OPT : an introduction to Numerical and Combinatorial Optimization

E. Fabre¹, R. Andonov², S. Pinchinat³

¹CR INRIA, DistribCom team, IRISA ²Pr, Symbiose team, IRISA ³MC, S4 team, IRISA

Master 2, research in Computer Science, '07

Download the lecture notes from my web-page: http://www.irisa.fr/distribcom/Personal_Pages/fabre/fabre.html

Outline

1 Overview of optimization problems

- What is it all about?
- Numerical optimization
- Combinatorial optimization
- Variations

Quadratic forms

- Minimizing a quadratic form
- Examples

3 Functions of several variables

- Visual representations
- Taylor expansions and geometry
- Directional derivatives

Outline

1 Overview of optimization problems

- What is it all about?
- Numerical optimization
- Combinatorial optimization
- Variations

2 Quadratic forms

- Minimizing a quadratic form
- Examples

3 Functions of several variables

- Visual representations
- Taylor expansions and geometry
- Directional derivatives

$$x^* = \arg \min_{x \in \mathcal{D}} f(x)$$

 \bullet domain ${\cal D}$

• cost function (min) or objective function (max) $f:\mathcal{D}\to\mathbb{R}$

• vector of parameters x^*

In general, the value $f(x^*)$ of secondary interest compared to x^* . We distinguish

- numerical optimization where $\mathcal{D} \subseteq \mathbb{R}^d$, d possibly large, from
- combinatorial optimization where \mathcal{D} is a discrete domain.

Numerical optimization

Numerical optimization

Corresponds to the case $f : \mathcal{D} \subseteq \mathbb{R}^d \to \mathbb{R}$, with d possibly large.

Notations :

- $x = [x_1, ..., x_d]^t$, a column-vector
- we often use $f(x) = f(x_1, ..., x_d)$

A few classes of problems, sorted by increasing difficulty.

Numerical optimization

Quadratic forms

Functions of several variables 00000000

Problems without constraints

Quadratic problem

$$f(x) = x^t A x + b^t x + c$$

where A symmetric matrix in $\mathbb{R}^{d \times d}$, $b \in \mathbb{R}^d$ and $c \in \mathbb{R}$.

Recall :

- $b^t x = \sum_{i=1}^d b_i x_i$ is the scalar product in \mathbb{R}^d
- Ax is the matrix product, and so $x^t(Ax)$ yields a scalar

Numerical optimization

Problems without constraints

Convex problem

 $\forall 0 \le \alpha \le 1, \qquad f[\alpha x + (1 - \alpha)y] \le \alpha f(x) + (1 - \alpha)f(y)$ x^0 is a local minimum of f iff:

$$\exists \epsilon > 0, \quad \|x - x^0\| \le \epsilon \Rightarrow f(x) \ge f(x^0)$$

Interest of convex functions: any local minimum x^* of f is also a global minimum.

Numerical optimization

Quadratic forms

Functions of several variables

Problems without constraints

Non-linear problem

All other cases.

The most regular (=differentiable) f is, the easier the problem.

In these lectures, we will assume $f C^1$, or C^2 when necessary.

Quadratic forms

Functions of several variables

Numerical optimization

Problems with constraints

$$\min_{x} f(x)$$
 subject to $heta_{j}(x) \leq 0, \quad 1 \leq j \leq m$
 $heta_{j}: \mathbb{R}^{d} \to \mathbb{R}$

Difficulties :

- In general, equality constraints are simpler than inequalities.
- The simpler and most regular are the constraints, the simpler the problem.

Quadratic forms

Functions of several variables

Numerical optimization

Problems with constraints

Linear program

- f is an linear function $f(x) = b^t x$, to maximize
- constraints are affine : $heta_j(x) = b_j^t x + c_j \leq 0$
- one often has $x_i \ge 0$ in the constraints

Quadratic forms

Functions of several variables 00000000

Numerical optimization

Problems with constraints

- \mathcal{D} is a convex volume, limited by hyperplanes,
- its boundary is called a simplex
- the maximum of f is found at a corner of the simplex
- the simplex algorithm explores these corners
- also addressed by interior points methods

Quadratic forms

Functions of several variables

Numerical optimization

Problems with constraints

Quadratic program

f is a quadratic function, constraints are affine Addressed by quadratic programming

Non-linear program

All the rest. By increasing complexity:

- f convex, affine constraints,
- f regular (Cⁿ), affine constraints,
- f convex, convex constraints : convex programming
- f regular, convex constraints,
- f regular, regular constraints,
- etc.

Combinatorial optimization

Corresponds to the case where x varies in a discrete domain \mathcal{D} .

• $\mathcal{D} = \mathbb{N}^d$,

Combinatorial optimization

- $\mathcal{D} = \text{set of paths on a graph}$,
- etc.

Problems are sorted by complexity.

In front of a combinatorial optimization problem, try to express it as one of the standard examples.

Combinatorial optimization

Quadratic forms

Functions of several variables

Easy problems (polynomial complexity)

Optimal covering tree

Graph G = (V, E, c) with $c : E \to \mathbb{R}$ assigning costs to edges. <u>Problem :</u> find a min cost tree in G that reaches all vertices

<u>Solution</u> : a greedy procedure (Prim/Kruskal)

- explore edges by increasing cost in order to build a tree
- if an edge closes a cycle, reject it and take the next
- stop when all nodes reached

Combinatorial optimization

Quadratic forms

Functions of several variables

Easy problems (polynomial complexity)

Dynamic programming

<u>Problem</u> : In G, find the shortest path from s to s', where c(e) is the "length" of edge e.

Solution : A recursion

- if the shortest path from s to s' goes through s", then the section $s \to s''$ is also optimal
- start from s, and find the shortest path to its neighbours, and so on recursively.

Combinatorial optimization

Quadratic forms

Functions of several variables

Easy problems (polynomial complexity)

Simple flow problems

<u>Problem</u> : Maximize the flow from s to s', where c(e) is the maximal capacity of edge e.

Solution : Ford-Fulkerson algorithm

- find a path from s to s', with minimal capacity $c_1 > 0$
- reduce capacities on edges of this path by c1
- repeat until *s* and *s'* are disconnected

Combinatorial optimization

Quadratic forms

Functions of several variables 00000000

Complex problems (NP)

Integer linear program (NP)

Quadratic forms

Functions of several variables

Combinatorial optimization

Complex problems (NP)

- the extra constraint $x \in \mathbb{N}^d$ instead of $x \in \mathbb{R}^d$ changes dramatically the complexity
- rounding the solution of a linear program may give a good approximation, or initial guess
- when the simplex is too "flat", this doesn't work
- complexity is NP in general...

Combinatorial optimization

Complex problems (NP)

Example: the knapsack problem, a typical integer linear programming problem

- d objects O_i of volume v_i and utility u_i ,
- knapsack of limited volume v,
- select objects in order to maximize the utility of the knapsack, under the volume constraint.

Combinatorial optimization

Complex problems (NP)

Traveling salesman : find a hamiltonian cycle in a graph, *i.e.* visit all nodes exactly once with the shortest cycle.

Maximal coupling : set of edges in G that have no neighbour in common.

Maximal clique : find the largest clique, *i.e.* set of points that are pairwise neighbours.

Solutions by branch and bound techniques.

Some problems are even more complex: it is already hard to find an element of the domain \mathcal{D} . Examples: planning problems, puzzle resolution, etc. Addressed by constraint solving methods.

Variations

Variations calculus (not covered)

The parameter x has infinite dimension, and becomes a function. Examples :

- Optimal shape of a rope hanged by its two extremities (minimizes potential energy).
- Shape of a toboggan that maximizes the exit speed : the brachistochrone.

Quadratic forms

Functions of several variables

Variations

Others (not covered)

Optimization multi-criterion :

Minimize at the same time $f_1(x)$ and $f_2(x)$ in the same value of x.

Games :

- We have K players,
- Divide $x \in \mathbb{R}^d$ into $x = (x_1, ..., x_K)$ where $x_i \in \mathbb{R}^{d_i}$, $\sum_i d_i = d$
- Player *i* is in charge of adjusting the (sub)vector *x_i*.

We distinguish

- cooperative games: players jointly minimize f(x)
- competitive games: player k minimizes its own $f_k(x)$.

Outline

Overview of optimization problems

- What is it all about?
- Numerical optimization
- Combinatorial optimization
- Variations

Quadratic forms

- Minimizing a quadratic form
- Examples

3 Functions of several variables

- Visual representations
- Taylor expansions and geometry
- Directional derivatives

Minimizing a quadratic form

Quadratic forms

Functions of several variables

Scalar function

$$\min_{x} f(x) = ax^2 + bx + c$$

- Solve f'(x) = 0, *i.e.* try $x^* = -\frac{b}{2a}$,
- equivalent to expressing f as $f(x) = a(x x^*)^2 + c'$
- min or max ? Depends on the sign of a...

Minimizing a quadratic form

Quadratic forms

Functions of several variables

Vector function

$$\min_{x} f(x) = x^{t} A x + b^{t} x + c$$

where A is a diagonal matrix $A = Diag(a_1, ..., a_d)$.

- equivalent to *d* independent problems $f_i = a_i x_i^2 + b_i x_i + c_i$
- joint resolution of all f'_i(x_i) = 0 :
 equivalent to canceling the gradient

$$\nabla f(x) = \begin{bmatrix} \vdots \\ \frac{\partial f}{\partial x_i} \\ \vdots \end{bmatrix} = 2Ax + b$$

• try $x^* = -\frac{1}{2}A^{-1}b$, when all $a_i \neq 0$

- equivalent to expressing f as $f(x) = (x x^*)^t A(x x^*) + c'$
- min or max ? depends on the signs of the a_i ...

Quadratic forms

Functions of several variables

Minimizing a quadratic form

- all a_i positive : elliptic paraboloid (left), and x^* is a min
- there exist a_i of opposite signs : hyperbolic paraboloid (right), and x^* is not a min
- what if some of the *a_i* vanish ?

Minimizing a quadratic form

Quadratic forms

Functions of several variables 00000000

General case

$$f(x) = x^t A x + b^t x + c$$

One always has $A = P \Delta P^t$ where

- Δ is *diagonal*, formed by the eigenvalues λ_i of A
- *P* is unitary, i.e. P^tP = 1 = PP^t, and formed by the eigenvectors p_i of A

•
$$Ap_i = \lambda_i p_i$$

The change of variables $y = P^t x$ takes us back to the previous case.

Minimizing a quadratic form

Direct resolution

- gradient $\nabla f(x) = 2Ax + b$,
- x* = -¹/₂A⁻¹b yields a stationary point (obtained by solving a linear system)
- verify that this is a min, by checking the positivity of the eigenvalues of A

Quadratic forms

Functions of several variables

Examples

Example 1: curve fitting

<u>Problem</u>: adjust the line \mathcal{L} : $x_1p_1 + x_2p_2 + x_3 = 0$ to a cloud of N points p(1), ..., p(N) in the plane \mathbb{R}^2

Quadratic forms

Examples

 $x = (x_1, x_2, x_3)$ is defined up to a constant. Assume $x_2 = 1$: $D_v(p, \mathcal{L}) = |x_1 p_1 + p_2 + x_3|$

$$\min_{x} f(x) \quad \text{where} \quad f(x) = f(x_1, x_3) = \sum_{i} D_{\nu}(p(i), \mathcal{L})^2$$

This method can be used to adjust

- a parabola \mathcal{P} : $p_2 = x_1p_1 + x_2p_1^2 + x_3$ to a cloud of points,
- any polynomial curve in p₁,
- a hyperplane \mathcal{H} : $x_1p_1 + x_2p_2 + ... + x_kp_k + x_{k+1} = 0$ in \mathbb{R}^k

Caution : very sensitive to outliers

Examples

Example 2: best image transform

<u>Problem</u>: Estimate the apparent movement of an object between two consecutive images. Characterized by the best affine transform that sends points p(n) to points q(n).

$$q = Hp + T$$
 where $H = \begin{bmatrix} x_1 & x_2 \\ -x_2 & x_1 \end{bmatrix}$ and $T = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix}$

Resolution by $\min_x \sum_n \|HP(n) + T - q(n)\|^2$

Examples

Example 3: Best solution of a linear system

Consider the overconstrained linear system Mx = ywhere $M \in \mathbb{R}^{n \times d}$ and $n \ge d$: more equations than unknowns.

Approximate resolution :

• minimize the norm of the error e = y - Mx

$$f(x) = \|Mx - y\|^2 = (Mx - y)^t (Mx - y) = x^t M^t Mx - 2y^t Mx + y^t y$$

- $A = M^t M$ is a positive symmetric matrix: there is a min
- stationary point(s): $\nabla f(x) = 2M^t M x 2M^t y = 0$
- if M has full rank, *i.e.* $Rank(M) = Rank(M^{t}M) = d$, then

$$x^* = (M^t M)^{-1} M^t y = M^{\dagger} y$$

Quadratic forms

Functions of several variables

Examples

Example 4: intersection of *N* lines

Find a point $x = (x_1, x_2)$ such that

 $\mathcal{L}(n): a_{n,1} x_1 + a_{n,2} x_2 = a_{n,0} \qquad 1 \le n \le N$

The approximate resolution of this linear system gives the point that is the closest to all lines :

$$\min_{x_1,x_2} \sum_{n=1}^{N} (a_{n,1} x_1 + a_{n,2} x_2 - a_{n,0})^2$$

Q: when does the linear system violate rank(M) = d = 2 ?

Outline

Overview of optimization problems

- What is it all about?
- Numerical optimization
- Combinatorial optimization
- Variations
- 2 Quadratic forms
 - Minimizing a quadratic form
 - Examples

3 Functions of several variables

- Visual representations
- Taylor expansions and geometry
- Directional derivatives

Visual representations

Representing a function $f : \mathbb{R}^n \to \mathbb{R}$

- As a "surface" in \mathbb{R}^{d+1} :
 - the $d + 1^{st}$ dimension z is for the value of f,
 - z = f(x) defines a manifold of degree d in \mathbb{R}^{d+1} .
- **2** By its level lines in \mathbb{R}^d :
 - level line of "height" h: $\mathcal{L}(f,h) = \{x \in \mathbb{R}^d : f(x) = d\},\$
 - $\mathcal{L}(f,h)$ is a manifold of degree d-1 in \mathbb{R}^d ,
 - similar to geographical or meteorological maps.

Taylor expansions and geometry

Quadratic forms

Functions of several variables

Taylor expansion in \mathbb{R}

For $f : \mathbb{R} \to \mathbb{R}$ that is C^2 (*i.e.* has a cont. 2nd order derivative), one can approximate f around any point x^0 by

$$f(x) = f(x^{0}) + f'(x^{0})(x - x^{0}) + \frac{1}{2}f''(x^{0})(x - x^{0})^{2} + o(x - x^{0})^{2}$$

• $y = f(x^0) + f'(x^0)(x - x^0)$: tangent line • $y = f(x^0) + f'(x^0)(x - x^0) + \frac{1}{2}f''(x^0)(x - x^0)^2$: tg parabola • Can be used to find a local minimum of f.

Taylor expansion in \mathbb{R}^d : 1st order

1st order: let $f : \mathbb{R}^d \to \mathbb{R}$ be a C^2 function,

$$f(x) = f(x^{0}) + \nabla f(x^{0})^{t}(x - x^{0}) + o(||x - x^{0}||)$$

- if the move x − x⁰ is perpendicular to the gradient ∇f(x⁰),
 f doesn't change
- if the move $x x^0$ is parallel to the gradient, one gets the maximal change for f

Quadratic forms

Functions of several variables

Taylor expansions and geometry

Level lines

Level line for
$$f$$
 at $x^0 = \{x \in \mathbb{R}^d : f(x) = f(x^0)\}$

- at any point, the gradient is orthogonal to the level line
- tangent hyperplane to the "surface" z = f(x) in \mathbb{R}^{d+1} : $z = f(x^0) + \nabla f(x^0)^t (x - x^0)$
- tangent hyperplane to the level line at x⁰ in ℝ^d: intersection with z = f(x⁰), *i.e.* ∇f(x⁰)^t(x - x⁰) = 0

Quadratic forms

Functions of several variables

Taylor expansion in \mathbb{R}^d : 2nd order

2nd order:

$$f(x) = f(x^{0}) + \nabla f(x^{0})^{t} (x - x^{0}) + \frac{1}{2} (x - x^{0})^{t} \nabla^{2} f(x^{0}) (x - x^{0}) + o(||x - x^{0}||^{2})$$

where $\nabla^2 f(x^0)$ is the Hessian of f at x^0

$$\nabla^2 f(x^0) = \begin{bmatrix} \vdots \\ \cdots & \frac{\partial^2 f(x^0)}{\partial x_i \partial x_j} & \cdots \\ \vdots & \end{bmatrix}$$

Quadratic forms

Functions of several variables

Taylor expansions and geometry

Level lines of f and of its best approximation by a quadratic form at x^0 .

Characterization of a local minimum x^* of f:

- NC: it's a stationary point, $\nabla f(x^*) = 0$
- NC: the Hessian is semi-definite positive $\nabla^2 f(x^*) \ge 0$
- SC: the Hessian is non-negative $\nabla^2 f(x^*) > 0$

Directional derivatives

Quadratic forms

Functions of several variables

Directional derivatives

Consider the parametric curve/line :

$$x(t)=x^0+tu, \qquad t\in \mathbb{R}, \;\; u=$$
 direction in \mathbb{R}^d

1st order : For $f \circ x : \mathbb{R} \to \mathbb{R}$, one has

$$(f \circ x)'(t) = \sum_{i} \frac{\partial f[x(t)]}{\partial x_{i}} \frac{dx_{i}(t)}{dt}$$
$$= \nabla f[x(t)]^{t} x'(t)$$
$$= \nabla f[x(t)]^{t} u$$

Whence the 1st order Taylor expansion of $f \circ x$

$$(f \circ x)(t) = x^0 + t \cdot \nabla f(x^0)^t \ u + o(t)$$

Directional derivatives

2nd order: One has

$$\begin{aligned} (f \circ x)''(t) &= x'(t)^t \, \nabla^2 f[x(t)] \, x'(t) + \nabla f[x(t)] \, x''(t) \\ &= u^t \, \nabla^2 f[x(t)] \, u \, + \, 0 \end{aligned}$$

Whence the 2nd order Taylor expansion of $f \circ x$

$$(f \circ x)(t) = x^0 + t \cdot \nabla f(x^0)^t u + \frac{1}{2} t^2 \cdot u^t \nabla^2 f(x^0) u + o(t^2)$$