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What is it all about?

What is it all about?

x∗ = arg min
x∈D

f (x)

domain D
cost function (min) or objective function (max) f : D → R
vector of parameters x∗

In general, the value f (x∗) of secondary interest compared to x∗.
We distinguish

numerical optimization where D ⊆ Rd , d possibly large, from

combinatorial optimization where D is a discrete domain.
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Numerical optimization

Numerical optimization

Corresponds to the case f : D ⊆ Rd → R, with d possibly large.

Notations :

x = [x1, ..., xd ]t , a column-vector

we often use f (x) = f (x1, ..., xd)

A few classes of problems, sorted by increasing difficulty.



Overview of optimization problems Quadratic forms Functions of several variables

Numerical optimization

Problems without constraints

Quadratic problem

f (x) = x tAx + btx + c

where A symmetric matrix in Rd×d , b ∈ Rd and c ∈ R.

Recall :

btx =
∑d

i=1 bixi is the scalar product in Rd

Ax is the matrix product, and so x t(Ax) yields a scalar
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Numerical optimization

Problems without constraints

Convex problem

∀ 0 ≤ α ≤ 1, f [αx + (1− α)y ] ≤ αf (x) + (1− α)f (y)

x0 is a local minimum of f iff :

∃ε > 0, ‖x − x0‖ ≤ ε ⇒ f (x) ≥ f (x0)

Interest of convex functions : any local minimum x∗ of f is also a
global minimum.
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Numerical optimization

Problems without constraints

Non-linear problem
All other cases.
The most regular (=differentiable) f is, the easier the problem.
In these lectures, we will assume f C1, or C2 when necessary.
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Numerical optimization

Problems with constraints

min
x

f (x) subject to θj(x) ≤ 0, 1 ≤ j ≤ m

θj : Rd → R

Difficulties :

In general, equality constraints are simpler than inequalities.

The simpler and most regular are the constraints, the simpler
the problem.
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Numerical optimization

Problems with constraints

Linear program

f is an linear function f (x) = btx , to maximize

constraints are affine : θj(x) = bt
j x + cj ≤ 0

one often has xi ≥ 0 in the constraints
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Numerical optimization

Problems with constraints

D is a convex volume, limited by hyperplanes,
its boundary is called a simplex
the maximum of f is found at a corner of the simplex
the simplex algorithm explores these corners
also addressed by interior points methods
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Numerical optimization

Problems with constraints

Quadratic program
f is a quadratic function, constraints are affine
Addressed by quadratic programming

Non-linear program
All the rest. By increasing complexity:

f convex, affine constraints,

f regular (Cn), affine constraints,

f convex, convex constraints : convex programming

f regular, convex constraints,

f regular, regular constraints,

etc.



Overview of optimization problems Quadratic forms Functions of several variables

Combinatorial optimization

Combinatorial optimization

Corresponds to the case where x varies in a discrete domain D.

D = Nd ,

D = set of paths on a graph,

etc.

Problems are sorted by complexity.
In front of a combinatorial optimization problem, try to express it
as one of the standard examples.
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Combinatorial optimization

Easy problems (polynomial complexity)

Optimal covering tree
Graph G = (V ,E , c) with c : E → R assigning costs to edges.
Problem : find a min cost tree in G that reaches all vertices

Solution : a greedy procedure (Prim/Kruskal)

explore edges by increasing cost in order to build a tree

if an edge closes a cycle, reject it and take the next

stop when all nodes reached
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Combinatorial optimization

Easy problems (polynomial complexity)

Dynamic programming
Problem : In G , find the shortest path from s to s ′, where c(e) is
the “length” of edge e.

Solution : A recursion

if the shortest path from s to s ′ goes through s ′′, then the
section s → s ′′ is also optimal

start from s, and find the shortest path to its neighbours, and
so on recursively.
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Combinatorial optimization

Easy problems (polynomial complexity)

Simple flow problems
Problem : Maximize the flow from s to s ′, where c(e) is the
maximal capacity of edge e.

Solution : Ford-Fulkerson algorithm

find a path from s to s ′, with minimal capacity c1 > 0

reduce capacities on edges of this path by c1

repeat until s and s ′ are disconnected
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Combinatorial optimization

Complex problems (NP)

Integer linear program (NP)

max
x∈Nd

btx s.t. θj(x) = bt
j x + cj ≤ 0, 1 ≤ j ≤ m
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Combinatorial optimization

Complex problems (NP)

the extra constraint x ∈ Nd instead of x ∈ Rd changes
dramatically the complexity

rounding the solution of a linear program may give a good
approximation, or initial guess

when the simplex is too “flat”, this doesn’t work

complexity is NP in general...
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Combinatorial optimization

Complex problems (NP)

Example: the knapsack problem, a typical integer linear
programming problem

d objects Oi of volume vi and utility ui ,

knapsack of limited volume v ,

select objects in order to maximize the utility of the knapsack,
under the volume constraint.
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Combinatorial optimization

Complex problems (NP)

Traveling salesman : find a hamiltonian cycle in a graph, i.e.
visit all nodes exactly once with the shortest cycle.
Maximal coupling : set of edges in G that have no neighbour in
common.
Maximal clique : find the largest clique, i.e. set of points that are
pairwise neighbours.

Solutions by branch and bound techniques.

Some problems are even more complex : it is already hard to find
an element of the domain D.
Examples : planning problems, puzzle resolution, etc.
Addressed by constraint solving methods.
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Variations

Variations calculus (not covered)

The parameter x has infinite dimension, and becomes a function.
Examples :

Optimal shape of a rope hanged by its two extremities
(minimizes potential energy).

Shape of a toboggan that maximizes the exit speed : the
brachistochrone.
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Variations

Others (not covered)

Optimization multi-criterion :
Minimize at the same time f1(x) and f2(x) in the same value of x .

Games :

We have K players,

Divide x ∈ Rd into x = (x1, ..., xK ) where xi ∈ Rdi ,∑
i di = d

Player i is in charge of adjusting the (sub)vector xi .

We distinguish

cooperative games : players jointly minimize f (x)

competitive games : player k minimizes its own fk(x).
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Minimizing a quadratic form

Scalar function

min
x

f (x) = ax2 + bx + c

Solve f ′(x) = 0, i.e. try x∗ = − b
2a ,

equivalent to expressing f as f (x) = a(x − x∗)2 + c ′

min or max ? Depends on the sign of a...



Overview of optimization problems Quadratic forms Functions of several variables

Minimizing a quadratic form

Vector function

min
x

f (x) = x tAx + btx + c

where A is a diagonal matrix A = Diag(a1, ..., ad).

equivalent to d independent problems fi = aix
2
i + bixi + ci

joint resolution of all f ′i (xi ) = 0 :
equivalent to canceling the gradient

∇f (x) =


...

∂f
∂xi
...

 = 2Ax + b

try x∗ = −1
2A−1b, when all ai 6= 0

equivalent to expressing f as f (x) = (x − x∗)tA(x − x∗) + c ′

min or max ? depends on the signs of the ai ...
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Minimizing a quadratic form

all ai positive : elliptic paraboloid (left), and x∗ is a min

there exist ai of opposite signs : hyperbolic paraboloid (right),
and x∗ is not a min

what if some of the ai vanish ?
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Minimizing a quadratic form

General case

f (x) = x tAx + btx + c

One always has A = P∆Pt where

∆ is diagonal, formed by the eigenvalues λi of A

P is unitary, i.e. PtP = 1I = PPt ,
and formed by the eigenvectors pi of A

Api = λipi

The change of variables y = Ptx takes us back to the previous
case.
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Minimizing a quadratic form

Direct resolution

gradient ∇f (x) = 2Ax + b,

x∗ = −1
2A−1b yields a stationary point

(obtained by solving a linear system)

verify that this is a min, by checking the positivity of the
eigenvalues of A
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Examples

Example 1: curve fitting

Problem : adjust the line L : x1p1 + x2p2 + x3 = 0
to a cloud of N points p(1), ..., p(N) in the plane R2

Distances to the line

D(p,L) =
x1 p1 + x2 p2 + x3√

x1
2 + x2

2
Dv (p,L) =

∣∣∣∣x1 p1 + x2 p2 + x3

x2

∣∣∣∣
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Examples

x = (x1, x2, x3) is defined up to a constant.
Assume x2 = 1 : Dv (p,L) = |x1 p1 + p2 + x3|

min
x

f (x) where f (x) = f (x1, x3) =
∑

i

Dv (p(i),L)2

This method can be used to adjust

a parabola P : p2 = x1p1 + x2p
2
1 + x3 to a cloud of points,

any polynomial curve in p1,

a hyperplane H : x1p1 + x2p2 + ... + xkpk + xk+1 = 0 in Rk

Caution : very sensitive to outliers



Overview of optimization problems Quadratic forms Functions of several variables

Examples

Example 2: best image transform

Problem : Estimate the apparent movement of an object between
two consecutive images. Characterized by the best affine transform
that sends points p(n) to points q(n).

Model :

q = Hp + T where H =

[
x1 x2

−x2 x1

]
and T =

[
x3

x4

]
Resolution by minx

∑
n ‖HP(n) + T − q(n)‖2



Overview of optimization problems Quadratic forms Functions of several variables

Examples

Example 3 : Best solution of a linear system

Consider the overconstrained linear system Mx = y
where M ∈ Rn×d and n ≥ d : more equations than unknowns.

Approximate resolution :

minimize the norm of the error e = y −Mx

f (x) = ‖Mx−y‖2 = (Mx−y)t(Mx−y) = x tMtMx−2y tMx+y ty

A = MtM is a positive symmetric matrix: there is a min

stationary point(s) : ∇f (x) = 2MtMx − 2Mty = 0

if M has full rank, i.e. Rank(M) = Rank(MtM) = d , then

x∗ = (MtM)−1Mty = M†y
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Examples

Example 4 : intersection of N lines

Find a point x = (x1, x2) such that

L(n) : an,1 x1 + an,2 x2 = an,0 1 ≤ n ≤ N

The approximate resolution of this linear system gives the point
that is the closest to all lines :

min
x1,x2

N∑
n=1

(an,1 x1 + an,2 x2 − an,0)
2

Q: when does the linear system violate rank(M) = d = 2 ?
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Visual representations

Representing a function f : Rn → R

1 As a “surface” in Rd+1 :
the d + 1st dimension z is for the value of f ,
z = f (x) defines a manifold of degree d in Rd+1.

2 By its level lines in Rd :
level line of “height” h : L(f , h) = {x ∈ Rd : f (x) = d},
L(f , h) is a manifold of degree d − 1 in Rd ,
similar to geographical or meteorological maps.
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Taylor expansions and geometry

Taylor expansion in R

For f : R → R that is C 2 (i.e. has a cont. 2nd order derivative),
one can approximate f around any point x0 by

f (x) = f (x0) + f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)2 + o(x − x0)2

y = f (x0) + f ′(x0)(x − x0) : tangent line

y = f (x0) + f ′(x0)(x − x0) + 1
2 f ′′(x0)(x − x0)2 : tg parabola

Can be used to find a local minimum of f .
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Taylor expansions and geometry

Taylor expansion in Rd : 1st order

1st order : let f : Rd → R be a C 2 function,

f (x) = f (x0) +∇f (x0)t(x − x0) + o(‖x − x0‖)

if the move x − x0 is perpendicular to the gradient ∇f (x0),
f doesn’t change

if the move x − x0 is parallel to the gradient,
one gets the maximal change for f
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Taylor expansions and geometry

Level lines

Level line for f at x0 = {x ∈ Rd : f (x) = f (x0)}

at any point, the gradient is orthogonal to the level line

tangent hyperplane to the “surface” z = f (x) in Rd+1 :
z = f (x0) +∇f (x0)t(x − x0)

tangent hyperplane to the level line at x0 in Rd :
intersection with z = f (x0), i.e. ∇f (x0)t(x − x0) = 0
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Taylor expansions and geometry

Taylor expansion in Rd : 2nd order

2nd order :

f (x) = f (x0) +∇f (x0)t (x − x0)

+
1

2
(x − x0)t ∇2f (x0) (x − x0) + o(‖x − x0‖2)

where ∇2f (x0) is the Hessian of f at x0

∇2f (x0) =


...

· · · ∂2f (x0)
∂xi∂xj

· · ·
...


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Taylor expansions and geometry

Level lines of f and of its best approximation by a quadratic form
at x0.

Characterization of a local minimum x∗ of f :

NC: it’s a stationary point, ∇f (x∗) = 0

NC: the Hessian is semi-definite positive ∇2f (x∗) ≥ 0

SC: the Hessian is non-negative ∇2f (x∗) > 0
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Directional derivatives

Directional derivatives

Consider the parametric curve/line :

x(t) = x0 + tu, t ∈ R, u = direction in Rd

1st order : For f ◦ x : R → R, one has

(f ◦ x)′(t) =
∑

i

∂f [x(t)]

∂xi

dxi (t)

dt

= ∇f [x(t)]t x ′(t)

= ∇f [x(t)]t u

Whence the 1st order Taylor expansion of f ◦ x

(f ◦ x)(t) = x0 + t · ∇f (x0)t u + o(t)
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Directional derivatives

2nd order : One has

(f ◦ x)′′(t) = x ′(t)t ∇2f [x(t)] x ′(t) +∇f [x(t)] x ′′(t)

= ut ∇2f [x(t)] u + 0

Whence the 2nd order Taylor expansion of f ◦ x

(f ◦ x)(t) = x0 + t · ∇f (x0)t u +
1

2
t2 · ut ∇2f (x0) u + o(t2)
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