 $\nabla_x L(x, \lambda) = 2(x - x_0) + 2\lambda(x - x_1) = 0 \implies x^*(\lambda) = \frac{x_0 + \lambda x_1}{1 + \lambda}$   
 $g(\lambda) = (x_1 - x_0)^2 \frac{\lambda}{1 + \lambda} - \lambda d$   
• Solve (D) :  $\max_{\lambda \ge 0} g(\lambda)$   
 $g'(\lambda) = \frac{(x_1 - x_0)^2}{(1 + \lambda)^2} - d = 0$   
 $\lambda^* = \frac{x_1 - x_0}{\sqrt{d}} - 1$  if  $\ge 0$ , otherwise  $\lambda^* = 0$  (constraint is inactive)

• When 
$$\lambda^* > 0$$
,  $x^*(\lambda^*) = x_1 - \sqrt{d}$   
otherwise, for  $\lambda^* = 0$ ,  $x^*(\lambda^*) = x_0$ 

• 
$$L(x, \lambda) = (x - x_0)^2 + \lambda[(x - x_1)^2 - d]$$
  
• Compute  $g(\lambda) = \min_{x \in \mathbb{R}} L(x, \lambda)$   
 $\nabla_x L(x, \lambda) = 2(x - x_0) + 2\lambda(x - x_1) = 0 \implies x^*(\lambda) = \frac{x_0 + \lambda x_1}{1 + \lambda}$   
 $g(\lambda) = (x_1 - x_0)^2 \frac{\lambda}{1 + \lambda} - \lambda d$   
• Solve (D) :  $\max_{\lambda \ge 0} g(\lambda)$   
 $g'(\lambda) = \frac{(x_1 - x_0)^2}{(1 + \lambda)^2} - d = 0$   
 $\lambda^* = \frac{x_1 - x_0}{\sqrt{d}} - 1$  if  $\ge 0$ , otherwise  $\lambda^* = 0$  (constraint is inactive)

• When  $\lambda^* > 0$ ,  $x^*(\lambda^*) = x_1 - \sqrt{d}$ otherwise, for  $\lambda^* = 0$ ,  $x^*(\lambda^*) = x_0$ 

• 
$$L(x, \lambda) = (x - x_0)^2 + \lambda[(x - x_1)^2 - d]$$
  
• Compute  $g(\lambda) = \min_{x \in \mathbb{R}} L(x, \lambda)$   
 $\nabla_x L(x, \lambda) = 2(x - x_0) + 2\lambda(x - x_1) = 0 \implies x^*(\lambda) = \frac{x_0 + \lambda x_1}{1 + \lambda}$   
 $g(\lambda) = (x_1 - x_0)^2 \frac{\lambda}{1 + \lambda} - \lambda d$   
• Solve (D) :  $\max_{\lambda \ge 0} g(\lambda)$   
 $g'(\lambda) = \frac{(x_1 - x_0)^2}{(1 + \lambda)^2} - d = 0$   
 $\lambda^* = \frac{x_1 - x_0}{\sqrt{d}} - 1$  if  $\ge 0$ , otherwise  $\lambda^* = 0$  (constraint is inactive)

• When 
$$\lambda^* > 0$$
,  $x^*(\lambda^*) = x_1 - \sqrt{d}$   
otherwise, for  $\lambda^* = 0$ ,  $x^*(\lambda^*) = x_0$ 

Optimization under constraints Conclusio

Dual problem - Resolution by duality

#### Plot of the Lagrangian

Case where  $\lambda^* > 0$ , i.e.  $x_1 - x_0 > \sqrt{d}$ (here  $x_0 = 1$ ,  $x_1 = 3$ , d = 1,  $\lambda^* = 1$ )



Optimization under constraints Conclusio

Dual problem - Resolution by duality

#### Plot of the Lagrangian

Case where  $\lambda^* = 0$ , i.e.  $x_1 - x_0 \le \sqrt{d}$ (here  $x_0 = 1, x_1 = 1.5, d = 1$ )



# Numerical methods

Same principle as for the unconstrained case, with 2 extra difficulties

- constraints limit the choice of admissible directions,
- progressing along an admissible direction may meet the boundary of  $\mathcal{D}$ .

# Penalty functions

Also called Lagrangian relaxation

**Exterior points method :** for equality constraints  $\theta(x) = 0$ 

- Principle = penalize non-admissible solutions.
- Let  $\psi(x) \ge 0$  and  $\psi(x) = 0$  exactly on  $\mathcal{D}$ , for example  $\psi(x) = \|\theta(x)\|^2$
- Consider the unconstrained problem

$$\min_{x} F(x) = f(x) + c_k \psi(x), \quad c_k > 0$$

and let  $c_k$  go to  $+\infty$ .

### **Interior points method :** better suited to inequalities $\theta(x) \leq 0$

- Principle = completely forbid non-admissible solutions, penalize those that get close to the boundaries of  $\mathcal{D}$ .
- Let  $\psi(x) \ge 0$  and  $\psi(x) \to +\infty$  when  $\theta_j(x) \to 0_-$ , for example  $\psi(x) = -\sum_j \frac{1}{\theta_j(x)}$
- then same as exterior points method: min<sub>x</sub> F(x) = f(x) + c<sub>k</sub> ψ(x)...

Optimization under constraints Conclusion

Numerical methods

### Projected gradient: equality constraints

**Principle :** project  $-\nabla f(x^n)$  on the tangent space to constraints

#### lemma

Let  $C = [C_1, ..., C_m] \in \mathbb{R}^{d \times m}$  be the matrix formed by *m* linearly independent (column) vectors  $C_j$  of  $\mathbb{R}^d$ . In  $\mathbb{R}^r$ , the projection on  $sp\{C_1, ..., C_m\}$  is given by

$$\pi_C(x) = Px$$
 with  $P = C(C^t C)^{-1}C^t$ 

Proof : This amounts to solving the quadratic problem

$$\min_{\alpha \in \mathbb{R}^m} \|x - C\alpha\|^2$$

Remark : The projection on  $sp\{C_1, ..., C_m\}^{\perp} = \{x : C^t x = 0\}$  is given by matrix Q = I - P

Optimization under constraints Conclusion

Numerical methods

### Projected gradient: equality constraints

**Principle :** project  $-\nabla f(x^n)$  on the tangent space to constraints

#### lemma

Let  $C = [C_1, ..., C_m] \in \mathbb{R}^{d \times m}$  be the matrix formed by *m* linearly independent (column) vectors  $C_j$  of  $\mathbb{R}^d$ . In  $\mathbb{R}^r$ , the projection on  $sp\{C_1, ..., C_m\}$  is given by

$$\pi_C(x) = Px$$
 with  $P = C(C^t C)^{-1} C^t$ 

Proof : This amounts to solving the quadratic problem

$$\min_{\alpha \in \mathbb{R}^m} \| x - \mathcal{C} \alpha \|^2$$

Remark : The projection on  $sp\{C_1,...,C_m\}^\perp=\{x:C^tx=0\}$  is given by matrix Q=I-P

### Affine equality constraints

- Replace min<sub>x</sub> f(x) s.t. θ(x) = C<sup>t</sup>x c = 0, by min<sub>x</sub> F(x) with F(x) = f[π<sub>D</sub>(x)].
- These two functions coincide on
   D = {x : θ(x) = 0} = {x : x = π<sub>D</sub>(x)}



Optimization without constraints

#### Numerical methods



• For  $x^0 \in \mathcal{D}$ , one has  $\pi_\mathcal{D}(x) = x^0 + Q(x-x^0)$ , so

$$\min_{x} F(x) = f[x^{0} + Q(x - x^{0})]$$
  

$$\nabla F(x) = Q \nabla f[x^{0} + Q(x - x^{0})]$$
  

$$\nabla^{2} F(x) = Q \nabla f[x^{0} + Q(x - x^{0})] G$$

∇F(x<sup>n</sup>) is the projection of ∇f(x<sup>n</sup>) on D = {x : C<sup>t</sup>x = 0}
Iterations starting with x<sup>0</sup> ∈ D stay in D.



#### Non linear equality constraints,

- project  $\nabla f(x)$  on the tangent space  $sp\{\nabla_1\theta(x),...,\nabla_m\theta(x)\}^{\perp}...$
- ... then project  $x^{n+1}$  on  $\mathcal{D}$ .

### Projected gradient: affine inequality constraints

- Similar to the case of equality constraints, but only active constraints are considered.
- Some constraints may become active/inactive during the linear search...
- Stop when the Kuhn-Tucker conditions are met.



# Outline

- Optimization without constraints
  - Optimization scheme
  - Linear search methods
  - Gradient descent
  - Conjugate gradient
  - Newton method
  - Quasi-Newton methods
- 2 Optimization under constraints
  - Lagrange
  - Equality constraints
  - Inequality constraints
  - Dual problem Resolution by duality
  - Numerical methods
    - Penalty functions
    - Projected gradient: equality constraints
    - Projected gradient: inequality constraints

3 Conclusion

$$L(x,\lambda) = f(x) + \sum_{j} \lambda_{j} \theta_{j}(x)$$

- solve  $\nabla L(x,\lambda) = 0$  to find a candidate optimum  $(x^*,\lambda^*)$
- check the positivity of its Hessian ∇<sup>2</sup><sub>x</sub>L(x\*, λ\*) to check if x\* is a min, a max or a saddle point of f.

$$L(x,\lambda) = f(x) + \sum_{j} \lambda_{j} \theta_{j}(x)$$

- solve  $\nabla L(x,\lambda) = 0$  to find a candidate optimum  $(x^*,\lambda^*)$
- check the positivity of its Hessian ∇<sup>2</sup><sub>x</sub>L(x\*, λ\*) to check if x\* is a min, a max or a saddle point of f.

$$L(x,\lambda) = f(x) + \sum_{j} \lambda_{j} \theta_{j}(x)$$

- solve  $\nabla L(x,\lambda) = 0$  to find a candidate optimum  $(x^*,\lambda^*)$
- check the positivity of its Hessian ∇<sup>2</sup><sub>x</sub>L(x\*, λ\*) to check if x\* is a min, a max or a saddle point of f.

$$L(x,\lambda) = f(x) + \sum_{j} \lambda_{j} \theta_{j}(x)$$

- solve  $\nabla L(x,\lambda) = 0$  to find a candidate optimum  $(x^*,\lambda^*)$
- check the positivity of its Hessian ∇<sup>2</sup><sub>x</sub>L(x\*, λ\*) to check if x\* is a min, a max or a saddle point of f.

$$L(x,\lambda) = f(x) + \sum_{j} \lambda_{j} \theta_{j}(x)$$

- solve  $\nabla L(x,\lambda) = 0$  to find a candidate optimum  $(x^*,\lambda^*)$
- check the positivity of its Hessian ∇<sup>2</sup><sub>x</sub>L(x\*, λ\*) to check if x\* is a min, a max or a saddle point of f.