OPT : an introduction to
 Numerical and Combinatorial Optimization

E. Fabre ${ }^{1}$, R. Andonov ${ }^{2}$, S. Pinchinat ${ }^{3}$

${ }^{1}$ CR INRIA, DistribCom team, IrisA
${ }^{2}$ Pr, Symbiose team, IrisA
${ }^{3} \mathrm{MC}$, S4 team, IrisA

Master 2, research in Computer Science, '07

Download the lecture notes from my web-page:
http://www.irisa.fr/distribcom/Personal_Pages/fabre/fabre.html

Outline

(1) Overview of optimization problems

- What is it all about?
- Numerical optimization
- Combinatorial optimization
- Variations
(2) Quadratic forms
- Minimizing a quadratic form
- Examples
(3) Functions of several variables
- Visual representations
- Taylor expansions and geometry
- Directional derivatives

Outline

(1) Overview of optimization problems

- What is it all about?
- Numerical optimization
- Combinatorial optimization
- Variations
(2) Quadratic forms
- Minimizing a quadratic form
- Examples
(3) Functions of several variables
- Visual representations
- Taylor expansions and geometry
- Directional derivatives

What is it all about?

$$
x^{*}=\arg \min _{x \in \mathcal{D}} f(x)
$$

- domain \mathcal{D}
- cost function (min) or objective function (max) $f: \mathcal{D} \rightarrow \mathbb{R}$
- vector of parameters x^{*}

In general, the value $f\left(x^{*}\right)$ of secondary interest compared to x^{*}.
We distinguish

- numerical optimization where $\mathcal{D} \subseteq \mathbb{R}^{d}, d$ possibly large, from
- combinatorial optimization where \mathcal{D} is a discrete domain.

Numerical optimization

Corresponds to the case $f: \mathcal{D} \subseteq \mathbb{R}^{d} \rightarrow \mathbb{R}$, with d possibly large.
Notations:

- $x=\left[x_{1}, \ldots, x_{d}\right]^{t}$, a column-vector
- we often use $f(x)=f\left(x_{1}, \ldots, x_{d}\right)$

A few classes of problems, sorted by increasing difficulty.

Problems without constraints

Quadratic problem

$$
f(x)=x^{t} A x+b^{t} x+c
$$

where A symmetric matrix in $\mathbb{R}^{d \times d}, b \in \mathbb{R}^{d}$ and $c \in \mathbb{R}$.
Recall :

- $b^{t} x=\sum_{i=1}^{d} b_{i} x_{i}$ is the scalar product in \mathbb{R}^{d}
- $A x$ is the matrix product, and so $x^{t}(A x)$ yields a scalar

Numerical optimization

Problems without constraints

Convex problem

$$
\forall 0 \leq \alpha \leq 1, \quad f[\alpha x+(1-\alpha) y] \leq \alpha f(x)+(1-\alpha) f(y)
$$

x^{0} is a local minimum of f iff:

$$
\exists \epsilon>0, \quad\left\|x-x^{0}\right\| \leq \epsilon \Rightarrow f(x) \geq f\left(x^{0}\right)
$$

Interest of convex functions: any local minimum x^{*} of f is also a global minimum.

Problems without constraints

Non-linear problem

All other cases.
The most regular (=differentiable) f is, the easier the problem.
In these lectures, we will assume $f \mathcal{C}^{1}$, or \mathcal{C}^{2} when necessary.

Problems with constraints

$$
\begin{array}{cl}
\min _{x} f(x) \quad \text { subject to } & \theta_{j}(x) \leq 0, \quad 1 \leq j \leq m \\
& \theta_{j}: \mathbb{R}^{d} \rightarrow \mathbb{R}
\end{array}
$$

Difficulties:

- In general, equality constraints are simpler than inequalities.
- The simpler and most regular are the constraints, the simpler the problem.

Problems with constraints

Linear program

- f is an linear function $f(x)=b^{t} x$, to maximize
- constraints are affine: $\theta_{j}(x)=b_{j}^{t} x+c_{j} \leq 0$
- one often has $x_{i} \geq 0$ in the constraints

Problems with constraints

- \mathcal{D} is a convex volume, limited by hyperplanes,
- its boundary is called a simplex
- the maximum of f is found at a corner of the simplex
- the simplex algorithm explores these corners
- also addressed by interior points methods

Problems with constraints

Quadratic program

f is a quadratic function, constraints are affine Addressed by quadratic programming

Non-linear program

All the rest. By increasing complexity:

- f convex, affine constraints,
- f regular $\left(C^{n}\right)$, affine constraints,
- f convex, convex constraints : convex programming
- f regular, convex constraints,
- f regular, regular constraints,
- etc.

Combinatorial optimization

Combinatorial optimization

Corresponds to the case where x varies in a discrete domain \mathcal{D}.

- $\mathcal{D}=\mathbb{N}^{d}$,
- $\mathcal{D}=$ set of paths on a graph,
- etc.

Problems are sorted by complexity.
In front of a combinatorial optimization problem, try to express it as one of the standard examples.

Combinatorial optimization

Easy problems (polynomial complexity)

Optimal covering tree

Graph $G=(V, E, c)$ with $c: E \rightarrow \mathbb{R}$ assigning costs to edges. Problem : find a min cost tree in G that reaches all vertices

Solution: a greedy procedure (Prim/Kruskal)

- explore edges by increasing cost in order to build a tree
- if an edge closes a cycle, reject it and take the next
- stop when all nodes reached

Combinatorial optimization

Easy problems (polynomial complexity)

Dynamic programming

Problem: In G, find the shortest path from s to s^{\prime}, where $c(e)$ is the "length" of edge e.

Solution: A recursion

- if the shortest path from s to s^{\prime} goes through $s^{\prime \prime}$, then the section $s \rightarrow s^{\prime \prime}$ is also optimal
- start from s, and find the shortest path to its neighbours, and so on recursively.

Combinatorial optimization

Easy problems (polynomial complexity)

Simple flow problems

Problem: Maximize the flow from s to s^{\prime}, where $c(e)$ is the maximal capacity of edge e.

Solution: Ford-Fulkerson algorithm

- find a path from s to s^{\prime}, with minimal capacity $c_{1}>0$
- reduce capacities on edges of this path by c_{1}
- repeat until s and s^{\prime} are disconnected

Combinatorial optimization

Complex problems (NP)

Integer linear program (NP)

$$
\max _{x \in \mathbb{N}^{d}} b^{t} x \quad \text { s.t. } \quad \theta_{j}(x)=b_{j}^{t} x+c_{j} \leq 0, \quad 1 \leq j \leq m
$$

Combinatorial optimization

Complex problems (NP)

- the extra constraint $x \in \mathbb{N}^{d}$ instead of $x \in \mathbb{R}^{d}$ changes dramatically the complexity
- rounding the solution of a linear program may give a good approximation, or initial guess
- when the simplex is too "flat", this doesn't work
- complexity is NP in general...

Combinatorial optimization

Complex problems (NP)

Example: the knapsack problem, a typical integer linear programming problem

- d objects O_{i} of volume v_{i} and utility u_{i},
- knapsack of limited volume v,
- select objects in order to maximize the utility of the knapsack, under the volume constraint.

Complex problems (NP)

Traveling salesman : find a hamiltonian cycle in a graph, i.e. visit all nodes exactly once with the shortest cycle. Maximal coupling : set of edges in G that have no neighbour in common.
Maximal clique : find the largest clique, i.e. set of points that are pairwise neighbours.

Solutions by branch and bound techniques.

Some problems are even more complex: it is already hard to find an element of the domain \mathcal{D}.
Examples: planning problems, puzzle resolution, etc.
Addressed by constraint solving methods.

Variations calculus (not covered)

The parameter x has infinite dimension, and becomes a function. Examples:

- Optimal shape of a rope hanged by its two extremities (minimizes potential energy).
- Shape of a toboggan that maximizes the exit speed: the brachistochrone.

Others (not covered)

Optimization multi-criterion :

Minimize at the same time $f_{1}(x)$ and $f_{2}(x)$ in the same value of x.

Games :

- We have K players,
- Divide $x \in \mathbb{R}^{d}$ into $x=\left(x_{1}, \ldots, x_{K}\right)$ where $x_{i} \in \mathbb{R}^{d_{i}}$, $\sum_{i} d_{i}=d$
- Player i is in charge of adjusting the (sub)vector x_{i}.

We distinguish

- cooperative games: players jointly minimize $f(x)$
- competitive games: player k minimizes its own $f_{k}(x)$.

Outline

(1) Overview of optimization problems

- What is it all about?
- Numerical optimization
- Combinatorial optimization
- Variations
(2) Quadratic forms
- Minimizing a quadratic form
- Examples
(3) Functions of several variables
- Visual representations
- Taylor expansions and geometry
- Directional derivatives

Scalar function

$$
\min _{x} f(x)=a x^{2}+b x+c
$$

- Solve $f^{\prime}(x)=0$, i.e. try $x^{*}=-\frac{b}{2 a}$,
- equivalent to expressing f as $f(x)=a\left(x-x^{*}\right)^{2}+c^{\prime}$
- min or max ? Depends on the sign of $a \ldots$

Vector function

$$
\min _{x} f(x)=x^{t} A x+b^{t} x+c
$$

where A is a diagonal matrix $A=\operatorname{Diag}\left(a_{1}, \ldots, a_{d}\right)$.

- equivalent to d independent problems $f_{i}=a_{i} x_{i}^{2}+b_{i} x_{i}+c_{i}$
- joint resolution of all $f_{i}^{\prime}\left(x_{i}\right)=0$:
equivalent to canceling the gradient

$$
\nabla f(x)=\left[\begin{array}{c}
\vdots \\
\frac{\partial f}{\partial x_{i}} \\
\vdots
\end{array}\right]=2 A x+b
$$

- try $x^{*}=-\frac{1}{2} A^{-1} b$, when all $a_{i} \neq 0$
- equivalent to expressing f as $f(x)=\left(x-x^{*}\right)^{t} A\left(x-x^{*}\right)+c^{\prime}$
- min or max ? depends on the signs of the $a_{i} \ldots$

- all a_{i} positive : elliptic paraboloid (left), and x^{*} is a min
- there exist a_{i} of opposite signs : hyperbolic paraboloid (right), and x^{*} is not a min
- what if some of the a_{i} vanish ?

General case

$$
f(x)=x^{t} A x+b^{t} x+c
$$

One always has $A=P \Delta P^{t}$ where

- Δ is diagonal, formed by the eigenvalues λ_{i} of A
- P is unitary, i.e. $P^{t} P=\mathbf{1}=P P^{t}$, and formed by the eigenvectors p_{i} of A
- $A p_{i}=\lambda_{i} p_{i}$

The change of variables $y=P^{t} x$ takes us back to the previous case.

Direct resolution

- gradient $\nabla f(x)=2 A x+b$,
- $x^{*}=-\frac{1}{2} A^{-1} b$ yields a stationary point (obtained by solving a linear system)
- verify that this is a min, by checking the positivity of the eigenvalues of A

Examples

Example 1: curve fitting

Problem: adjust the line $\mathcal{L}: x_{1} p_{1}+x_{2} p_{2}+x_{3}=0$ to a cloud of N points $p(1), \ldots, p(N)$ in the plane \mathbb{R}^{2}

Distances to the line

$$
D(p, \mathcal{L})=\frac{x_{1} p_{1}+x_{2} p_{2}+x_{3}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}
$$

$$
D_{v}(p, \mathcal{L})=\left|\frac{x_{1} p_{1}+x_{2} p_{2}+x_{3}}{x_{2}}\right|
$$

$x=\left(x_{1}, x_{2}, x_{3}\right)$ is defined up to a constant.
Assume $x_{2}=1: \quad D_{v}(p, \mathcal{L})=\left|x_{1} p_{1}+p_{2}+x_{3}\right|$

$$
\min _{x} f(x) \text { where } f(x)=f\left(x_{1}, x_{3}\right)=\sum_{i} D_{v}(p(i), \mathcal{L})^{2}
$$

This method can be used to adjust

- a parabola \mathcal{P} : $p_{2}=x_{1} p_{1}+x_{2} p_{1}^{2}+x_{3}$ to a cloud of points,
- any polynomial curve in p_{1},
- a hyperplane $\mathcal{H}: x_{1} p_{1}+x_{2} p_{2}+\ldots+x_{k} p_{k}+x_{k+1}=0$ in \mathbb{R}^{k}

Caution: very sensitive to outliers

Examples

Example 2: best image transform

Problem: Estimate the apparent movement of an object between two consecutive images. Characterized by the best affine transform that sends points $p(n)$ to points $q(n)$.

Model :

$$
q=H p+T \quad \text { where } H=\left[\begin{array}{cc}
x_{1} & x_{2} \\
-x_{2} & x_{1}
\end{array}\right] \quad \text { and } \quad T=\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]
$$

Resolution by $\min _{x} \sum_{n}\|H P(n)+T-q(n)\|^{2}$

Examples

Example 3 : Best solution of a linear system

Consider the overconstrained linear system $M x=y$ where $M \in \mathbb{R}^{n \times d}$ and $n \geq d$: more equations than unknowns.

Approximate resolution:

- minimize the norm of the error $e=y-M x$

$$
f(x)=\|M x-y\|^{2}=(M x-y)^{t}(M x-y)=x^{t} M^{t} M x-2 y^{t} M x+y^{t} y
$$

- $A=M^{t} M$ is a positive symmetric matrix: there is a min
- stationary point(s): $\nabla f(x)=2 M^{t} M x-2 M^{t} y=0$
- if M has full rank, i.e. $\operatorname{Rank}(M)=\operatorname{Rank}\left(M^{t} M\right)=d$, then

$$
x^{*}=\left(M^{t} M\right)^{-1} M^{t} y=M^{\dagger} y
$$

Examples

Example 4 : intersection of N lines

Find a point $x=\left(x_{1}, x_{2}\right)$ such that

$$
\mathcal{L}(n): \quad a_{n, 1} x_{1}+a_{n, 2} x_{2}=a_{n, 0} \quad 1 \leq n \leq N
$$

The approximate resolution of this linear system gives the point that is the closest to all lines:

$$
\min _{x_{1}, x_{2}} \sum_{n=1}^{N}\left(a_{n, 1} x_{1}+a_{n, 2} x_{2}-a_{n, 0}\right)^{2}
$$

Q: when does the linear system violate $\operatorname{rank}(M)=d=2$?

Outline

(1) Overview of optimization problems

- What is it all about?
- Numerical optimization
- Combinatorial optimization
- Variations
(2) Quadratic forms
- Minimizing a quadratic form
- Examples
(3) Functions of several variables
- Visual representations
- Taylor expansions and geometry
- Directional derivatives

Representing a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

(1) As a "surface" in \mathbb{R}^{d+1} :

- the $d+1^{\text {st }}$ dimension z is for the value of f,
- $z=f(x)$ defines a manifold of degree d in \mathbb{R}^{d+1}.
(2) By its level lines in \mathbb{R}^{d} :
- level line of "height" $h: \mathcal{L}(f, h)=\left\{x \in \mathbb{R}^{d}: f(x)=d\right\}$,
- $\mathcal{L}(f, h)$ is a manifold of degree $d-1$ in \mathbb{R}^{d},
- similar to geographical or meteorological maps.

Taylor expansions and geometry

Taylor expansion in \mathbb{R}

For $f: \mathbb{R} \rightarrow \mathbb{R}$ that is C^{2} (i.e. has a cont. 2nd order derivative), one can approximate f around any point x^{0} by

$$
f(x)=f\left(x^{0}\right)+f^{\prime}\left(x^{0}\right)\left(x-x^{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{0}\right)\left(x-x^{0}\right)^{2}+o\left(x-x^{0}\right)^{2}
$$

- $y=f\left(x^{0}\right)+f^{\prime}\left(x^{0}\right)\left(x-x^{0}\right)$: tangent line
- $y=f\left(x^{0}\right)+f^{\prime}\left(x^{0}\right)\left(x-x^{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{0}\right)\left(x-x^{0}\right)^{2}$: tg parabola
- Can be used to find a local minimum of f.

Taylor expansion in \mathbb{R}^{d} : 1st order

1st order: let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a C^{2} function,

$$
f(x)=f\left(x^{0}\right)+\nabla f\left(x^{0}\right)^{t}\left(x-x^{0}\right)+o\left(\left\|x-x^{0}\right\|\right)
$$

- if the move $x-x^{0}$ is perpendicular to the gradient $\nabla f\left(x^{0}\right)$, f doesn't change
- if the move $x-x^{0}$ is parallel to the gradient, one gets the maximal change for f

Level lines

Level line for f at $x^{0}=\left\{x \in \mathbb{R}^{d}: f(x)=f\left(x^{0}\right)\right\}$

- at any point, the gradient is orthogonal to the level line
- tangent hyperplane to the "surface" $z=f(x)$ in \mathbb{R}^{d+1} : $z=f\left(x^{0}\right)+\nabla f\left(x^{0}\right)^{t}\left(x-x^{0}\right)$
- tangent hyperplane to the level line at x^{0} in \mathbb{R}^{d} : intersection with $z=f\left(x^{0}\right)$, i.e. $\nabla f\left(x^{0}\right)^{t}\left(x-x^{0}\right)=0$

Taylor expansions and geometry

Taylor expansion in $\mathbb{R}^{\text {d }}$: 2nd order

2nd order:

$$
\begin{aligned}
f(x)= & f\left(x^{0}\right)+\nabla f\left(x^{0}\right)^{t}\left(x-x^{0}\right) \\
& +\frac{1}{2}\left(x-x^{0}\right)^{t} \nabla^{2} f\left(x^{0}\right)\left(x-x^{0}\right)+o\left(\left\|x-x^{0}\right\|^{2}\right)
\end{aligned}
$$

where $\nabla^{2} f\left(x^{0}\right)$ is the Hessian of f at x^{0}

$$
\nabla^{2} f\left(x^{0}\right)=\left[\begin{array}{ccc}
& \vdots & \\
\ldots & \frac{\partial^{2} f\left(x^{0}\right)}{\partial x_{i} \partial x_{j}} & \cdots \\
& \vdots &
\end{array}\right]
$$

Level lines of f and of its best approximation by a quadratic form at x^{0}.

Characterization of a local minimum x^{*} of f :

- NC: it's a stationary point, $\nabla f\left(x^{*}\right)=0$
- NC: the Hessian is semi-definite positive $\nabla^{2} f\left(x^{*}\right) \geq 0$
- SC: the Hessian is non-negative $\nabla^{2} f\left(x^{*}\right)>0$

Directional derivatives

Directional derivatives

Consider the parametric curve/line :

$$
x(t)=x^{0}+t u, \quad t \in \mathbb{R}, \quad u=\text { direction in } \mathbb{R}^{d}
$$

1st order: For $f \circ x: \mathbb{R} \rightarrow \mathbb{R}$, one has

$$
\begin{aligned}
(f \circ x)^{\prime}(t) & =\sum_{i} \frac{\partial f[x(t)]}{\partial x_{i}} \frac{d x_{i}(t)}{d t} \\
& =\nabla f[x(t)]^{t} x^{\prime}(t) \\
& =\nabla f[x(t)]^{t} u
\end{aligned}
$$

Whence the 1st order Taylor expansion of $f \circ x$

$$
(f \circ x)(t)=x^{0}+t \cdot \nabla f\left(x^{0}\right)^{t} u+o(t)
$$

2nd order: One has

$$
\begin{aligned}
(f \circ x)^{\prime \prime}(t) & =x^{\prime}(t)^{t} \nabla^{2} f[x(t)] x^{\prime}(t)+\nabla f[x(t)] x^{\prime \prime}(t) \\
& =u^{t} \nabla^{2} f[x(t)] u+0
\end{aligned}
$$

Whence the 2nd order Taylor expansion of $f \circ x$

$$
(f \circ x)(t)=x^{0}+t \cdot \nabla f\left(x^{0}\right)^{t} u+\frac{1}{2} t^{2} \cdot u^{t} \nabla^{2} f\left(x^{0}\right) u+o\left(t^{2}\right)
$$

